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Abstract. Time-delay estimation accuracy in echolocating systems decays for 
increasing levels of noise until a breakpoint is reached, after which accuracy 
deteriorates by several orders of magnitude.  In this paper we present a 
robust fusion of time-delay estimates from multiple pings that significantly 
reduces the signal-to-noise ratio corresponding to the accuracy breakpoint.  
We further show that a simple average of the time-delay estimates does not 
shift the breakpoint to a lower signal-to-noise ratio.  The proposed fusion of 
multiple pings has the potential of improving the resilience to noise of 
echolocating systems such as sonar, medical ultrasound and geo-seismic 
surveys, hence increasing their potential operating range and reducing 
health/environmental hazards. 
 
 
INTRODUCTION 
 
The theory of optimal receivers shows that the matched filter receiver maximizes 
the output peak-signal-to-mean-noise (power) ratio [1], and is the optimum 
method for the detection of signals in noise.  Information about the distance of the 
target is extracted by computing the time at which the cross- correlation between 
the echo and a replica of the pulse is a maximum.  This delay is converted into a 
distance by means of the sound velocity in the particular medium in consideration 
(e.g. water or air).  This type of receiver is generally referred to as a coherent 
receiver.  The classical theory of optimal receivers describes the accuracy of time-
delay estimation by match filtering via the well-known Woodward equation, 
which can be derived by using a variety of methods [1].  For small SNR's, one of 
the parameters in the classical equation – i.e. the bandwidth – has to be modified, 
and the receiver is then called semicoherent.  In [2] it was shown that the transition 
between the two types of behaviors occurs at different SNR's depending on 
characteristics of the pulses such as bandwidth and center frequency. With this 
observation, a novel system based on an adaptive choice of the pulse was proposed 
[2] that can improve accuracy in the case of relatively low SNR, when ambiguity 
in the choice of the correct peak of the cross-correlation function cannot be 
avoided. 



 

Due to the nonlinear nature of the time-delay estimation problem, when the SNR 
drops below certain critical values threshold effects take place.  Threshold effects 
can be characterized by a sharp deterioration of the time-delay estimator variance.  
Several statistical bounds have been used in the past to describe the accuracy of a 
matched filter receiver performance in between the above-mentioned SNR critical 
values.  These include the Cramer-Rao lower bound [3], the Barankin bound [4], 
and the Ziv-Zakai bound [5-8].  Such bounds have been applied both to the 
problem of time-delay estimation [9-16] and of frequency estimation [17-19].  In 
particular, the Barankin bound has been used to define the SNR breakpoints 
corresponding to the change in behavior of the optimal receiver as the SNR 
decreases for the case of a single ping and single echo [10, 12, 13], a single ping 
and multiple echoes [15, 16], and multiple pings and a single echo [11, 14]. 
In this paper we analyze the SNR breakpoint, studying the probability of choosing 
the correct peak from the noisy cross-correlation function with a method similar to 
the one in [18], where the threshold effect was related to the existence of highly 
probable outliers far from the true time-delay value.  This will enable us to extend 
the result to the case of multiple pings without a priori knowledge on the time-
delay itself.  This approach is different from that used in previous work on the 
multiple pings and single echo case [11, 14], where the multiple echoes for a 
single object are obtained artificially via multiple receivers and a unique ping.  In 
fact, the bounds found in [11, 14] are valid only if the noise at the different 
receivers is totally uncorrelated or if the distance between transducer and receiver 
is constant, both conditions difficult to realize in practice. 
 
 
SINGLE PING BREAKPOINT 
 
Model for the autocorrelation function 
 
In order to compute the probability of outliers, we introduce a model for the 
noiseless cross-correlation function envelope in the context of a semicoherent 
receiver.  In this model the autocorrelation function is approximated by a 
piecewise constant function, with amplitude equal to A within the central interval 
I∆ of length ∆ , and zero elsewhere.  When white Gaussian noise is added to the 
echo the cross correlation envelope vector has a multidimensional Gaussian 
distribution with centers at zero for all values that are outside of the central 
interval, and equal to A inside that interval.  We also need to consider the width of 
the a priori window of the cross-correlation. The width of the window corresponds 
to the echolocating range. While the potential error in delay estimation is reduced 
when the width is reduced, so is the range. If the a priori window has a length of 
2L and the sampling frequency is fs, then there will be N=NA+N0=2L⋅fs points, 
NA=∆⋅fs of which will be within the central bin (“correct bin”), and N0 outside the 
central bin but within the a priori window.  Hence, the probability of selecting a 
given time location in the cross-correlation function is given by α within the 
central interval I∆ and   (1-α)/N0 =β/N0 elsewhere (Figure 1, top). 
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Figure 1 - The noiseless cross-correlation function is approximated by a piecewise 
constant function such that the probability of selecting a given time location in the 
cross-correlation function is given by α  within the central interval I∆ of length ∆ and 
(1-α)N0

-1 elsewhere (top figure).  We then divide the a priori window into intervals of 
length ∆ equal to the size of the correct bin, to obtain m intervals B1, B2, …, Bm, with B1 
= I∆ representing the correct bin (bottom figure). 

 
 
 
 
 
 
 
Without loss of generality, we consider the case where NA and N0 are integers. We 
define a random vector such that the first NA random variables correspond to the 
amplitudes of the points within the correct bin, while the last N0 correspond to the 
amplitudes of the points outside.  For a white Gaussian noise, the joint probability 
density function for the vector of n random variables is then given by: 
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The desired probability of time-delay estimation within the correct bin of the 
center of the cross-correlation function is given by 
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Accuracy breakpoint 
 
Let T be the random variable (RV) whose probability distribution is given by 
equation (2).  Let σ∆ be the standard deviation (STD) of the distribution of the 
echo location in the central (correct) bin, and let σ0 be the STD of the distribution 
which is outside the central bin. Now, suppose we sample from the original 
distribution whose cumulative function is given by equation (2).  For n 
observations, a fraction of α of them falls in the correct bin on average, while βn 
fall outside. The standard deviation of the distribution will then be given by: 

2 2 2 0 2
0std ( )  std ( )  std ( )T T T 2α β ασ∆

∆= + = βσ+  (3) 

We define the breakpoint (BP) as the level of noise for which the contribution of 
T0  to the total error becomes dominant.  Thus, the root-mean-square error (RMSE) 
will be significantly larger than the one given by the uniform distribution on I∆ 
alone when α<σ0

2/(σ∆
2
+σ0

2).  We then define the probability breakpoint to be: 
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It is possible to find the SNR breakpoint as the SNR value for which equation (2) 
equals the value in (4). 
 
 
WHY DOES THE MEAN FAIL 
 
Since the measurements from different pings are independent and identically 
distributed, the central limit theorem (CLT) implies that the standard deviation 
(error) of the averaged RV should be n1/2 times smaller than the error made by 
each of the n measurements separately.  This is indeed the case before the 
breakpoint.  However, this process does not improve the situation after the 
breakpoint and, in particular, does not shift the breakpoint to lower SNR’s.  Thus, 
while averaging improves accuracy, it does not increase noise tolerance.  Below 
we provide a mathematical analysis which explains why the breakpoint does not 
change. 
The measurement process described above is equivalent to sampling form a 
uniform distribution F∆ on the interval I∆ with probability α and from a uniform 
distribution F0 on the interval I0, with a central gap corresponding to I∆, with 
probability β. Suppose we sample n times to obtain T1, T2,…, Tn and use the 
sample mean as our estimate for the delay.  On average, αn values will be in the 
correct bin, T1

∆, T2
∆,…, Tαn

∆, while βn will be sampled from the uniform 
distribution, T1

0, T2
0,…, Tβn

0.  Then the sample mean can be decomposed into two 
parts: 
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If σ∆ is the standard deviation of the distribution F∆, and σ0 is the standard 
deviation of the distribution F0, then, applying the CLT to the two sums in 
equation (5) we obtain: 
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The root-mean-square error will be significantly larger than the one given by the 
distribution F∆ alone when βnσ0

2>αnσ∆
2, i.e. when α<σ0

2/(σ∆
2

+σ0
2).  It is 

observed that this bound does not improve with the number of pings and is equal 
to the bound found for a single ping.  This explains why averaging the time-delay 
estimates from multiple pings have not been found useful for very low levels of 
SNR.  It should be noted that it is possible to shift the breakpoint by estimating the 
time delay form the averaged cross-correlation functions of all the observations, a 
process that would require an extremely good alignment of the cross-correlation 
functions.  This is basically equivalent to reducing the noise level by averaging the 
echoes [17], which is not realistic in a situation where the sonar is not completely 
still with respect to the target, or where it is not practical to store the entire echo 
waveforms for off line processing.  However, a successful implementation of this 
averaging can be achieved by using multiple receivers [11, 14]. 
 
 
USING THE MODE 

 
Suppose we divide the a priori window into intervals of length ∆ equal to the size 
of the correct bin, to obtain m = 2L/∆ intervals B1, B2,…, Bm, with B1 = I∆ 
representing the correct bin (Fig. 1, bottom). If p1, p2,…, pm are the probabilities 
for an estimate to fall in each of the intervals and Y1, Y2,…, Ym are random 
variables representing the number of estimates falling in each interval, then Y1+ 
Y2+…+Ym=n, and p1+ p2+…+pm=1.  The joint probability distribution for the 
number of estimates in each bin is given by the multinomial distribution 
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The probability of choosing the correct bin using the mode is the probability that 
the number of estimates falling in the correct bin k1, is greater than the number of 
estimates falling in any other bin ki, i≠1: 
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The sum in equation (8) can be decomposed into two parts: 1) the probability 
P>50% that more that half of the n points fall into the correct bin; 2) the probability 
P<50% that even if less than half of the n points fall in the correct bin, the number of 



 

points in it is greater than that of any other bin, such that P(correct 
bin)=P>50%+P<50%.  The probability P>50% can be written as: 
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The probability p1 of an estimate to fall outside the correct bin is uniform over the 
a priori window with probabilityβ=(1-α), so that the probability for it to fall in any 
interval of size ∆ is pj=(1-α)/(m-1), j≠1.  Substituting these values into equation 
(9) we obtain 
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k n
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where α is a function of the SNR.  The computation of P<50% is more complicated. 
However, it is possible to derive an upper bound (SNR>50%) on the SNR 
breakpoint for the time-delay accuracy computed by using the mode of n 
estimates, as the SNR for which P>50%=α0, where α0 is given in equation (4): 
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Figure 2 – Probability of making the correct choice as a function of SNR for different 
numbers of pings. The arrows indicate upper bounds on the SNR breakpoints. 

 
The tighter bound corresponding to the total probability of choosing the correct 
bin will always be lower than the one derived from equation (11), i.e. 
SNRBP≤SNR>50%.  The breakpoint which the mode can achieve will be for a lower 
SNR than the one calculated above, which is already significantly better (Figure 2) 
than the breakpoint achieved by either a single ping or by averaging of the echo 
delay estimates of multiple pings. 



 

SIMULATION RESULTS 
 
To test the mathematical results presented in the previous sections, we developed a 
set of Monte Carlo simulations using a cosine packet.  We first analyzed the 
histograms of the errors in the delay estimate of the ideal receiver for different 
SNR's (figure 3).  For high SNR (≥20dB) all the errors are small and follow the 
Woodward equation that corresponds to values within the central bin in figure 3a.  
As the level of the noise increases, large errors in the estimates appear.  The errors 
are uniformly distributed over the entire a-priori window, and the relative ratio 
between the correct estimates (central bin) and the level of the uniform distribution 
decreases with SNR (figures 3b, 3c, and 3d).  However, even for high levels of 
noise the central peak is significantly larger that the rest of the distribution.  

(d) 
SNR=1 

(c)
SNR=4

(b) 
SNR=8 

(a)
SNR=20

 Figure 3 – Histograms of the errors in the delay estimate in a Monte Carlo simulation 
for different SNR's.  For high SNR (≥20dB) all the errors are small and follow the 
Woodward equation that corresponds to values within the central bin in figure (a). 
As the level of the noise increases, large errors in the estimates appear.  The errors 
are uniformly distributed over the entire a-priori window, and the relative ratio 
between the correct estimates (central bin) and the level of the uniform distribution 
decreases with SNR, see figures (b), (c), and (d).  However, even for high levels of 
noise the central peak is significantly larger that the rest of the distribution. 

 

 
 
 
 
 
 
Figure 4a shows the performance of ideal receiver for a single ping.  For high SNR 
the accuracy follows the Woodward equation corresponding to a coherent ideal as 
expected from the theory of optimal receivers.  The performance breaks for low 



 

SNR around 17 dB.  Figures 4b, 4c and 4d show the analysis of the accuracy 
breakpoint for different number of pings, 10, 50 and 100 respectively.   
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Figure 4 – RMSE as a function of SNR and number of pings – 1, 10, 50 and 100 
respectively – for the Cosine Packet.  Notice how the SNR breakpoint for the average 
of multiple pings (red line) does not decrease with the number of pings.  

 
The blue line describes the optimal accuracy that can be achieved using cross-
correlation from multiple pings.  Its breaking point represents the optimal breaking 
point that could have been achieved using stationary sonar and target, and that 
could be predicted by using the Barankin bound as in [11, 14].  This breaking 
point however is not attainable, as it relies on careful registration of returns from 
different pings. Such careful registration can only be done if the distance between 
object to target is kept constant, or if it is known for each ping in advance.  It can 
be seen that robust fusion of multiple pings based on the mode (light blue, and 
magenta lines) improves noise resiliency while retaining close to optimal 
achievable accuracy under multiple pings.  In general there is no significant 
improvement in the resiliency to noise when a simple mean of the observations is 
used due the strong contamination of the distribution from outliers (red lines).  
This confirms the mathematical result presented in the preceding sections.  
Figure 5, shows a summary of the results for the different methods.  The 
breakpoint for the averaged cross-correlation function (blue squares) follows the 
ideal curve obtained by reducing the level of the noise (solid blue line) as 
described above.  The breakpoint of the estimate obtained from the mean does not 



 

substantially change as the number of pings in increased.  A more robust statistics 
such as the median improves the resiliency to noise as the number of pings 
increases (green triangles).  The best results are obtained by using the mode of the 
estimates from the multiple pings (magenta diamonds). 
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Figure 5 –  Breakpoint in dB as a function of number of pings for different methods.  The 
solid line corresponds to the ideal case of noise reduction by averaging the echoes. 

 
CONCLUSIONS 
 
In summary, we have demonstrated that multiple pings are useful for improving 
the accuracy and in particular the resilience of time-delay estimation to 
background noise.  In particular, we have demonstrated, that a robust statistics 
such as the mode of the distribution of echo delays which is obtained from 
multiple pings, significantly decreases the signal-to-noise ratio breakpoint.  We 
have further shown that the mean of this distribution has the same breakpoint as a 
single ping, thus not contributing at all to the resilience to noise. 
 
 
Acknowledgements 
 
This work was supported in part by ARO (DAAD 19-02-1-0403), and ONR 
(N00012-02-C-02960).  
 
 
 
 
 



 

REFERENCES 
 
[1] M. I. Skolnik, Introduction to Radar Systems, 1st ed: McGraw-Hill, 1962. 
[2] N. Neretti, N. Intrator, and L. N. Cooper, "Adaptive pulse optimization for 

improved sonar range accuracy," IEEE Signal Processing Letters, vol. 11(4), 
April 2004. 

[3] C. R. Rao, "Information and accuracy attainable in the estimation of statistical 
parameters," Bull. Calcutta Math. Soc., vol. 37, pp. 81-91, 1945. 

[4] E. W. Barankin, "Locally best unbiased estimates," Ann. Math. Stat., vol. 20, 
pp. 477-501, 1946. 

[5] S. Bellini and G. Tartara, "Bounds on error in signal parameter estimation," 
IEEE Trans. Commun., vol. COM-22, pp. 340-342, 1974. 

[6] D. Chazan, M. Zakai, and J. Ziv, "Improved lower bound on signal parameter 
estimation," IEEE Trans. Information Theory, vol. IT-21, pp. 90-93, 1975. 

[7] L. P. Seidman, "Performance limitations and error calculations for parameter 
estimation," Proc. IEEE, vol. 58, pp. 644-652, 1970. 

[8] J. Ziv and M. Zakai, "Some lower bounds on signal parameter estimation," 
IEEE Trans. Information Theory, vol. IT-15, pp. 386-391, 1969. 

[9] D. Slepian, "Estimation of Signal Parameters in the Presence of Noise," IRE 
Trans., vol. PGIT-3, pp. 68-89, 1954. 

[10] I. Reuven and H. Messer, "A Barankin-type lower bound on the estimation 
error of a hybrid parameter vector," IEEE Trans. Information Theory, vol. 43, 
pp. 1084-1093, 1997. 

[11] S.-K. Chow and P. M. Schultheiss, "Delay estimation using narrow-band 
processes," IEEE Trans. ASSP, vol. ASSP-29, pp. 478-484, 1981. 

[12] R. J. McAulay and E. M. Hofstetter, "Barankin bounds on parameter 
estimation," IEEE Trans. Information Theory, vol. IT-17, pp. 669-676, 1971. 

[13] R. J. McAulay and L. P. Seidman, "A useful form of the Barankin lower 
bound and its application to PPM threshold analysis," IEEE Trans. 
Information Theory, vol. IT-15, pp. 273-279, 1969. 

[14] J. Tabrikian and J. L. Krolik, "Barankin bounds for source localization in an 
uncertain ocean environment," IEEE Trans. Signal Processing, vol. 47, pp. 
2917 -2927, 1999. 

[15] A. Zeira and P. M. Schultheiss, "Realizable lower bounds for time delay 
estimation: Part 2 - Threshold phenomena," IEEE Trans. Signal Processing, 
vol. 42, pp. 1001-1007, 1994. 

[16] A. Zeira and P. M. Schultheiss, "Realizable lower bounds for time delay 
estimation," IEEE Trans. Signal Processing, vol. 41, pp. 3102-3113, 1993. 

[17] L. Knockaert, "The Barankin bound and threshold behavior in frequency 
estimation," IEEE Trans. Signal Processing, vol. 47, pp. 2398-2401, 1997. 

[18] D. C. Rife and R. R. Boorstyn, "Single-tone parameter estimation from 
discrete-time observations," IEEE Trans. Information Theory, vol. IT-20, pp. 
591-598, 1974. 

[19] B. James, B. D. O. Anderson, and R. C. Williamson, "Characterization of 
threshold for single tone maximum likelihood frequency estimation," IEEE 
Trans. Signal Processing, vol. 43, pp. 817-821, 1995. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	footer: 0-7803-8608-6/04/$20.00 ©2004 IEEE
	01: 213
	02: 214
	03: 215
	04: 216
	05: 217
	06: 218
	07: 219
	08: 220
	09: 221
	10: 222


