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Target detection in side-scan sonar images: expert
fusion reduces false alarms
Nicola Neretti, Nathan Intrator and Quyen Huynh

Abstract— We integrate several key components of a pat-
tern recognition system for a mine-like targets detection
problem. These include several image enhancements, post-
processing and multi-expert fusion. The image enhance-
ment includes wavelet de-noising and classical computer vi-
sion methods such as nonlinear and adaptive equalization
and other filters. Our approach attempts to make the dif-
ferent experts as independent as possible so as to maximally
exploit their fusion.

Results are given on a shallow water mine-like targets
detection problem using sonar data.

I. Introduction

Detection of mine-like targets from sonar data is a chal-
lenging problem due to the large variability in background
clutter and the large variability in object appearance. Shal-
low water detection involves addressing the varying shape
of the ocean surface and its vegetation. We address these
issues by varying equalization methods, wavelet de-noising
and image enhancement via difference of Gaussian filters.

We exploit the fact that ensemble of experts improve the
overall performance of individual experts if the errors made
by the individual experts are independent. We demon-
strate how experts are made independent and how their
fusion is feasible.

Fig. 1. Example of a side-scan sonar image containing two mine-like
targets.
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II. Side-Scan Sonar

The sonar data is collected by a moving sonar fish, which
emits an acoustic wave at regular intervals and records the
reflected wave. An image of the sea floor is reconstructed
from the acoustic waves. Objects observed at different dis-
tances from the sonar fish will present different intensities
and shapes. The farther an object is from the sonar, the
longer its shadow. The image is therefore divided into three
regions (in the range direction) and filter parameters are
optimized separately in each region.

We used two different databases to test our denoising
techniques. The first one consists of a 60-image set from a
side-scan sonar (Sonar-0). They are encoded as 8-bit gray
scale images, 1024 range cells by 511 cross-range cells. The
60 images contain 33 targets; some contain more than one
target while others contain no targets. Non-target objects
which look as targets appear throughout the images. A
typical mine-like target consists of a strong highlight on
its left side and a long shadow down range on its right
side. Unfortunately the presence of clutter can mask this
structure. The second database we used consists of of an
80-image set from a side-scan sonar (Sonar-5) containing
34 targets. The images have 640 range cells by 1024 cross-
range cells, and are encoded in 8-bit gray scale. This is a
more difficult database since it exhibits drastic changes in
background clutter. Both databases have been collected at
the Naval Surface Warfare Center (NSWC) and processed
by Dr. Gerry Dobeck.

Real sonar image data is preferred over simulated sonar
data because sonar simulations are expensive and do not
capture all the critical dynamics associated with actual
sonar images.

III. The Steps of the Detection Process

We build several detectors, each based on a combination
of various steps. In this section we describe each step in
detail.

A. Image Normalization

A classical method for image normalization is histogram
equalization. The image is transformed so that its his-
togram is as flat as possible in order to have roughly the
same number of points in each intensity band. The top
right image in Figure 2 shows the result: the background
structure of the image is still present. We tried to apply
a local version of histogram equalization, dividing the im-
age into square cells and equalizing each cell separately.
The result (Figure 2, bottom left) is an image that has
discontinuities corresponding to the segmentation process;
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Fig. 2. Different examples of image normalization. Going from left to right: original image; histogram equalization; local histogram
equalization; local standardization. Only the local standardization removes the background structure.

moreover the background structure has not been removed.
To address the problem of localized background structure

removal, we developed a method based on a local standard-
ization procedure. For each point (i, j) in the image, we
compute the mean and standard deviation of the points in a
neighborhood Id(i, j) = {(i, j) : −d ≤ i, j ≤ d − 1}. Then,
subtract from each point’s value the corresponding mean
and divide by the standard deviation:

xij �→ xij − µij

σij
, (1)

where

µij = EId(i,j)[x]

= 1
4d2

∑d−1
l,m=−d x(i − l, j − m),

σij = EId(i,j)

[
(x − µij)

2
]

= 1
4d2−1

∑d−1
l,m=−d (x(i − l, j − m) − µij)

2 .

(2)

The strength of this method is that, although the trans-
form is based on local information, it does not introduce
discontinuities in the image. Thus, we can equalize the
image locally and get rid of the background structure at
the scale we want. We just need to adjust the size d of
the neighborhood Id. The problem with the above formu-
lation is that the algorithm is very slow. The most time
consuming part is computing mean and standard deviation
for each point in the image. We developed an alternative
algorithm that reduces the number of computations giving
comparable results. We divide the image using a grid of
square cells, compute the mean µij and standard deviation
σij of cell (i, j) and associate those values to the center of
the cell (i, j). Then, we interpolate those values to estimate
the mean and standard deviation of the other points in the
image. The transform (1) can then be applied just like
we did before. In this way, mean and standard deviation

have to be computed for a much smaller number of points.
Interpolation is a very fast algorithm, and preserves the
continuity of transform across the image.

B. Denoising

In the wavelet based de-noising we used two different ap-
proaches. The first one is the direct application of Donoho’s
shrinkage [1]. It consists of choosing a certain level in the
wavelet representation, which we suspect, contains noise
that could affect the detection, and then shrinking its co-
efficients. We considered two types of mother wavelets:
Coiflet-5 and Symmlet-8. It is also possible to shrink at dif-
ferent levels and even shrink with different mother wavelets
based on a careful examination of the signal. Following
Coifman and Majid [2], we first shrinked the coefficients at
a certain level and then shrinked again at a different level
the de-noised (reconstructed) image from the first level.
Again, we used Coiflet-5 and Symmlet-8 mother wavelets.
The scales for shrinkage were chooses so as to fit approxi-
mately the mine-like targets dimension. It turned out that
a good choice would include levels between the first and
the third, the first level corresponding to the finest scale.

Other methods that we have considered are based on
more common filters. In particular we used a Gaussian fil-
ter with σ = 2, and a DOG filter (Difference Of Gaussians)
with σ1 = 1 and σ2 = 3. Their parameters have been cho-
sen so as not to smear the difference between the highlight
of the mine and its shadow.

To get some intuition about the effect of the de-noising
methods, we analyzed their frequency response before and
after de-noising. Figures 5 depict the Fourier transform of
an original image (left picture, top row), and of the same
image de-noised with different de-noising techniques. We
note the presence of very high values in the low frequency
domain in the original images. A possible interpretation is
the presence of regular periodic structures (sand waves on
the sea bottom, trails created by fish nets) and a correla-
tion between pixels due to the slow movement of the sonar
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Fig. 3. Local standardization. For each point (i, j) in the image, we compute the mean and standard deviation of the points in a neighborhood.
Then, subtract from each point’s value the corresponding mean and divide by the standard deviation

detector. The wavelet de-noising had little effect on these
low frequencies. The DOG filter (center picture, center
row) has a stronger effect as it behaves more like a band-
pass and thus, decreases both the high and low frequency
response. This behavior is better seen in the histogram of
the frequency response (Figure 6) where one can see the dis-
tortion to the histogram caused by the DOG and Gaussian
(left picture, center row) filters vs. the distortion caused
by the wavelet de-noising methods.

To gain better understanding of the effect of the different
de-noising methods, we study the histogram of the matched
filtered images. Figures 7 show these histograms for the
original image (top), and for the same image de-noised
with different techniques. The x-axis corresponds to the
intensity of the pixel, the y-axis gives the log of the num-
ber of pixels having that intensity. The most important
part in these histograms is the behavior at high matched
filter responses (the far right part). The longer the tail, the
higher the response of the matched filter, while the hight
of this tail gives an indication to the possible number of
false positives.

C. The Matched Filter

The matched filter is designed to detect a mine-like struc-
ture, a highlight with a shadow behind it. Relying on the
existence of a shadow can dramatically reduce the false pos-
itive response of the detector. The challenge to a de-noising
method is to preserve this sharp distinction between mine
highlight and its shadow, while eliminating high frequency
noise. This task is difficult, since a de-noising scheme is
generally a low-pass filter that tends to smear edges. For a
given false positive response, smearing these edges increases
the false negative response, namely the undetected mines.
The matched filter mask (Figure 8) contains four distinct
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Fig. 8. Target signature map of the match-filter.

regions: pre-target, highlight, dead zone and shadow/post-
target. It is defined as:

Im(i, j) =
N2∑

k=−N1

M2∑
l=−M1

g (h(k, l), In(i + k, j + l)) , (3)

where (it is assumed that the input image to the matched
filter is normalized so that the average background level is
1.)

g (h(k, l), I) =




h(k, l)(I − 1) shadow, highlight,
and dead zone regions

h(k, l)|I − 1| pre-target
and post-target regions.

(4)
In each of the four regions, the matched filter coefficients
are constant and defined by,
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Sonar image si000206

Fig. 4. Original image (top), wavelet de-noised image (center), and Gaussian filtered image (bottom). Mine-like objects in the original image
have been enclosed in white squares.

h(k, l) =




1/(Sa(So − 1)) shadow region
or post-target region

1/(Ha(Ho − 1)) highlight region
0 dead zone region
−1/(Ta|To − 1|) pre-target

and post-target regions.
(5)

where,

Sa = area of shadow region in square pixels
So = reference shadow level
Ha = area of highlight region in square pixels
Ho = reference highlight level
Ta = area of pre-target region in square pixels
To = reference anomalous background

(6)

Full details of the filter construction are given in [3].
We then normalize the match-filter response by removing
its range-dependent mean and dividing by the standard
deviation.

D. Clustering and Grouping

After applying a threshold to the post-processed images,
we group together first neighbor pixels over that threshold.

The threshold varies between the different detectors, and is
fixed according to the desired sensitivity of each detector.
We then group together clusters that are within a certain
distance from one another. We take as a distance threshold
the average size of a mine-like target.

IV. Fusion

We identified several different problems connected to
mine-like targets detection and classification, and think
that it is not reasonable to try to address all of them with
a single detection algorithm. The main problem is twofold:
reduce the number of false alarms and detect the maximum
number of targets. While the former would suggest a strict
algorithm, the latter forces us to losen our requirements
in order to account for the variability of the targets in the
data. We decided to build several algorithms, each of them
geared to address a specific problem, and to fuse their re-
sults together. The preferred approach for target detection
is to analyze in detail the shape and intensity profile around
each possible target; however this is computationally de-
manding. Figure 9 shows the cross-section distribution of
intensities after applying the matched-filter. Previous ap-
proaches attempted to find a single optimal threshold for
making a decision about the presence of a mine-like ob-
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Frequency response

Fig. 5. Fourier transform of the original image, and of the same image de-noised with different de-noising techniques.

ject (left). We approach the problem by attempting to ap-
proximate the distribution more accurately using multiple
combinations of amplitude and count thresholds, as well
as other parameters (right). Figure 10 shows the results of
each step in every expert. By trying different experts using
different image pre-processing and expert parameters, we
construct experts that have independent errors and then by
fusing them together, we are able to reduce dramatically
the number of false alarms.

V. Results

It appears that wavelet denoising can increase the number
of correct detections, keeping the number of false alarms
per image reasonably low. The improvement is around 6%
which corresponds to the detection of two mine-like targets
formerly missed by the detection algorithm. The Gaussian
filter could not improve the performance of the detection
algorithm. On the contrary, it increased the number of false
alarms per image. In table I we do not report the results
for the DOG filter. The reason is that the performance of
the detection program on the DOG filtered images was too

poor, the number of false alarms per image being too large.
Sonar-5 is, so far, the most difficult data-set due to its

varied background. This data-set best demonstrates the
importance of shrinking only at the level where the im-
portant information is, so as no to create artifacts from
background clutter in other image scales.

It is quite difficult to infer the quality of the various
denoising methods from the denoised images (Figure 4).
It is however, evident that wavelet based denoising tends
to pop up the highlights of the mine-like targets (Figure 4
center).

The frequency response of all the denoising methods we
tested, apart from the DOG filter, is qualitatively the same.
All of them act on the image reducing the values of high
frequency coefficients. Thus, the difference in their perfor-
mance is not directly linked to their frequency response but
to their ability to retain higher order structure.

The matched filtered histograms show that there is in-
deed a difference in the way denoising is performed. As
can be seen in Figures 7, images denoised using a wavelet
based technique present a shorter tail. This means that



6

Histogram of Frequency Response
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Fig. 6. Histogram of the log of the frequency response of different de-noising methods. It is evident that the DOG and Gaussian filters
distort the histogram while the other de-noising methods retain a relatively similar response histogram.

Performance summary: FA/Image

Algorithm Sonar-0 Sonar-5
Expert #1 10.3 13.8
Expert #2 10.1 13.2
Expert #3 10.7 11.9
Expert #4 10.8 14.8
Expert #5 10.5 14.4
Expert #6 11.1 14.8
Fusion 5.0 7.8

TABLE I

Performance of the different experts. FA/Image are given for the two datasets and correspond to 100% positively detected targets. The

bottom row correspond to the fusion of the six experts.

the number of high value pixels in the matched filtered
image is lower. Since detections are concentrated in this
region, this results in a lower number of false alarms per
image. On the other hand, both the Gaussian filtered and
the DOG filtered images present a tail comparable to that
of the original one.

A further interpretation of the different performance is

that, using a convolution filter to denoise the image, we
modify the shape of the mine-like targets as well. Thus,
the matched filter in the detection program is no longer
optimal. On the contrary, wavelet denoising projects the
image over an orthonormal basis and shrinks only the co-
efficients corresponding to wavelets whose support is of the
same order of the mine-like targets. This does not affect
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Fig. 7. Histogram of the matched filtered image for the original image (top left), and for the same image de-noised with different techniques.
All graphics are in semilogarithmic scale.
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Fig. 9. This figure shows the cross-section distribution of intensities after applying the match-filter. A conventional approach finds a single
optimal threshold value and a single optimal pixel count (left). Our approach is to approximate the distribution more accurately using
multiple combinations of amplitude and count thresholds (right).

the shape of the targets.

In our analysis we noticed that the performance does
not depend on the type of mother wavelet used. Coiflet-5
and Symmlet-8 gave comparable results when the shrinking
was applied to the same level. The performance is mostly
affected by the choice of the level. That makes sense, since

it is equivalent to choosing the scale at which the noise is
present. The best results were obtained when the second
level was shrinked. So far, we have not seen an effect to
the use of different wavelets at different levels.

We have used fusion in the most strict sense, where all
experts have to agree about the existence of a mine a in a
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Fig. 10. Steps in each detector.
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Fig. 11. Performance of different combinations of expert on sonar-0 (left) and sonar-5 (right).

certain location, for the ensemble to vote for a mine there.
While we have experimented with various fusion schemes
for this problem, we have found this simple one to be most
effective in controlling the number of false alarms while
achieving the maximal possible sensitivity. When experts
are fused in this way, it can be easily seen that the number
of false alarms goes down drastically and keeps on going
down as long as we add experts (Figure 11). This is of
course due to the fact that we train (or modify the para-
meters) of each of the experts to achieve 100% detection.
Since the errors that different experts are relatively inde-
pendent, due to the different data representations and the
different preprocessing of the image normalization as well

as image denoising, the fusion is effective in reducing the
number of false alarms. Table I shows the number of false
alarms per image for the two datasets corresponding to
100% positively detected targets.

This approach demonstrates the usefulness of multiple
experts in addressing different background in sonar images
as well as mine orientation and contrast. We have not
been able to achieve close by results with any other method
which does not employ fusion.
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