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Relating brain tissue properties to diffusion tensor imaging
(DTI) is limited when an image voxel contains partial volume of
brain tissue with free water, such as cerebrospinal fluid or
edema, rendering the DTI indices no longer useful for describ-
ing the underlying tissue properties. We propose here a method
for separating diffusion properties of brain tissue from sur-
rounding free water while mapping the free water volume. This
is achieved by fitting a bi-tensor model for which a mathemat-
ical framework is introduced to stabilize the fitting. Applying the
method on datasets from a healthy subject and a patient with
edema yielded corrected DTI indices and a more complete tract
reconstruction that passed next to the ventricles and through
the edema. We were able to segment the edema into areas
according to the condition of the underlying tissue. In addition,
the volume of free water is suggested as a new quantitative
contrast of diffusion MRI. The findings suggest that free water
is not limited to the borders of the brain parenchyma; it there-
fore contributes to the architecture surrounding neuronal bun-
dles and may indicate specific anatomical processes. The anal-
ysis requires a conventional DTI acquisition and can be easily
merged with existing DTI pipelines. Magn Reson Med 62:
717–730, 2009. © 2009 Wiley-Liss, Inc.
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Diffusion imaging is an MRI technique sensitive to the
mean displacement of water molecules along a specified
direction (1). Within typical experimental diffusion times
(a few tens of milliseconds) water molecules in brain tis-
sue are expected to have a mean displacement on the order
of 5–10 �m, reflecting the degree of hindrance by sur-
rounding cellular structures. The most common method
for inferring tissue macroscopic geometry from water dis-
placement is diffusion tensor imaging (DTI) (2), which
models displacements in multiple directions using a dif-
fusion tensor. The geometry is inferred from DTI indices
(3) such as: fractional anisotropy (FA), which provides
good segmentation of white matter and an indication of
white matter coherence; the principal eigenvector of the
tensor, which provides the orientation of white matter

bundles; and the mean diffusivity (MD) or apparent diffu-
sion coefficient (ADC), which provides a contrast mecha-
nism for identifying areas with increased bulk diffusivity
that may represent an increase in tissue water content. DTI
indices have proven to have significant value both in clin-
ical evaluation and brain research (4), including the
unique ability to delineate neuronal fibers via tractography
(5).

Free water is defined as water molecules that do not
experience flow and are not restricted by their surround-
ings. In the human brain, free water is found as cerebro-
spinal fluid (CSF) confined to the ventricles and around
the brain parenchyma. Free water may also accumulate in
the form of vasogenic edema within the brain parenchyma
in the extracellular space due to processes such as tumors,
brain trauma, or hemorrhage that cause ruptures in the
blood–brain barrier (6–8). Free water can be identified by
DTI since it shows isotropic diffusion with ADC of about
3 � 10�3 mm2/s for 37°C, almost 4 times larger than the
typical ADC values of the brain parenchyma (9).

The DTI indices may be regarded as tissue-specific as
long as image voxels contain a single type of tissue. But
when partial volume of different diffusion compartments
occurs, the DTI indices reflect the weighted average of all
compartments and can no longer be regarded as markers
for a specific tissue (10). CSF contamination is a particular
type of partial volume effect that occurs along the contour
lines of the ventricles and around the perimeters of the
brain parenchyma in voxels shared by CSF and brain tis-
sue (11,12). As a result, CSF-contaminated voxels have
elevated ADC and decreased FA values. A white matter
voxel contaminated by free water will most probably be
fitted with a relatively isotropic diffusion tensor, preclud-
ing it from being assigned as white matter. CSF contami-
nation has been shown to affect the delineation of fibers
that pass near the ventricles, such as the fornix, the cin-
gulum, and parts of the corpus callosum (12–14), and to be
a limitation in voxel-based and histogram analysis com-
parisons of DTI-related quantities (15). Edema has a simi-
lar effect as CSF contamination, although its location and
spread depend on the localization of the pathology that
caused it. In addition, edema usually infiltrates brain tis-
sue, contaminating large areas with partial volume effects
that render it impossible to identify the infiltrated tissue
condition and to perform an analysis such as tractography
(4,16).

Proposed methods for eliminating CSF contamination
usually use the fluid-attenuated inversion recovery diffu-
sion-weighted imaging (FLAIR-DWI) sequence that sup-
presses the CSF signal (12–14). However, FLAIR-DWI has
several drawbacks: it usually does not correct edema con-
tamination (due to different relaxation times), it suffers
from low signal-to-noise ratio (SNR), increases scan time,
increases specific absorption rate (SAR), and does not al-
low gating according to the cardiac cycle necessary to
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prevent pulsation artifacts and misalignment (14,17). Pier-
paoli and Jones (18) introduced a model-based approach
for eliminating CSF contamination from conventional dif-
fusion images. They suggested that vasogenic edema has
diffusion properties similar to free water and causes sim-
ilar partial volume effects as CSF contamination; in both
cases free water dominates the signal attenuation, cancel-
ing out the specificity of the derived DTI indices for the
underling tissue (white or gray matter). It was thus pro-
posed that minimizing CSF contamination might also re-
duce the effect of edema on the signal attenuation. Pierpa-
oli and Jones used a bi-tensor model (11,19) that has two
compartments: a free water compartment characterized by
isotropic tensor with diffusivity of free water, and a tissue
compartment modeled by a diffusion tensor. However, as
will be shown here, the fitting problem of the bi-tensor
model is ill-posed. Pierpaoli and Jones (18) suggested in-
creasing the number of measurements and diffusion
weightings (b-values) at the cost of increased scan time in
order to improve the bi-tensor estimation.

In this article we describe a method that results in tis-
sue-specific indices for free water-contaminated voxels by
incorporating free water elimination in the conventional
diffusion modeling pipeline. The bi-tensor model is used
with tensor elements restricted to show piece-wise
smoothness with diffusivities in the range expected for
water molecules hindered by brain tissue. This is accom-
plished by adding constraints to the bi-tensor model using
a variational framework and a tensor regularization
scheme. Other constraints restrict the volume of the water
compartment. In addition to corrected diffusion indices,
we obtain a voxel-wise map of the amount of free water,
which is suggested as a new contrast mechanism that may
have clinical significance. The main advantages of the
proposed method are that it maps and corrects free water
contamination for the standard, widely used DTI acquisi-
tion schemes; the corrected tissue-specific tensor elements
supply additional information on the properties of the
underlying tissue and can be used for any DTI postpro-
cessing. We demonstrate free water elimination and map-
ping on diffusion data of a healthy volunteer and of a
patient suffering from a brain tumor surrounded by edema,
and compare the results with those obtained by conven-
tional DTI.

THEORY

Bi-tensor Model

Definition

The bi-tensor model predicts the signal attenuation factor
(hereafter referred as attenuation) for free water contami-
nation. It is the sum of attenuations contributed by two
compartments: one that models free water, Cwater, and a
tissue compartment, Ctissue, that models either gray matter
or a single bundle of white matter (11,19):

Abi-tensor(D,f) � Ctissue � Cwater � fAtissue(D) � �1 � f�Awater .

[1]

In Eq. [1] the voxel-wise modeled attenuation vector,
Abi-tensor, has an entry for each diffusion orientation (or

applied gradient direction). The compartments are repre-
sented by the modeled attenuation vectors Atissue and
Awater. The scalar f is the fractional volume of the tissue
compartment (0 � f � 1). The tissue compartment follows
DTI’s formalism (3), where the attenuation is parameter-
ized by a diffusion tensor, D as:

�Atissue(D)]k � exp� � bqk
TDqk� [2]

with b as the diffusion weightings, and qk as the k’th
applied gradient orientation. The k’th entry in a vector is
denoted as [ � ]k. The free water compartment is modeled by
a degenerate case of the DTI model, where an isotropic
diffusion tensor, i.e., a scalar, d, represents the bulk diffu-
sivity. As such, all entries of the vector Awater are equal:

�Awater]k � exp� � bd�. [3]

The value d is fixed to the ADC of free water (in our case
d � 3 � 10�3 mm2/s for water at 37°C) (18).

The bi-tensor model is the simplest model accounting
for both diffusion anisotropy and partial volume, and is a
special case of the multiple tensors model (Appendix A1).
Thus, it is assumed that there is no exchange of water
molecules between the two compartments. Finding the
parameters f and D that best fit Eq. [1] gives us the relative
volume of each compartment and with a tensor describing
geometric features of the tissue compartment. This tensor
can then be used to provide tissue-specific quantities with
any measure or analysis that is applicable for DTI (such as
FA, ADC, and tractography). However, finding the param-
eters f and D is not trivial, as explained next.

Finding the Bi-tensor Parameters

The inverse problem of fitting the bi-tensor model is de-
fined as finding the parameters f and D that minimize the
distance between the modeled attenuation Abi-tensor to the
measured attenuation, A� (for a chosen differences metric
such as the root mean square difference). The measured
attenuation, �A� 	k � Sk/S0, is a vector containing the dif-
fusion weighted images (DWIs), Sk (k 
 0), normalized by
the signal acquired for zero diffusion weightings, S0. This
inverse problem is very similar to the inverse problem of
fitting the DTI model, where the goal is to find the tensor D
that minimizes the distance between Atissue and A� . How-
ever, there is a crucial difference between the two prob-
lems: While the DTI inverse problem has a single solution
(20), the bi-tensor inverse problem usually does not. This
can be shown by observing Eq. [1] and noting that given f,
the following quantity can be calculated:

A� t �
A� � Cwater

f
. [4]

The quantity above can be regarded as the corrected signal
attenuation, or the attenuation that would have been mea-
sured for the tissue compartment had it been the only
compartment. In the simplest case of six sensitizing diffu-
sion gradients, there are infinite solutions for the bi-tensor
inverse problem: There is a linear set of equations that
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determines a single unique tensor that solves the DTI
inverse problem for any A� t (21); this is also the solution for
the inverse problem of the bi-tensor model for a given f.
We can therefore choose any arbitrary value in the range
0 � f � 1 and for each such value find its fitting tensor
(Table 1), resulting in infinite (f,D) couples. For a general
HARDI acquisition a set of overdetermined equations has
to be fitted to the six tensor parameters (20). The fitting
then depends on a minimization criterion (for instance,
least squares). But since the measurements are noisy, it is
highly unlikely that there is a solution with a perfect fit.
Hence the (f,D) couples become local minima, among
which the global minimum will be determined according
to the noise type and fitting method selection. Practically
all of the (f,D) local minima can be selected to solve the
bi-tensor inverse problem, and choosing among them re-
quires additional constraints.

Adding Constraints to the Bi-tensor Model Fitting

In order to stabilize the fitting process by reducing the
number of possible solutions, we suggest incorporating
restrictions on the desired solution. The restrictions are
added to a variational framework and are based on biolog-
ical or physical limitations that are not part of the bi-tensor
model itself.

Variational Framework for the Bi-tensor Model

The solution for the inverse problem is restricted to show
piece-wise smooth continuity between neighboring vox-
els. This restriction reflects the continuous property of
diffusivities in an area that contains the same tissue. We
would expect the tissue compartment to have smooth vari-
ations of tensor values between neighboring voxels, unless
those voxels belong to different tissue types (22,23). The
restriction is added to the bi-tensor model fitting by using
a variational regularization framework (24) that defines the
following functional, and minimizes it:

L�D,f� ��
�

��Abi-tensor(D,f ) � A� � � ����D���d�. [5]

The functional has two parts: the first part is called the
model (or fidelity) term, and requires that the chosen so-
lution fit the measured data to the bi-tensor model; the
second part is the regularization term, and contains the
Beltrami piece-wise smoothness constraint for the tissue
compartment tensors. The relative influence of each term
is controlled by a scalar, �. The Beltrami constraint (25)
incorporates the Beltrami regularization operator (26) with
an affine-invariant metric for diffusion tensors, which en-
sures that all operations remain in the positive-definite
range (27). This is done by calculating distances on a high
dimensional space combining the 3D image domain with
the 6D feature space (the six tensor parameters), and pro-
jecting back to the image coordinates, via the induced
metric, . The full expressions of the induced metric and
the Beltrami operator are given in Appendix A2. Minimiz-
ing the volume of this metric (�� denotes the determinant
of ) acts as a piece-wise smooth regularization operator
that maintains important tissue discontinuities (26). The
addition of a regularization term stabilized the ill-posed
fitting problem (28), and the minimization could be per-
formed in any selected way. We use gradient descent si-
multaneously on the entire image domain (all relevant
voxels), �. The solution is defined by an evolution equa-
tion for each parameter (the six tensor parameters and the
volume fraction parameter) that dictates the value of the
parameter at the next iteration, until reaching conver-
gence. The evolution equations are given in Appendix A3.

Constraints Enforced on the Volume Fraction

The solution space is further narrowed by enforcing con-
straints on the volume fraction, which is initially limited
to 0 � f � 1. As shown above, selecting a value for f
determines the corrected attenuation A� t (Eq. 4). Since A� t

represents attenuation, it is physically limited to the range
0 � A� t � 1. This range can be further limited by the
expected diffusivities of the tissue compartment: The dif-
fusion in the tissue is expected to be hindered, so a �max �
d threshold is set, and restricts A� t 
 exp(�b�max) � Amin;
the minimal diffusivity expected in the tissue, �min, re-
stricts the maximal attenuation, hence, A� t � exp(�b�min)
� Amax. This dictates a new, restricted range for f:

fmin �
min(A� ) � �Awater]k

Amin � [Awater]k
� f �

max�A� � � �Awater]k

Amax � [Awater]k
� fmax

[6]

where min(A� ) and max(A� ) are the minimal and maximal
values in the vector A� . The new range, fmin � f � fmax, is
calculated for each voxel.

MATERIALS AND METHODS

The framework was tested on two datasets, one from a
healthy 32-year-old male volunteer and the other from a
40-year-old male patient with an extra-axial tumor (menin-

Table 1
A Six Gradient-Direction Synthetic Signal Attenuation Free of
Noise for a Tensor with Eigenvalues 1.5 0.4 and 0.4 Is Fitted with
a Range of Volume Fraction Parameters, f

D

f �1 �2,3,s ADC FA

1 1.5 0.4 0.766667 0.686161
0.9 1.4129 0.302 0.6723 0.752622
0.8 1.3138 0.1917 0.565733 0.836464
0.7 1.1993 0.0657 0.443567 0.942394
0.6 1.0664 -0.0808 – –
0.5 0.9017 -0.2555 – –
0.4 0.6985 -0.4709 – –

The columns are the obtained principal eigenvalue (�1), the minor
eigenvalue (�2,3), ADC and FA values. The ADC values increase and
the FA values decrease as the fraction of the water compartment
increases. All of the (D,f) couples perfectly fit the synthetic mea-
surements including those that have negative eigenvalues (FA and
ADC are not calculated for the negative tensors). This shows that
the fitting problem is ill-posed since there is more than one possible
solution, and that without constraining, the results can be nonphys-
ical.

Free Water Elimination and Mapping 719



gioma) surrounded by massive edema. Both datasets were
acquired with conventional DTI sequences. The dataset for
the patient was taken as part of a clinical protocol and had
a lower resolution (both in spatial and gradient orienta-
tion) than the volunteer’s dataset. The entire analysis was
performed with MatLab (MathWorks, Natick, MA) using
an in-house tool called the diffusion imaging visualization
and analysis (DiVa) toolbox, which is available online at
http://www.cs.tau.ac.il/�oferpas/. The local Institutional
Review Board approved the MRI protocols and informed
consent was obtained from the subjects.

Imaging Parameters

The datasets were collected on a 3T scanner (GE, Milwau-
kee WI) using a diffusion-weighted spin-echo echo-planar-
imaging (DWI-EPI) pulse sequence. The dataset for the
healthy volunteer had the following parameters: �/� �
30/24 ms; b � 1000 s/mm2, with 19 noncolinear diffusion
gradient orientations in addition to a nonweighted image
(S0). The images acquired had a field of view (FOV) �
200 � 200 mm2, over a 128 � 128 matrix, with 48 slices.
Slice thickness was 2.5 mm, with no gap and a total scan
time of about 10 minutes. The DW-EPI sequence was gated
to the cardiac cycle with TR of 30 R-R intervals and TE of
88 ms.

The DW-EPI sequence for the tumor patient had the
following parameters: TR/TE � 6000/78.5 ms; �/� � 30/
24 ms; b � 1000 s/mm2, with six noncolinear diffusion
gradient orientations in addition to an S0 image. The im-
ages acquired had FOV � 240 � 240 mm2, over a 128 �
128 matrix, with 24 slices. Slice thickness was 5 mm, with
a 1-mm gap. The number of averages was 4, with a total
scan time of about 3 minutes. In addition, the patient
underwent a battery of clinical sequences, including T2,
FLAIR, and gadolinium-enhanced T1.

DTI Analysis

All of the DWIs were coregistered using SPM2 (UCL, Lon-
don, UK) to correct for head motion. Gradient orientations
were compensated prior to the b-matrices calculation to ac-
count for the rotation component of the registration. The
healthy dataset was further normalized to the MNI coordi-
nates, using nonlinear deformations in SPM2, and compen-
sating the gradients orientations for the rotation component
of the affine-transformation that is the closest to the nonlin-
ear deformations. DTI analysis was performed by the least-
squares method (20), resulting in a tensor for each image
voxel.

Bi-tensor Fitting

The bi-tensor fitting was performed by minimizing the
functional Eq. [5]. The brain was segmented by applying a
threshold on the S0 image. In addition, voxels identified by
DTI to have eigenvalues larger than d (flow effects) or
smaller than 0 were omitted. The minimization was per-
formed iteratively on the entire remaining image using the
gradient-descent method.

Initialization

An initial value for the volume fraction parameter, f, was
selected as:

ft�0 � 1 �
log�S0/St�

log�Sw/St�
[7]

where Sw is an intensity value from a voxel containing
only a free water component (ADC � d), and St is a base-
line value from a voxel expected not to have a free water
compartment (typically within deep white matter struc-
tures, with ADC � 0.8). This initialization utilizes the fact
that the S0 image is T2-weighted and therefore shows high
intensity at CSF and edema. Voxels where ft�0 
 fmax or
ft�0 � fmin were changed to the value (fmax � fmin)/2.

Once the volume fraction parameter had been initial-
ized, an initial guess for the tensor parameters of the tissue
compartment was chosen by applying DTI on the free-
water eliminated attenuation, A� t (Eq. [4]).

Iterations

The flow equations that dictate the gradient descent itera-
tion are given in Appendix A3. Convergence was achieved
in 100 iterations with � � 1. We then set � � 0 and ran 100
more iterations. The entire process required about 30 min-
utes to run on an AMD Opteron 250 workstation. The
diffusivities were limited to �max � 2.5 mm2/s and �min �
0.1 mm2/s. Following each iteration, the new f values were
monitored, and those that exceeded the limited range (f �
fmin or f 
 fmax in Eq. [6]) were projected back. As a result,
a tensor map modeling the free water eliminated tissue
compartment was obtained. Mapping the weight of the
water compartment (1-f) provided the free water maps.

Postprocessing and Visualization

The following analysis was performed separately on the
tensor field obtained by DTI and on the free water elimi-
nated tensor field found for the bi-tensor’s tissue compart-
ment. The tensors were spectrally decomposed to their
eigen-components, and FA and ADC maps were calculated
(3). The principal eigenvector from each voxel was used to
draw a color-coded map (29). The intensities in the color-
coded maps were attenuated by the FA values. The out-
come of the two analysis methods was compared using
FA-difference maps, which are voxel-wise subtractions of
the FA derived by DTI from the FA of the tissue compart-
ment tensor. Directionality difference maps were com-
puted as the absolute angle between the orientation of the
DTI derived tensor, i.e., its principal eigenvector, and the
orientation of the tissue compartment tensor. In addition,
tractography was applied using the principal eigenvectors
and FA: the brute force FACT algorithm was used to gen-
erate the fiber coordinates (5), terminating at voxels with
FA lower than 0.2 or following tract orientation change
higher than 60°. Fibers that passed through a manually
chosen seed region of interest (ROI) were plotted. The
fibers were plotted as streamlines using MatLab. Once a
subset of fibers had been found, a visitation map was
generated, indicating voxels with at least one streamline
passing through. The masks obtained were overlaid over
the S0 image.

Fornix Delineation

The fornix connects the hippocampus on each side of the
brain with the mammillary bodies and septal nuclei. The

720 Pasternak et al.



fornix body expected trajectory passes along the septum
pellucidum, a membrane that separates the two lateral
ventricles; its delineation is highly affected by CSF con-
tamination (12–14). The fornix was reconstructed by man-
ually selecting a seed ROI at the body of the fornix. Adja-
cent white matter structures (such as the cingulum) were
screened out by restricting the fibers by a second ROI in
proximity to the hippocampus. The presented streamlines
are those that passed through both ROIs.

Corpus Callosum Delineation

The corpus callosum connects the left and right cerebral
hemispheres and is the largest white matter structure in
the brain. The posterior portion is called the splenium, the
anterior the genu. The genu of the corpus callosum was
reconstructed by selecting a single seed ROI on its mid-
sagittal part.

RESULTS

CSF Contamination in the Healthy Subject

Figure 1 presents the free water map that was obtained by
applying the bi-tensor fitting on the dataset from the
healthy volunteer. High intensity values (approaching 1),
reflecting a large volume of free water, were found for CSF
voxels in the ventricles and around the brain parenchyma.
Low values approaching 0 were found in gray and white
matter areas. Values in the intermediate range identified
voxels mainly at the CSF/brain tissue borderline. Small
amounts of free water contamination were also found
within deep white matter structures.

Figure 2 compares the ADC and FA-attenuated color-
coded images obtained from DTI’s tensor field (Fig. 2a,b)
with those obtained from the water-eliminated tensor field
(Fig. 2c,d). The images were very similar, with fine details
and discontinuities in the DTI image preserved in the
water-eliminated image. Differences in ADC were mostly
in CSF-filled cavities around the brain parenchyma, and
within and around the ventricles. The differences between
the color-coded images are highlighted in the FA-differ-

ence map and in the directionality difference map (Fig.
2e,f). According to the FA-difference map (Fig. 2e), FA
increased throughout many brain voxels, the increase was
higher at CSF and white matter interfaces, and the increase
was most prominent around and within the ventricles.
According to the directionality difference map (Fig. 2f),
high orientation differences (lower similarity) were found
in areas expected to have CSF or gray matter voxels, and
the differences in white matter voxels were minor (high
directionality similarity).

The effect of free water elimination on tractography was
demonstrated by reconstructing the fornix bundle (Fig. 3).

FIG. 1. Free water map: healthy subject. High intensities indicate a
large volume of the free water compartment. Free water was found
mostly in the CSF and around the brain parenchyma, and some
within brain tissue (see inset). [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

FIG. 2. Tissue compartment: healthy subject. ADC maps (a,c) and
FA attenuated color-coded maps (b,d) representing the main diffu-
sivity of the DTI results and the tissue compartment of the bi-tensor
model are compared. The differences are highlighted in the FA-
difference (e) (DTI subtracted from the tissue compartment) and
orientation-difference (f) images. FA was elevated and ADC de-
creased mainly around the ventricles. Orientation was preserved
throughout the brain tissue and was changed mainly in CSF voxels.
This suggests that changes were selective to areas of partial vol-
ume, and preserved the quantities elsewhere. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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For the DTI set, no fibers were found to connect the two
ROIs; the reconstructed fiber from the fornix body ROI
(Fig. 3a) showed a small part of the fornix and did not
connect with the hippocampus. Lowering the FA thresh-
old delineates the entire fornix (Fig. 3b), but the stream-
lines become too long, overlapping with adjacent white
matter structure. The fiber reconstructed from the free
water-eliminated tissue compartment (Fig. 3c) showed the
full trajectory of the fornix to the hippocampus. Figure 3d
presents the visitation maps for the free water-eliminated
delineated fornix, superimposed over the FA map of the
DTI data. Figure 3e shows the same contour placed on top
of the free water map. These superimpositions show that
the bi-tensor delineated route passed through partial vol-
ume voxels (high free water content), where DTI found FA
values lower than the fiber tracking threshold. These vox-
els caused the premature termination of tracking with DTI,
while free water elimination showed FA increase, which
allowed the more complete delineation,.

Edema Contamination

The anatomical MRI for the clinical dataset (Fig. 4) re-
vealed the presence of a tumor affecting the frontal lobe

surrounded by a large volume of edema. As part of the
clinical evaluation, the tumor and edema were manually
segmented by an expert. Two slices of this dataset are
presented in Figs. 5–8.

The free water maps (Figs. 5, 7c) showed that the entire
area of the edema had partial volume of a free water
compartment with a mean fractional volume of 0.45 �
0.15. The mean fractional volume of the water compart-
ment of the tumor area was 0.19 � 0.08, and that of the rest
of the gray/white matter was 0.10 � 0.13. Areas not af-
fected by the edema showed findings similar to the free
water maps of the healthy volunteer: high contrast at CSF,
low at brain tissue, and intermediate values on the inter-
face between them. Free water intensity within deep white
matter was again found, more widespread than for the
healthy volunteer. The FA, ADC, and orientation changes
in the normal appearing tissue were the same as those seen
in the healthy subject.

The ADC of the DTI analysis (Fig. 6a) for the area of the
edema (cyan contour) was hyperintense, while the ADC of
the tissue compartment (Fig. 6c) had values similar to the
rest of the brain. The DTI color-coded images (Figs. 6b, 7a)
showed reduced FA for fiber bundles that passed through

FIG. 3. Tractography: healthy subject. Comparison of the delineation of the fornix (red streamlines) using DTI (a,b) and using the tissue
compartment obtained by the bi-tensor fit (c). The hippocampus is shown for reference in green. The tract obtained by DTI with
conventional FA threshold (0.2) preterminated at the body of the fornix (a), while the bi-tensor fit tract delineated the entire route from the
body of the fornix to its termination at the hippocampus. Lowering the FA threshold (FA 
 0.1) (b) results in a complete delineation of the
fornix, yet with the cost of many false-positive streamlines. In (d) a magenta contour representing voxels where the bi-tensor tract passed
is placed over a few sagittal FA slices of the DTI data, showing that the fiber passed in low FA voxels and caused the pretermination of the
DTI tract. The same contour placed over the free water map (e) showed that the fiber passed right next to the ventricles in voxels with partial
volume effect. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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the edema compared to the intensity of unaffected white
matter areas. Compared to the DTI values, the color-coded
images for the tissue compartment derived from the bi-
tensor fitting (Figs. 6d, 7b) showed elevated FA intensities
within the edema, similar to those in unaffected areas
(Table 2). The FA did not increase in the area of the tumor
(yellow contour).

Scattering DTI’s FA values relative to the tissue com-
partment FA showed that FA almost always increased
(Fig. 8). The scatterplot was clustered using two linear
criteria: y � 0.45 and y � 1.6x, to four distinct areas: low
DTI’s FA with low corrected FA values (blue); low DTI’s

FA with higher but lower-than-threshold corrected values
(cyan); high DTI’s FA with high corrected values (green);
and low DTI’s FA with high corrected FA values (light-
green). Mapping these clusters back to the image domain
revealed segments within the edema (Fig. 8a,b), a segmen-
tation that could not be seen with anatomical MRI such as
FLAIR (Fig. 8c,d).

Performing tractography with the tensor field obtained
by DTI (Fig. 9a), which showed poor cross-hemispheric
connectivity at the genu of the corpus callosum, evidenced
by no fiber traversing through the edema, suggested fiber
degradation. Performing tractography on the tissue com-
partment tensor field derived from the bi-tensor fitting
using the same seed ROI gave a different picture (Fig. 9b):
the delineated tracts passed through the edema and
crossed to the contralateral cortex. Laying a surface visu-
alization of the tumor (shown as yellow surface) over the
found tracts showed that the delineated fibers were most
probably displaced by the tumor and passed close to its
borders, but maintained cross-hemispheric connectivity.
The crossing of the fibers through the edema was better
visualized as an overlay of the fibers’ visitation index on
top of anatomical axial slices (Fig. 10): pixels were colored
green if a DTI-derived tract went through them, and red if
a tissue compartment-obtained tract went through them as
well.

FIG. 4. Anatomy: edema. Anatomical images of a patient with a
large tumor in the frontal lobe, surrounded by a large space-occu-
pying edema. The extent of the lesion is seen in a mid-sagittal T2

image (a) and in an axial slice (b) coregistered with the diffusion
data. The extent of the tumor is best viewed in a gadolinium-
enhanced T1 image (c), while the edema is best viewed with a
T2-FLAIR image (d).

FIG. 5. Free water map: edema. The map allows segmentation of
the edema and the tumor. The edema was detected as hyperinten-
sity in the free water contrast (0.45 � 0.15), while brain tissue
showed lower intensities (0.1 � 0.13). The tumor showed values in
the range 0.19 � 0.08. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

FIG. 6. Tissue compartment: edema. ADC maps (a,c) and color-
coded maps (b,d) obtained by DTI (top row) and by the tissue
compartment of the bi-tensor fit (bottom row) are compared. Most
changes are within the edema area (cyan contour): ADC was hyper-
intense in DTI but was reduced following the free water removal. FA
was selectively increased for the edematous area that contained
white matter tracts, but was not increased in the area of the tumor
(contoured with yellow). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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DISCUSSION

The main contribution of this study is an algorithm that
extracts free water from diffusion MRI obtained by con-
ventional DTI acquisitions, enabling better estimation of
tissue-specific indices such as FA in areas of partial vol-
ume effect with CSF or edema, and more comprehensive
fiber tracking in healthy and pathological conditions. We
discuss below the effect of free water elimination on relat-
ing DTI indices to tissue microstructure, and the impor-
tance of the free water volume as a new imaging contrast.
We also discuss model validation, implementation, and
limitations issues concerning the bi-tensor model and the
proposed minimization framework.

Imaging of Tissue Microstructure

One of the main benefits of diffusion imaging is that it
provides microstructural information that can be related to
processes within the tissue (3). The results suggest that
diffusion indices derived from the free water-eliminated

tissue compartment enhances the tissue specificity of the
diffusion indices derived from DTI, especially for white
matter delineation. In both the healthy and the tumor-
patient datasets, FA values increase in areas expected to
have partial volume of white matter with free water; the
new FA values are similar to those in adjacent noncon-
taminated white matter voxels and better describe white
matter geometry. An increase in FA is also observed
within the ventricles and may reflect tissue residing
within them (e.g., choroids plexus), or noise effect that
becomes more apparent following removal of the free wa-
ter. The corrected FA allows a more complete delineation
of the fornix bundle. The fiber it discloses is very similar to
fibers obtained by FLAIR-DWI (compare fig. 9 with fig. 4 in
Ref. (14)), but it is obtained from a conventional DTI scan
without the need for FLAIR.

Changes in the FA values within the edema following
free water give valuable information about the underlying
microstructure processes. While proximity to CSF does
not change fiber diffusivities, vasogenic edema might

FIG. 7. Edema. The DTI color-coded map (a) shows a large area with decreased FA, suggesting fiber degradation due to the edema
infiltration. The free water map (c) shows that the edema has high free water volume, while the tissue compartment derived from the
bi-tensor fit (b) provides the additional information that FA values are similar to those on the unaffected side (see Table 2).

FIG. 8. Edema segmentation. By
scattering DTI’s FA against the cor-
rected FA (left), the data appear to
fall into four clusters which, when
mapped back to the image domain
(a,b), reveal four segments within
the edema. These segments imply
the condition of the underlying tis-
sue, and cannot be seen in ana-
tomical contrast such as FLAIR
(c,d).
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cause tension on the fiber, change its density, or cause its
degeneration (6), all of which clearly alter the diffusivities
of the fiber bundle. Patterns of FA changes following the
bi-tensor approach can characterize the effect of free water
on partial volume of white matter and thereby indirectly
characterize the underlying tissue:

1. An increase in FA within the affected region back to
expected values suggests that no structural changes
occurred to the fiber bundle in the region. Expected
FA values may be those of the contralateral unaf-
fected fiber, those along the fibers in areas unaffected
by the edema, or ones known from the literature for
the observed fiber.

2. A partial increase in FA (compared with expected
values) suggests some degree of fiber degradation.

3. An FA increase above normal values may suggest
thinning of the fibers due to the pressure applied by
the edema on the fiber membranes (30).

4. No increase in FA in the affected area suggests that
the underlying tissue is isotropic or the volume of the
tissue is very small.

The patterns of FA changes following the bi-tensor anal-
ysis can be related with the edema segments found in the
tumor dataset (Fig. 8 and Table 2): the green segment is
pattern #1, the cyan segment is pattern #2, and the blue
segment is pattern #4. The segmentation according to pat-
terns of FA-changes enables identification of underling
tissue, not available with anatomical contrasts where the
edema dominates the signal and is relatively homogenous,
both in its T2 and T1 properties (Figs. 4, 8c,d), and in its
relative volume (Figs. 5, 7c). The tissue segmentation
within the edema is in line with the tractography results
obtained by the bi-tensor fit (Fig. 9b) that show that the
connectivity of the hemispheres in the damaged area is not
completely lost, as suggested by the DTI tractography re-
sults (Fig. 9a). However, not all of the fibers were able to
cross, suggesting that some degree of connectivity damage
or fiber degradation did occur as a result of the edema
infiltration, and the pressure caused by the space occupy-
ing tumor. Indeed, examination of the same patient after
removal of the tumor and edema absorption indicated that
the corpus callosum had recovered (data not shown).

Free Water Mapping

The ability to map the volume of free water introduces a
new contrast mechanism that quantifies the partial volume
within a voxel or the relative volume of free water. Esti-
mating this parameter at the interface between CSF and
brain tissue is important in order to eliminate free water
contamination. However, as the results suggest, free water
can also be found within the brain tissue itself, e.g., within
deep white matter structures, where it may provide addi-
tional structural information. In the edema case, hyperin-
tensities in the free water map are useful for delineating
the area of the edema, suggesting an increase in the relative
volume of the extracellular matrix. It is likely that the
origin of the free water measure is from the extracellular
matrix, since the cell size dictates a hindered displace-
ment profile with diffusivity smaller than free water dif-
fusivities (31). Similarly, we suggest that hyperintensities
found in healthy-appearing brain tissue of both subjects
indicate local accumulation of free water, which may be an
important indication of the dynamics and condition of
many processes. These could be any processes that involve
changes in the relative volume of the intra- and extracel-
lular space, such as maturation and aging, processes where
water accumulation accompanies cell formation changes
due to trauma, or degenerative processes like those that

FIG. 9. Tractography: edema. Delineation of the corpus callosum
from the DTI data showed no connectivity between hemispheres (a),
since the fiber terminated at the edematous area. Tractography
using the tensor of the tissue compartment (b) on the same seed
ROI crossed through the edema to the contralateral hemisphere.
The yellow surface in the top panel visualizes the tumor, which
seems to have pushed the colossal fibers (red streamlines). This can
be seen in the bottom panel where the tumor surface is not ren-
dered. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Table 2
Mean FA and ADC (Mean � SD) Are Presented for the ROIs Contoured on Fig. 7

ROI4 ROI3 ROI2 ROI1 FA ADC

0.4497 � 0.0526 0.5151 � 0.0619 0.1998 � 0.0269 0.2261 � 0.0371 DTI DTI
0.4702 � 0.0592 0.5687 � 0.0595 0.4097 � 0.0572 0.5092 � 0.0229 Bi-tensor Bi-tensor
0.0205 � 0.0141 0.0535 � 0.0192 0.2098 � 0.0357 0.2831 � 0.0510 Difference Difference
0.6429 � 0.0253 0.6790 � 0.0393 1.2291 � 0.0670 1.3073 � 0.1421
0.5989 � 0.0156 0.5972 � 0.0277 0.6425 � 0.0208 0.6122 � 0.0142

�0.0440 � 0.0222 �0.0818 � 0.0266 �0.5866 � 0.0617 �0.6951 � 0.1450

The ROIs are numbered from left to right, with ROI1 and ROI2 being contaminated by the edema. A much greater increase in FA and
decrease in ADC are observed for the affected side (ROIs 1 and 2) following free water removal, and the values get closer to those on the
unaffected side (ROIs 3 and 4).
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occur in multiple sclerosis or cancer. The existence of free
water within brain tissue is in line with previous findings
by FLAIR-DWI, where small FA and ADC changes were
identified (14).

The quantitative mapping of the volume of the water
compartment is a main advantage of the bi-tensor ap-
proach over FLAIR-based CSF suppression methods. In
addition, FLAIR-DWI suppresses only CSF free water
(based on their T1), but not edematous free water (that has
a much shorter T1). The volume of the free water compart-
ment is a relative quantity and intrinsically limited to 0 �
f � 1, which makes the free water map a good candidate for
cross-subject and cross-scan comparisons. As an alterna-
tive, free water within edematous tissue can be indirectly
detected by hyperintensities in T2-FLAIR, although these
are dependent on scanning parameters and are hard to
compare between subjects or across scans (32). For exam-
ple, when examining excised tissues or tissue with vari-
able temperature distribution, the extraction of free water
can be done by fine-tuning the fitting parameters (the dif-
fusion coefficient of the free water compartment), while
the estimation of the free water fraction with FLAIR would
necessitate changes at the acquisition level (33).

Model Validation

The problem of validating DTI results remains to be
solved. There is no “ground truth” experiment available
that truly models the diffusion properties of in vivo tissue,
and there are great difficulties in comparing DTI indices
with excised tissue (5). Nevertheless, when qualitative
assessment of DTI indices are compared with prior ana-
tomical and physiological information, the DTI indices in
homogenous areas are in good agreement with the geom-
etry of the tissue, and hence with its physiological prop-
erties (3,9). Validation of the bi-tensor model is therefore
currently limited to comparing the diffusivities of the tis-
sue compartment with the diffusivities obtained by DTI.
The FA difference and directionality difference maps are
the best validation tools in this case. It appears that FA is
increased while directionality is preserved in free water-
contaminated voxels compared to fibers in adjacent non-

contaminated voxels. The sizes of the FA changes are
similar to those recorded by FLAIR-DWI as reported (14):
the 0.15–0.25 increase in FA in contaminated voxels in
(14) is in line with the 0.2–0.28 increase reported here
(ROIs 1 and 2 in Table 2); and a slight increase (0.02–0.05)
of FA accompanied by a decrease of ADC (�0.04 to �0.08)
is observed in less contaminated areas (ROIs 3 and 4 in
Table 2 and the table in Ref. (14)). The latter FA increase
may be explained by the existence of free water within the
brain tissue. The free water signal is canceled with FLAIR-
DWI sequence, and is calculated to have small values with
the method described here; both yield a slight FA increase
in the case of an underlying white matter. High direction-
ality changes are found where the fitted tensor was ex-
pected to have low anisotropy within the ventricles and in
some gray matter areas. In DTI the direction in those iso-
tropic voxels is determined mainly by the direction of
noise (3,9). Consequently, orientation changes for low an-
isotropy tensors hardly affect the fitting residual of the
model term while at the same time they reduce disconti-
nuities, and therefore are preferred by the minimization
framework. The fact that directionality in white matter is
preserved validates the fiber delineation results compared
to the fibers delineated by DTI. In addition, the fibers
obtained by eliminating free water appear more complete,
and more closely resemble the expected anatomy. We note
that the preservation of directionality implies that tracking
through free water contaminated voxels could be achieved
directly from the original tensor field by a global decrease
of the FA threshold. This is indeed the case (Fig. 3b), but
this approach has implications for non-CSF contaminated
brain areas, which will have an overestimation of ex-
tracted tracts and a large number of false-positive fibers (5).
Although we demonstrate here a single tractography ap-
proach (FACT), the implications of free water elimination
are the same for any other fiber-tracking technique that is
based on the shape of the diffusion tensor.

Implementation Issues

The tensor regularization scheme is based on the assump-
tion of piece-wise smoothness of tensor elements. This

FIG. 10. Visitation index: edema. The visitation maps for the streamlines in Fig. 7 are plotted over four consecutive anatomical T2 slices,
where the tumor is yellow and the edema cyan. Green is for voxels where both the DTI obtained tract and the tissue compartment’s tract
passed. Red is where only the tissue compartment’s tract passed. The DTI tract terminated at the edema, while the tissue compartment’s
tract continued to the opposite hemisphere, as was expected for the corpus callosum. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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assumption was found appropriate for measures of physi-
cal quantities (34), and is especially useful in image pro-
cessing and computer vision problems (35). The field of
diffusion tensor regularization offers a variety of piece-
wise smoothed operators, all of which are based on the
continuity assumption (e.g., (22–24,27) and (36) and refer-
ences therein). The Beltrami operator selected here was
recently shown to produce satisfactory results both in
terms of quality and speed (25). It regularizes the entire
tensor while preserving important image edges and re-
maining in a positive-definite space. In principle, any
other regularization operator with these properties can be
used as well.

The diffusion of information between neighboring vox-
els caused by smoothing is required to solve the ill-posed
inverse problem. We previously used the extra informa-
tion obtained by smoothing to fit tensors in areas of fiber
ambiguity (37). There, as here, the piece-wise smooth reg-
ularization preserved fine details and discontinuities (Fig.
2.), suggesting that the regularization operator identifies
neighboring tissues—including neighboring fiber path-
ways—as different.

In the context of free water elimination, acquiring
smooth tracts is secondary to the estimation of the free
water volume. The smoothing degree is controlled by the
parameter �, but the absence of ground truth requires
subjective assessment. In the application proposed here,
once the volume fraction was found, we chose to deacti-
vate the regularization term (� � 0) and to continue the
convergence for 100 more iterations. As a result, the out-
come is not regularized explicitly and is less affected by
the selection of �. Eliminating the smoothing effect also
enables comparing the results with the nonregularized DTI
results.

Tensor Model Limitations

The proposed framework was designed to be included in
the existing DTI pipelines. As such, the DWIs are acquired
with conventional DTI sequences, which are nowadays
available on most commercial clinical scanners and are
part of regular clinical protocols. As with DTI, the pro-
posed method requires at least six noncolinear diffusion
gradients, and the model fit is improved as the number of
gradients is increased (38). The fitted tissue compartment
tensor then replaces DTI’s tensor in any subsequent anal-
ysis. Because most commercial scanners offer DTI se-
quences, the interface with the DTI pipeline makes the
proposed method very accessible. The method could even
be retroactively applied on any DTI dataset.

The tensor approach does, however, have some limita-
tions. The first is the assumption that there is no exchange
of water molecules between compartments; the exchange
rate of different brain tissues and its effect on the tensor
model are open questions (39). In this context, special care
has to be taken with edema, since it might be correlated
with changes in tissue permeability (40). An increase in
the exchange rate is expected to cause an increase in bulk
diffusivity and a decrease in FA for regular DTI analysis. In
the bi-tensor model, it is expected to cause a bias in the
estimation of the free water volume, and therefore a bias in
the FA values of the tissue compartment. The same limi-

tation applies to processes that occur in gray matter, where
the cell bodies are more permeable than the myelin sheets
of the fiber bundles (41). Another limitation of the tensor
model is that it does not account for the non-Gaussian part
of the diffusion decay (42). There is no doubt that at higher
b-values the removal of the free water effect is easier be-
cause of its fast attenuation (18). But the analysis of the
remaining signal has to be performed with more sophisti-
cated models that account for non-Gaussianity. Prelimi-
nary results demonstrate that eliminating the free water
compartment simplifies and enhances the Axcaliber
model (43), and the CHARMED model (31), compartmen-
tal models that account for non-Gaussianity. Free water
elimination is also expected to improve nonmodel-based
diffusion imaging methods, such as q-ball (44) and pas-
MRI (45), which estimate an orientation distribution func-
tion (ODF). Eliminating the free water does not change the
orientation of the peaks in the ODF, but at the same time
those peaks become more prominent, allowing a more
robust identification. We note that peaks that are noise
related will be emphasized as well, and therefore incorpo-
rating free water elimination requires the use of regular-
ization during the ODF estimation (46).

Pulsation artifact is a problem for correct estimation of
FA in DTI (17), and the same problem remains when using
the bi-tensor fit (in a nongated experiment). The biased
anisotropy will not be included in the isotropic part and
hence has the potential to affect the tissue compartment.
But because the bi-tensor fitting is nonlinear and regular-
ized, the biased FA may also remain in the fitting residual.
This will happen if the regularization is turned on (� 
 0),
in which case the tissue compartment will be regularized
with normal-appearing white matter, and the minimiza-
tion will favor a similar FA.

Because the bi-tensor model considers the T1 and T2 of
both compartments to be the same, the free water volume
estimations are T1- and T2-weighted (Appendix A1), and
may not reflect the real ratio between the compartments.
This bias, which depends on scanning parameters, may be
eliminated by incorporating T1 and T2 maps acquired sep-
arately.

The assumption that edema has the same diffusion prop-
erties as free water may not be correct. At this time we use
a fixed value for the diffusivity of the edema based on the
fact that vasogenic edema is mainly composed of water
and is trapped in the extracellular matrix (6). But it is
possible that edema has slightly different diffusivities than
free water, and that different types of edema have different
diffusivities. As a result the obtained volume fractions
may be biased and may yield biased diffusivities of the
tissue compartment. In any case, they are less biased than
the noncorrected DTI diffusivities. Adding the diffusivity
of the water compartment as a free parameter (47) may
reduce this bias, but at the cost of lengthier computation
and a less stable minimization process. We find that the
diffusivities of the tissue compartment are less susceptible
to changes in the water compartment diffusivities than the
volume fraction parameter, probably because the regular-
ization applied on the tissue compartment maintains its
eigenvalues in a certain range.
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CONCLUSIONS

When inferring tissue structure from diffusion quantities it
is important that the measures be specific for the tissue. In
this work we propose a method that obtains enhanced
diffusion indices for the case of partial volume with free
water. Using the bi-tensor separation together with addi-
tional biological and physical constraints, we demon-
strated that it is possible to differentiate the contribution of
the free water compartment from that of the tissue com-
partment. Mapping the free water is also important in
order to estimate the extracellular volume that is changed
due to several processes. This map can be a valuable
contrast tool in cross-subject and cross-scan analyses. We
therefore suggest that free water elimination be performed
as preprocessing for any DTI-related analysis, both in
healthy and clinical cases.
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APPENDIX

A1. Bi-tensor Model as a Special Case of the Multiple
Tensors Model

The multiple diffusion tensors (MDT) model assumes that
each voxel contains n separate compartments where any
i’th compartment is modeled by a diffusion tensor Di as:

�Ai�Di�	k � exp� � bqk
TDiqk�. [A1]

The overall attenuation for a given gradient direction is
the weighted mean of all compartments, where each com-
partment contributes according to its weight fi, (0 � fi � 1,
¥i�1

n fi � 1):

AMDT(D1,· · ·,Dn,f1,· · ·,fn) � 	
i�1

n

fiAi�Di�. [A2]

The weights are proportional with the volume (the num-
ber of molecules, mi) of each compartment and are
weighted by the T1 and T2 of each compartment:

fi �
miexp� � TE/�T2�i��1 � exp� � TE/�T1�i�

¥j � 1
n mjexp� � TE/�T2�j��1 � exp� � TE/�T1�j�

[A3]

If considering the same T1 and T2 in all compartments,
then fi is the volume fraction parameter. In order to ac-
count for CSF contamination, we assume that one of the
compartments is a free water compartment with the atten-
uation Awater. The MDT model is therefore extended to:

AMDT � 	
i�1

n

fiAi � �1 � 	
i�1

n

fi�Awater [A4]

and the bi-tensor model is then the case where a single
compartment comprises all attenuations from the nonfree

water compartments, i.e., n � 1. A regularization scheme
for the MDT model was proposed in Ref. (37).

A2. Induced Metric

Here we provide details needed for implementation of the
Beltrami framework (Eq. [5]) for a (six-dimensional) diffu-
sion tensor field embedded in a nine-dimensional spatial-
feature manifold. The general case of the Beltrami frame-
work can be found in Ref. (26), and the general case of the
diffusion tensor field embedding can be found in Ref. (25).

Denote by � the three-dimensional image space and its
metric, . Denote by M the nine-dimensional spatial-fea-
ture space combining the image manifold and the six-
dimensional feature tensor manifold, and h denotes its
metric. We can then define a mapping X:� 3 M. We refer
to P3 as the space of 3 � 3 symmetric positive-definite
matrices. The infinitesimal distance on P3 is defined by the
natural Riemannian metric as follows: ds2

� trace((Y�1dY)2), where Y � P3 (27). To simplify the
expression for ds2, and the corresponding calculations, we
parameterize the tensor with the Iwasawa coordinates us-
ing the Iwasawa decomposition (25):

Y � NTAN � � 1 0 0
x4 1 0
x5 x6 1

�� x1 0 0
0 x2 0
0 0 x3

�� 1 x4 x5

0 1 x6

0 0 1
�

[A5]

We use the Euclidean distance to measure distances
between elements on the image manifold. Combining both
distances into one metric we get the spatial-feature metric
tensor:

h � 

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0
1
x1

2 0 0 0 0 0

0 0 0 0
1
x2

2 0 0 0 0

0 0 0 0 0
1
x3

2 0 0 0

0 0 0 0 0 0
2x1�x3 � x2x6

2�

x2x3
�

2x1x6

x3
0

0 0 0 0 0 0 �
2x1x6

x3

2x1

x3
0

0 0 0 0 0 0 0 0
2x2

x3

�
[A6]

We then project this metric back to the image domain to
get the induced metric. The components of the induced
metric are given as (written with the Einstein summation
convention):

���x� � ��Xi��Xjhij�X�. [A7]
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The indices � and � take the values 1, 2, or 3. The
coordinates of the spatial-feature space are denoted by Xi,
and the indices i and j take the values 1 to 9.

A3. Gradient Descent Scheme

Solving the Euler–Lagrange equation for Eq. [5] (given the
explicit definition in Eq. [A6]) provides the iteration rules
toward the regularized tensor parameters. Since we use a
Cartesian image grid, the Xi coordinates for i � 1, 2, 3 are
simply the grid coordinates. The remaining six dimen-
sions correspond to the six Iwasawa parameters, and are
found iteratively using the step rules (written with the
Einstein summation convention):

Xt
i � � �b

1

��� 	
k�1

n

�Abi-tensor � A� �Atissue�qk
T
�D
�Xi

qk�
�

1

���
����������Xi� � �jk

i ����Xj��Xi [A8]

where i takes the values 3,4,…,9 and �� is the inverse of
the induced metric. The symbols �jk

i are the Christoffel
symbols defined by:

�jk
i �

1
2
hil��jhlk � �khjl � �jhjk�. [A9]

The Christoffel numbers introduce a coupling between
the Iwasawa parameters, which maintain the properties of
the initial affine-invariant metric. Therefore, this scheme
also maintains positive definite tensors throughout the
iterations (25).

Calculating the partial derivative of the tensor over the
Iwasawa coordinates is done using the Iwasawa decompo-
sition (Eq. [A1]).

The iteration rule for the volume fraction is given as:

ft � � b	
k�1

n

�Abi-tensor � A� ��Atissue � Awater�. [A10]

For all the parameters we use Neumann boundary con-
dition, and the initial conditions for any coordinate Xi are
X�t�0	

i � X0
i .
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