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Abstract 

The need to infer brain states in a data driven approach is crucial for BCI 

applications as well as for neuroscience research. In this work we present a novel 

classification framework based on Regularized Linear Regression classifier 

constructed from time-frequency decomposition of an EEG (Electro-

Encephalography) signal. The regression is then used to derive a model of 

frequency distributions that identifies brain states. The process of classifier 

construction, preprocessing and selection of optimal regularization parameter by 

means of cross-validation, is presented and discussed. The framework and the 

feature selection technique are demonstrated on EEG data recorded from 10 

healthy subjects while requested to open and close their eyes every 30 seconds. 

This paradigm is well known in inducing alpha power modulations that differ 

from low power (during eyes opened) to high (during eyes closed). The classifier 

was trained to infer eyes opened or eyes closed states and achieved higher than 

90% classification accuracy. Furthermore, our findings reveal interesting patterns 

of relations between experimental conditions, EEG frequencies, regularization 

parameters and classifier choice. This viable tool enables identification of the 

most contributing frequency bands to any given brain state and their optimal 

combination in inferring this state. These features allow for much greater detail 

than the standard Fourier Transform power analysis, making it an essential 

method for both BCI proposes and neuroimaging research. 

 

Key words: Ridge Regression, Regularization, Classification, EEG, time-
frequency. 
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1.  Introduction  

A central aim of functional brain imaging research is to reveal the mapping 

between brain signals and the mental states which elicit them. One of the common 

methods of investigating brain signals is EEG spectral analysis.  Due to the 

rhythmic nature of many EEG activities, if several rhythms occur simultaneously, 

Fourier Transform enables separation of these rhythms and estimation of their 

frequencies independently of each other (Baar et al., 2001; Pfurtscheller and 

Lopes da Silva, 1999). In this method brain oscillations are divided to frequency 

bands that were found related to different brain states, functions or pathologies 

(Niedermeyer and Lopes da Silva, 2005).  In the field of EEG-based Brain-

Computer Interface (BCI) design, machine learning algorithms are used to 

identify ‘patterns’ of brain activity that identify a certain mental task (Anderson et 

al., 1998; Keirn and Aunon, 1990; McFarland et al., 2000). Typically these 

algorithms treat either raw EEG data or power of some predefined frequency band 

(such as motor-related α and β rhythms) as features. Those features are then fed 

into a classifier to produce the final classification. Most of these studies focus on 

classification performance, rather than examine the features that contribute to the 

classification. These features may reveal additional information about brain 

function. Importantly, classification tools enable us to quantify the relative 

contribution of each functional signal to task performance, while evaluating the 

predictive power of these signals (Cox and Savoy, 2003; Haynes and Rees, 2006; 

O'Toole et al., 2007) Hence, classification can be used as a functional analysis 

tool.  

One of the techniques that have been used for this purpose, in the field of BCI, is 

regularized Fisher’s Linear Discriminant analysis (LDA). The aim of LDA is to 

use hyper planes to separate the data representing the different classes (Duda et 

al., 2001). This classifier introduces a regularization parameter that can allow or 

penalize classification errors on the training set. The resulting classifier can 

accommodate outliers and obtain good generalization capabilities (Zhdanov et al., 

2007).  As outliers are common in EEG data, this regularized version of LDA may 

give better results for BCI than the non-regularized LDA.  

Recently several machine learning approaches have been proposed for the study 

of neuronal imaging data (for reviews see Besserve et al., 2011; Lemm et al., 
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2010) ranging from BOLD fmri signal (Pereira et al., 2009) to ERP studies 

(Tomioka and Müller, 2010). Tomioka et. Al., have proposed a method for 

classification using joint spatio-temporal information of the EEG while focusing 

on specific chosen frequency bands. This framework provides information of 

spatial distribution of classification weights in specific time points used for the 

classification model. This allows investigation of temporal evolution of spatial 

content, within a classification framework. The current study describes a 

framework for inferring the temporal evolution of frequency content within 

functional states, by derivation of linear combination of frequency bands most 

relevant to a given task. The inference problem is discrimination between two 

classes of signals time locked to experimental events. The framework is 

specifically adapted to the needs of EEG-based functional neuroimaging. It 

provides the means to investigate the frequency and spatial distribution of the 

EEG signal related to a given task. The framework utilizes a regularized linear 

classifier constructed from instantaneous signal values with cross validation.  The 

behavior of regularization parameter and features contributing to the classification 

is investigated using EEG data taken from a combined EEG\fMRI study of an 

experiment that involves switching between eyes opened and closed states. For 

this change of state, it is known that the EEG power in the Alpha frequency band 

(8-12Hz) increases when eyes are closed, especially at rest, and decreases when 

eyes are opened (Berger, 1929). This phenomenon is commonly referred to as the 

“Berger effect” (Lopes da Silva et al., 1976; Niedermeyer and Lopes da Silva, 

2005). However whether the Alpha band is a stand-alone frequency or other 

frequencies oscillate with the change in eyes state remains an open question.  

Within our framework we chose the combination of EEG channel and 

regularization parameter that jointly optimize classification rate and constructed a 

frequency combination model from a family of models. This frequency 

combination identifies those frequencies that change power according to the 

change in eye state. 
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2. Methods  

2.1. Problem formulation 

In a standard block design experimental setup, EEG signals are continuously 

recorded from a number of electrodes located over the subject’s scalp for the 

whole duration of the experiment. The signals can be transformed into a time 

frequency representation where each time interval is associated with a target label 

defined by the type of the corresponding experimental event, such as opened or 

closed eyes of the subject. This target label describes the brain state we are 

looking to infer. In this fashion, we obtain a set of labeled data samples for each 

channel. Each channel is represented by Nfreq-by-Ntps signal matrix, where Nfreq is 

the number of frequencies in the time frequency representation and Ntps is the 

number of time sampling points in the segmented interval.  

 

2.2. Classification Method 

The problem of inferring mental states can be treated as a classical high-

dimensional pattern recognition problem where each frequency of the signal 

matrix is a separate feature. In order to make an inference about subject’s states 

we derive a combination of features in the signal that exhibit a desired pattern. 

This simple linear regression approach provides a measure of importance of each 

frequency to a given task within a combination of all other frequencies of the 

signal, rather than the sole importance of each frequency individually.  

Two types of classifiers were chosen for this inference:  

1. Linear Ridge regression classifier, chosen for its robustness and for the fact it 

naturally provides the interpretation of the resulting weights.  

2. Regularized Logistic Regression classifier, which fits statistically for 

dichotomous classification, and therefore was chosen as a good candidate for 

successful inference.  

2.2.1. Ridge Regression 

Consider   

)1(         Xwy 

Where wRm is the vector of regression coefficients to be determined using 
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observed data (X, y); ε represents noise in the response y; Xi, i = [1: n]   are the 

explanatory variables or predictors. 

In Ridge regression, the coefficients are obtained as: 
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Where λ≥0 is the ridge regularization parameter and Im is the mxm identity 

matrix. This form of regularization is also known as Tikhonov regularization, and 

it was shown (Tikhonov, 1963) that for every λ≥0   there exists a unique w for 

which Lλ is minimal. 

When X is ill-conditioned it has near zero singular values which usually 

correspond to noise components of X. When inverted, these components 

drastically amplify the contribution of noise to the solution and destroy the 

regression model.  Therefore, a large enough λ reduces the contribution of noisy 

near-zero components and stabilizes the solution. However, if λ is too large, it 

eliminates the contribution from nearly all components of the data, producing a 

meaningless result with near-zero variance.  

2.2.2. Logistic Regression 

Given a binomial response variable y = 0, 1; it is useful to look at the probability 

of occurrence of y given a set of explanatory variables X.  

Logistic regression predicts the probability that the log odds (also known as logit 

function) of an observation will have an indicator equal to 1. The odds of an event 

are defined as the ratio of the probability that an event occurs to the probability 

that it fails to occur. This is described by the logit function (eq. 3). The logit of the 

response is modeled with a linear term:  
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From (3) it follows: 
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Maximum likelihood is the most popular method for estimating the logistic 

model.  Let yi, i = 1. . . m, be the response variable and xij , j = 1, . . . , n, the 
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predictor variables, for the above problem the log likelihood has the form: 
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For an ill-conditioned problem over-fitting is avoided by imposing a penalty on 

large fluctuations of the estimated parameter w and respectively on the fitted 

function. Here the strategy is similar to the one described in the previous section.  

The likelihood is penalized by a regularization term:  

)7(  
2
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In our case minimization of this expression was done with a variation of the 

Newton-Raphson method, called Conjugate gradient ascent (Bishop, 2005; 

Komarek and Moore, 2003; Minka, 2003).  

 

2.3. Selection of regularization parameter and performance estimation 

The classifiers described so far depend on a regularization parameter λ. For the 

actual classification, one needs to select a value for this parameter and to assess 

classification accuracy. The standard approach to selecting the values of free 

parameters in pattern recognition is to search the parameter space for the values 

that minimize the error estimate (Duda et al., 2001; Picard and Cook, 1984; 

Tomioka and Müller, 2010). The error estimate may be calculated using cross-

validation (CV) on all the available data.  

Here a two stage (nested) m-k fold CV procedure was used (figure 1). In the first 

stage, the data is partitioned K times into two disjoint sets: a training set and a 

validation set.  The training set is used for learning and fitting the parameters of 

the classifier. The validation set is used only to assess the performance of a fully-

trained classifier.  

In the training stage, a second, inner procedure of m-fold cross-validation is used 

to determine the optimal regularization parameter. Each training set k from the 

first stage is split into training and testing sets, M times. A regression model is 

determined using each training set m, for various lambdas within the range of 

interest (eq. 8). It is then tested by predicting m testing sets and calculating the 

average prediction MSE errors at each λ (eq. 8). 
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Where Y is the observed data and Y’ is the fitted model. MSEm is the error 

estimate of training CV iteration m. MSE is the average error estimate across all 

M training iterations.  

The λ that minimizes the average MSE across M training iterations is chosen to be 

the optimal regularization parameter for the model (figure 2). Finally, 

performance accuracy is tested by prediction of the K validation sets from the first 

CV stage with the optimal model and calculation of average Error-rate estimate 

across validation sets. Error-rate is defined as the number of wrongly predicted 

samples divided by overall number of samples. 

In this work, for each iteration of the CV a specific heuristic for dependant data 

was used (Burman et al., 1994). This CV scheme is known as hv-block CV, a 

cross validation method for dependent data proposed in (Racine, 2000). Briefly, 

for a given time period t, the validation sample is constructed using the v 

observations preceding and following t (2v +1 data points). The training sample is 

constructed using the observations from the beginning of the sample to the (t - h - 

v)-th observation and from the (t + h + v) +th observation to the end of the sample 

(n-2v- 2h-1 data points), the testing set is constructed from the 2h samples 

between the training and validation sets. The error estimate is then computed in 

the training sample and used to forecast the validation sample. In the test step the 

model is tested imputing the 2v + 1 removed observations with their expected 

value. The performance evaluation is then computed by averaging the prediction 

errors.  

As a set of candidate λ values we used a set of 100 values uniformly sampled on 

the logarithmic scale (i.e. the ratio of the two successive samples is constant) from 

the interval [min (si) 10*max (si)], where si are the singular values of the data 

matrix X. The lower limit of the interval is chosen to be min (si) so that it yields a 

regularized matrix X with minimal filtering of data components. The upper limit 

of the range is selected to be larger than the value that is comparable in magnitude 

to the data components and thus it allows some contribution of the data to the 

solution. Therefore, as λ approaches 10*max (si) the regularization effect becomes 

strong enough to represent over-regularization where the solution becomes nearly 

constant. 
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Classifier accuracy was estimated with m=k=25 fold CV using all the available 

data for the given subject. In each iteration of the CV, 70% of the data was used as 

training set; each such set was divided into 70% training and 30% validation, the 

remaining 30% of the data was used for testing. The training and validation sets 

were comprised of continuous data blocks, with one classifier for every 

combination of training and validation sets and regularization parameter λ. For 

each subject, we used the labeled set of signals obtained after the preprocessing of 

one EEG channel at a time, as the input to the classifier problem. This yields Nfreq 

= 50 and Ntps = 4500.  

 

2.4. Interpretation of classifier weights 

For Linear regression (eq. 1 and 3) where each frequency in the time-frequency 

decomposition of the signal is a feature of the classifier, the absolute value of wi 

describes the relative importance of the ith frequency contribution to the 

classification and the sign describes which of the two classification outcomes is 

supported by the positive value of the signal xi. This differs from the classic 

electrophysiological data analysis, in which time frequency analysis is frequently 

used by inspection of power at each frequency under each experimental condition 

rather than relevance of each frequency to the discrimination between 

experimental conditions.  

To define the most important frequencies that contributed to the classification, one 

can look at the significance of each frequency weight across cross-validations. In 

such a case the significance of the test must be corrected for multiple 

comparisons. 

2.5. Spatial distribution of performance 

The classification is applied to data recorded from a single EEG channel. To 

assess correctly classifier performance it is necessary to know which channel is 

most suitable for the inference. We chose not to enforce any preliminary 

knowledge about the selection of the most informative channel. The classifier was 

applied to each channel of the EEG separately and the channels with the lowest 

error estimate were chosen as the most informative for this inference. This way 

we obtained for each subject, a map of error estimates across channels. This map 

can be regarded as spatial distribution of most relevant information for inference 

of a mental state and can be used as a localization method. 
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2.6. Framework application 

For the application of the proposed framework, we used EEG data from an 

experiment designed to examine the EEG Alpha wave correlates in fMRI. For 

this, a simultaneous EEG/fMRI study of the Alpha and Berger effect was 

performed. Only the EEG data of this experiment was used for the presented 

work. The combined EEG/fMRI results of the experiment are published in (Ben-

Simon et al., 2008). 

2.6.1. Participants & Study Design 

14 healthy volunteers (6 men and 8 women), aged 19-35 (mean 24.8±3.7), signed 

an informed consent for this study, approved by the Helsinki committee. Subjects 

were equipped with earphones and were asked by means of audio instructions to 

open and close their eyes every 30 seconds for a total time of 3 minutes.  Subjects 

were told to lie as still as possible and follow the instructions. Sponge cushions 

were used to minimize head movements. 

The acquired data was examined for the presence of blinks following the 

instructions, an examination which led to the exclusion of 2 subjects. Two more 

subjects were excluded from the analysis due to movements in the scanner which 

induced large artifacts on the EEG. Thus our final analysis included 10 subjects. 

2.6.2. EEG acquisition 

Continuous EEG data was recorded simultaneously with fMRI acquisition. EEG 

was acquired using the MRI-compatible BrainAmp-MR EEG amplifier (Brain 

Products, Munich, Germany) and the BrainCap electrode cap with sintered 

Ag/AgCl ring electrodes providing 30 EEG channels, 1 ECG channel, and 1 EOG 

channel (Falk Minow Services, Herrsching-Breitbrunn, Germany). The electrodes 

were positioned according to the 10/20 system. The reference electrode was 

between Fz and Cz. Raw EEG was sampled at 5 kHz and recorded using the Brain 

Vision Recorder software (Brain Products).  

 

2.6.3. EEG data preprocessing 

EEG data underwent the following preprocessing stages, similarly to (Ben-Simon 

et al., 2008; Sadeh et al., 2008):  
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MR gradient artifacts removal. Artifacts related to the MR gradients were 

removed from all the EEG datasets using the FASTR algorithm (Iannetti et al., 

2005; Niazy et al., 2005) implemented in FMRIB plug-in for EEGLAB (Delorme 

and Makeig, 2004), provided by the University of Oxford Centre for Functional 

MRI of the Brain (FMRIB).  

Cardio-ballistic artifacts removal. EEG data recorded during an MRI scan is 

contaminated by Cardioballistic noises induced by the heart's electric and 

mechanic activity. Cardioballistic artifacts were also removed using the FMRIB 

plugin. 

Down sampling to 250Hz followed by a visual inspection of the EOG data. In this 

inspection we validated the presence of blinks at the time of the instructions, in 

order to ensure that the subjects closed and opened their eyes at those times.  

Eye movement artifacts removal. Artifacts caused by blinks and eye movements 

were removed from the EEG recording using Independent Component Analysis 

(ICA). Artifacts were distinguished from brain activities by inspection of the time 

course of the components and their projection to scalp sites. Eye blink 

components’ time courses usually have brief large monopolar peaks. Components 

of Eye blinks should project most strongly to frontal sites on the scalp. Once a 

certain independent component with the above characteristics is identified, artifact 

removal can be achieved by simply subtracting the relevant independent 

component from the original EEG recording (Li and Principe, 2006).  

Time-Frequency transformation of each channel signal was calculated using 

Stockwell (ST) Time Frequency Decomposition (Stockwell et al., 1996). The 

Stockwell Transform has good time and frequency resolution at low frequencies 

as well as high time resolution at high frequencies. It is an extension of the 

continuous wavelet transform (CWT) and is based on a moving and scalable 

Gaussian window. The transform frequency resolution was set to 1.5Hz with time 

resolution of 1/250sec.  
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3. Results 

3.1. Comparison of Ridge and Logistic regression 

Performance of Logistic Regression was similar to the performance of Linear 

Ridge Regression classifier and didn't prove to be different under a paired t-test 

(figure 3A).  However prediction error was lower for Linear Ridge regression for 

all subjects, this was tested with a signed-rank test (p<0.002). Importantly, 

resulting weights for both methods are very similar and do not prove to be 

different under a paired t-test, p<0.05 FDR corrected (see supplementary figure 

s3).  

Since the two regression methods produce highly similar results, from this point 

of the report, only results based on Linear Ridge regression are presented. 

3.2. Cross validation error estimate  

For a classification problem that uses regularization, one typically expects that the 

(estimated) classifier error, as function of regularization parameter, will exhibit a 

clear global minimum. In our case, when plotted against the regularization 

parameter, the classification error clearly revealed such minimum for all subjects. 

Error graphs of four subjects, with best classification performance, can be seen in 

figure 2 while the remaining subjects can be seen in supplementary figure s1.  

Since minimizing the error over any free parameters biases the error estimate 

downwards (Vapnik, 1999), we compared the estimated error to the estimate 

obtained by applying exactly the same algorithm to the data with randomly 

scrambled class labels. Classification error of the data with scrambled labels was 

at chance level for all subjects.  Furthermore, the difference between the mean 

error estimates of scrambled and unscrambled labels was significant for all 

subjects (p<0.0001, FDR corrected), estimated using a Student’s t-test subjects 

(for details see supplementary figure s2).  

3.3. Relation between classifier performance and regularization parameter 

To inspect the influence of the regularization parameter on prediction error and 

resulting weight distribution, the results of the Ridge and Logistic classifier were 

examined with two additional regularization parameters:  

1) Sub-optimal regularization parameter, which is 100 times lower than the 
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optimal regularization parameter chosen by cross-validation.  

2) Above optimal regularization parameter which is 100 times greater than the 

optimal one.  

These regularization values were taken in the range mentioned above because of 

the wide nature of the cross-validation minima as function of regularization 

parameter resulting in large error differences seen for lambdas 100 times far apart. 

Ridge regression cross-validation error graphs of four subjects with best 

classification rates can be seen in figure 2 while the corresponding graphs of the 

remaining subjects are shown in supplementary figure s2.  

Prediction error with above and below optimal regularization was higher than 

resulting error with optimal regularization parameter for both Ridge and Logistic 

regression (figure 3B). Moreover, prediction error with sub-optimal regularization 

is highest with large variability as expected from an unconstrained model. 

Accordingly the error of the over regularized model is higher than optimal but has 

lower variability as expected from an over constrained model. Importantly, one 

should note the low error (under 10% for most subjects) was achieved with 

optimal regularization. Resulting frequency weights with optimal regularization 

parameter (chosen with cross validation), above and below optimal regularization 

parameters had significantly distinct distributions (paired t-test with optimal 

weights set, p<0.05 FDR corrected). Weights distributions for four subjects with 

best classification error are shown in figure 4 while the weights of the remaining 

subjects are presented in supplementary figure s5. 

The over regularized model produced very similar models for all subjects, its 

weights distribution is similar to the classical FFT (Fast Fourier Transform) power 

distribution of the EEG signal in this experiment, showing mainly high power of 

the Alpha band frequency. The optimal regularization model revealed high 

contribution of the Alpha band to the prediction as well as lower but significant 

contribution of other frequencies such as Beta and Gamma. In addition the 

optimal model revealed a detailed division of the frequencies into bands that 

contribute positively and negatively to the prediction. This division is not seen by 

the classical FFT method or by the over constrained model. Lastly, similar to the 

regularization inspection reported above, the importance of data normalization 

was also explored using various normalization parameters (see details in 

supplementary text 3 and supplementary figure s4).    
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3.4. Comparison to Other Techniques 

We compared performance of our regularized ridge regression framework to 

classical power analysis technique widely used in the neuroscience literature 

(Ben-Simon et al., 2008; Klimesch et al., 1998; Laufs et al., 2003; Lopes da Silva 

et al., 1976). This conventional technique uses the alpha power as a marker for 

eyes state. When alpha power is higher than baseline the subject is assumed to be 

with closed eyes. When Alpha power is below base line level the subject is 

assumed to be with opened eyes. Specifically, continuous alpha power from each 

subjects’ time-frequency Stockwell decomposition, averaged across the relevant 

frequency band (8-12Hz) and across three occipital electrodes (O1, O2, Oz), was 

thresholded around 50th percentile. At any time point where Alpha power was 

above the threshold subject was assumed to be with eyes closed.  Figure 3d shows 

that, for all subjects, this technique produced larger classification error than the 

ones obtained with our regression framework (t-test, p<0.05 FDR corrected). 

 

3.5. Spatial Distribution of performance 

Linear Ridge regression classifier was applied to data sets of each subject from 

each electrode separately. The classifier was trained to predict subjects' eyes state 

(opened or closed). Regularization parameter was chosen for each electrode 

separately and classifier performance was assessed by means of cross validation. 

Good performance was achieved with data from only one electrode, however 

performance differed between electrodes as can be seen in the average scalp 

distribution of performance across subjects (figure 5). Distribution of performance 

for each subject is shown supplementary figure s6. For each subject only one 

electrode, with best classifier performance was chosen for further analysis (see 

chosen electrodes in Table 1). The occipital area was the main location of best 

prediction strength for all subjects. The locations of the electrodes on the scalp are 

consistent with known findings about the occipital origin of the Alpha band that 

modulates most evidently with eyes state (Ben-Simon et al., 2008) .  

3.6. Feature selection – frequencies above 20Hz 

In an effort to understand whether  valuable or classifier relevant  information 

may be found beyond 20Hz, the same Ridge Regression classification framework 

was applied for data with frequencies above 20Hz. The classifier (figure 3C) 

showed good prediction with this range of frequencies. This indicates that there is 
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important information for the classifier in higher than 20Hz frequency range. 

When looking at the resulting frequency weights of this classifier (figure 6 and 

supplementary figure s8), it can be seen that for subjects with good prediction 

strength, frequencies above 20Hz have high weights in both methods. This finding 

reinforces the importance of high frequencies for the classifier.  
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4. Discussion 

We have presented a classification framework, based on Regularized Linear 

Regression classifier constructed from time-frequency decomposition of an EEG 

signal. This framework provides tools for constructing classifiers that can 

distinguish between different brain states and derive a model of frequency 

distributions that identifies each state. With this framework, we have presented a 

viable tool for extraction of the important EEG frequencies taking part in a range 

of mental states. 

Application of the proposed framework to a real-world experimental EEG data set 

revealed interesting patterns of relations between experimental conditions, EEG 

frequencies, regularization parameters, and classifier choice.    

Experimental results show that correct choice of regularization parameter 

significantly improves classification result and greatly affects the resulting 

frequency weights of the model. Therefore the choice of regularization parameter 

with cross-validation played an important role in a successful construction of the 

classifier. Importantly, it was evident that the over regularized model gives a 

frequency distribution result that is very similar to conventional state of the art 

method, i.e. the FFT power spectra of the EEG signal. This demonstrates that the 

classical FFT analysis approach is an inaccurate approximation of the frequency 

distribution identifying a brain state as shown with the classifier method proposed 

here. This emphasizes the advantages of using more sophisticated methods, such 

as machine learning, for identification of relevant EEG frequency bands. By using 

the classifier to examine frequency distribution of the Berger effect we are able to 

receive a more complicated in depth knowledge of the different frequencies 

involved even in such a simple task as eyes opening and closing.  

Experimental results also show that the choice of a specific regression technique 

does not affect the result significantly. This could imply that the change of 

frequencies between the two explored brain states (eyes opened and closed) is 

robust enough to be detected equally well by the two regression methods. 

It is widely accepted in the literature that Alpha band frequency from an occipital 

origin, changes power in transition from eyes closed to open under normal light 

condition (Ben-Simon et al., 2008; Gevins and Rémond, 1987; Klimesch, 1997; 

Laufs et al., 2003; Lopes da Silva et al., 1976; Niedermeyer and Lopes da Silva, 
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2005). However, change in oscillation of other frequencies with this change of 

state remained largely unexplored. The proposed method enabled us to identify 

frequencies that distinguish between two brain states (eyes opened or closed) and 

showed that in addition to Alpha other frequencies behave differently between the 

two states.  

With this framework, we were able to achieve good (higher than 90%) 

classification performance. Hence, it can be used not only for classical BCI 

purposes but also for neuroimaging research as it provides an important tool for 

automatic identification of EEG frequencies that mostly contribute to a certain 

brain state. Moreover, our framework allows identification of specific frequency 

sub-bands for each subject and brain state. These findings cannot be achieved 

with conventional EEG analysis techniques such as Power Spectra analysis (Feige 

et al., 2005; Goldman et al., 2002; Mantini et al., 2007). In particular, this 

framework provides a measure for the importance of each frequency to a given 

task within a combination of all other frequencies of the signal, rather than the 

importance of each frequency individually. This makes the inference problem 

very high dimensional and emphasizes the importance of correct regularization 

due to the curse of dimensionality (Bellman, 1961).  

In the recent years a number of approaches for classification of EEG frequencies 

have been proposed (Besserve and Martinerie, 2011), some have proposed to 

include spatial information into the classification model as well (Lemm et al., 

2010). The proposed framework does not use spatial information for the 

classification. The classifier is applied to data of each electrode separately. This 

allows a relatively simple, robust and computationally light tool, which can be 

used by users inexperienced in machine learning. The proposed method can also 

be used as a preliminary stage of the analysis, for example for identification of 

relevant frequency bands for further combined EEG-fMRI analysis (Ben-Simon et 

al., 2008; De Munck et al., 2009; Laufs et al., 2003), or further connectivity 

analysis between the frequency bands (Aftanas and Golocheikine, 2001).   

Inclusion of all electrodes into the model would require a very large amount of 

samples to avoid over-fitting, and will be computationally heavy. One can include 

a small number of electrodes into the classification model, for example, for 

investigation of frequency content of a hypothesized region of interest, or apply a 

prior spatial feature selection process to reduce problem dimensionality first 
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(Blankertz et al., 2008).  The single electrode approach proposed here gives a 

classification rate result for each electrode separately; this can give some insight 

into the location of the most informative electrode with regard to the examined 

paradigm.    

From a computational point of view, we have proposed a robust machine learning 

approach for prediction of brain states from the EEG signal. This approach uses 

regularization chosen by two levels of cross-validation. The right choice of 

regularization minimizes classification error and greatly improves classifier 

performance and stability. The framework described here was applied to a 

relatively well known effect in neuroscience (i.e. the Berger effect). Having 

established the most stable and robust framework in the current work, it can now 

be applied to more complex classification problems. For example a similar linear 

regression with nested cross validation approach has been successfully  applied to 

investigation of temporal content of ERP (Hasson-Meir, 2011).  Our framework 

can be used not only for BCI purposes but also for investigation of time-frequency 

decomposition of brain signals such as EEG or MEG and automatic identification 

of relevant frequency features of an explored brain state. 
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Figure Legends 

 

Figure 1  

 
Flow chart of the regression framework. Pre-processed data is introduced into a 
nested m-k fold cross-validation procedure. In each iteration of the CV, the data is 
partitioned into two disjoint sets:  training and testing sets. The training sets are 
used for choosing the best model and the test sets are used to check the predictive 
accuracy of the model.  For each training set an additional inner m-fold cross-
validation procedure is applied for selecting the optimal regularization parameter 
on the training sets, where n is the number of averaged cross-validation iterations. 
Performance of the model with optimal parameters is evaluated on the testing set 
in the first level of CV. The average error of classifier performance across testing 
sets is the error rate of the model. The process is repeated for each electrode 
separately.  

Figure 2  

 

Cross validation error estimate obtained by 25-fold cross validation with Ridge 
regression. Error bars denote 1-std – wide margin around the error estimate. Only 
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a segment between sub-optimal and above-optimal lambda is shown. The middle 
value of the lambda axis is the optimal lambda that minimizes cross-validation 
error. First and last values of lambda are approximately 100 smaller and larger 
than the optimal lambda, respectively. 

Figure 3  

 

Comparison of various classification errors. Error bars denote 1-std margin across 
cross validation estimates.  A. Comparison of Prediction Error achieved with 
Linear Ridge Regression (gray) and Regularized Logistic regression (white). B. 
Ridge Regression prediction error with optimal regularization parameter 
determined by cross validation (black), sub-optimal regularization which is 100 
times smaller than optimal (gray) and above-optimal which is 100 time larger than 
optimal (white). C. Performance of Ridge regression with frequencies above and 
below 20Hz. Performance of linear ridge regression classifier with data from all 
frequencies (gray) and data with frequencies only above 20Hz included (white). 
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Performance without low frequencies is significantly better than chance for all 
subjects (t-test, p<0. 01, FDR corrected). D. Comparison of classification error 
between eyes opened and closed states in light conditions using regularized ridge 
regression framework (gray) and conventional Alpha power analysis (white). 

Figure 4  

 

Resulting Ridge regression weight sets. In red: Result with optimal regularization 
parameter determined by cross validation.  In green: result with regularization 
parameter 100 times smaller than the optimal one. In blue: result with 
regularization parameter 100 times larger than the optimal one. The two un-
optimal weight sets differ significantly from the optimal one. Each weight is 
normalized by magnitude for comparison. 
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Figure 5  

 

Spatial distribution of classifier performance in normal light condition. Linear 
Ridge regression Classifier was applied to each channel separately to identify 
channels with best prediction strength. This figure shows distribution of classifier 
performance across channels averaged for all subjects. 

Figure 6  

 

Comparison of weights resulting from classification using all frequencies and 
classification using only frequencies above 20Hz. Subjects are sorted by strength 
of prediction with frequencies above 20Hz. Note that for subjects with good 
prediction strength there are large weights for frequencies above 20 Hz for both 
methods, indicating there is significant information beyond the Alpha band. 
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