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Abstract—Resolution of different types of loops in handwritten script presents a difficult task and is an important step in many classic

word recognition systems, writer modeling, and signature verification. When processing a handwritten script, a great deal of ambiguity

occurs when strokes overlap, merge, or intersect. This paper presents a novel loop modeling and contour-based handwriting analysis

that improves loop investigation. We show excellent results on various loop resolution scenarios, including axial loop understanding

and collapsed loop recovery. We demonstrate our approach for loop investigation on several realistic data sets of static binary images

and compare with the ground truth of the genuine online signal.

Index Terms—Handwriting analysis, shape, contours.
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1 INTRODUCTION

SHARING many of the trajectory singularities, loops appear
as one of the most dominant features available in cursive

handwriting processing [1], [2], [3], [4], [5]. In particular,
loops are the key to successful offline-to-online-based word
recognition systems, i.e., those mapping a static (bitmap)
image to an ordered list of pixel locations along a time axis
[6], [7], [8], [9], [10]. It is useful to investigate how improved
loop detection and recognition can facilitate not only
character recognition but also writer modeling for identifi-
cation and examination [11], [12], [13] and script or style
identification [14], [15], [16]. Similarly, many other applica-
tions in forensic science, such as signature verification,
could benefit from loop analysis [17], [18], [19], [20], [21].

The dominance of loops in these tasks reflects in part on
their frequent presence in handwritten cursive words and
their parameterizable descriptive nature. J.C. Simon first
elucidated the elementary nature of loops and provided an
intuitive definition of the types of loops [22]: “Displacing a
pen from left to right in an oscillating movement, with loops,
descendants (legs), and ascendants (poles).” Moreover, in the
common case of pure cursive handwriting, its continuous
nature constrains many ascending and descending strokes in
a loop form. Therefore, we consider an extended definition of
loops to contain all kinds of uninterrupted enclosures [23],
including those with invisible “holes.” Thus, loops can be

found in the usual letters like a, d, e, g, o, p, q, and in letters
like b, f , h, j, k, l, s, t, y, and z. In most cases, any stroke
intersection, excluding delayed strokes, relates to some kind
of a loop.

The significance of loops increases because of their
parameterizable nature, which enables the transformation
of a static loop image into a quantified feature vector. Thus,
the loop provides information in a format usable in machine
learning algorithms. Given the ground truth for genuine
loops provided by the online signal, loop investigation
essentially tries to understand the isomorphism between
the offline image and the online signal. Unfortunately, such
a transformation is not straightforward [2].

Loop investigation has been considered in the context of
enhancing offline handwritten word representation and the
reconstruction of the genuine ordered list of strokes. It has
been done mostly by using temporal (dynamic) information
recovery techniques such as contour analysis [24], [25],
gray-scale examination [26], [27], and path minimization
[28], [29], [30]. Other methods include thinning/skeletoni-
zation [31], [32], [33], [34], [35], [36], [37], [38], [39] and
morphological loop investigation [40], [41], [42]. This paper
improves aspects of former solutions; we detect and resolve
the structure of most loops. Our method uses a sophisti-
cated contour analysis we call The Multipartite Matching
Approach. Our algorithm is beneficial in cases, where a
complete offline to online transformation is desired.

This paper has four main sections: Section 2 introduces
the theory of loops; in Sections 3 and 4, The Multipartite
Matching Approach and its implementation are demon-
strated; Section 5 provides experimental results. The
concluding section provides a final discussion.

2 LOOP THEORY

2.1 Definition

A loop is a handwritten pattern, made of several strokes
formed when the writing instrument returns to a previous
location while touching the pad continuously, giving a
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closed outline with a “hole” in the center. In this case, a
stroke is a writing locus between every two consecutive local
extremity points of the vertical dimension (y-axis).

In practice, especially in low-resolution images, we
require additional information to distinguish a real authen-
tic loop from a pair of two close, connected, and partially
overlapping strokes. For this purpose, we define an
authentic loop to be either real or large, where we have the
following:

. in a real loop, like the one presented in Fig. 1a, the
area is not empty,

. in a large loop, like the one shown in Fig. 1b, the area
is empty, but the perimeter exceeds a predetermined
threshold,

where the area is the group of all background pixels inside
the “hole” and the perimeter is the collection of foreground
pixels surrounding it.

However, Fig. 1c shows a shape that satisfies the
definition of a loop but is rejected because it is too small.
Patterns like the one illustrated in Fig. 1d are considered
loops only when sufficiently large because they are rarely
actual loops.

2.2 Classification

Let the axis be the main shortest path from the left side of the
word to its right side, and let the tarsi be the remaining parts—
ascenders and descenders. Then, based on J.C. Simon’s
definition of a loop, we propose classification into two
kinds:

1. Natural loops, like the ones presented in Fig. 2,
appear on tarsi and hence have a single anchor point
where they hang on the axis.

2. Artificial loops, like the ones shown in Fig. 3, partition
the axis by presenting two interface points in diverse
locations. The first interface point, on the left side, is
the entrance, while the second one is the exit, hence
it appears on the right side.

2.3 Modeling

We have developed two distinctive models that describe the
two loop classes.

A natural loop (Fig. 2) consists of a continuous pair of
consecutive strokes that surround an imaginary natural
“hole.” All pairs of successive pixels by the temporal order
are also 8-neighbors in the image domain. A bottom-up top-
down pair of adjacent strokes sketches an ascending loop in
a counterclockwise manner. A descending loop is drawn
the other way around.

An artificial loop (Fig. 3) occurs when two sets of
consecutive strokes introduce another contact point sepa-
rate from their concatenation interface, sandwiching a
blocked artificial “hole” between them. Either enclosing sets
of consecutive strokes could be a natural subloop itself. The
other alternatives are short poles or simple lines. The
contact point could appear at the top or bottom for upper or
lower artificial loops, respectively.

An artificial loop is categorized according to its natural
subloop (“hole”) configuration: neither side, only on the left
side, only on the right side, both on the left and right sides.

2.4 Offline versus Online

In static (binary) images, the temporal information is
implicit and often ambiguous. When offline processing
occurs, visible “holes” appear as the only evidence that
support allegedly genuine loop identification. Nevertheless,
the abovementioned designation clearly displays that both
types of loops present “holes,” so no isomorphism occurs
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Fig. 1. Zoom-in on various patterns of alleged loops: (a) a real loop, where the area is not empty, i.e., there are background pixels inside the “hole;”
(b) a large loop, where the area is empty, but the number of pixels on the perimeter is more than a threshold; (c) a small loop, where the area is
empty and the number of pixels on the perimeter is less than or equal to a threshold; (d) the “lower limit” of a loop—an extremely thin loop that might
be considered a pole because the top-down stroke completely overrides the bottom-up stroke it follows, leaving no theoretic “hole” in the middle.
Light and dark gray squares illustrate the trajectory captured by a digitizer (online—determines the area and perimeter) and the image of scanning
the associated inked page (offline), respectively. Each square represents a single pixel. White lines represent the center mass of the pen tip
movement.

Fig. 2. Two natural loops, each made of a single continuous chain of
consecutive strokes surrounding a “hole.” A bottom-up top-down pair of
adjacent strokes sketched in a counterclockwise manner forms the
ascending loop on the left. The descending loop on the right is drawn the
other way around. Both loops have a single anchor point where they
hang on the axis.



between the collection of “holes” and one of the classes. The

designation of axial and on-tarsus loops helps moderately

but would not provide an indicative response for situations

where multiambiguous “holes” are encapsulated within a

single “frame” of an artificial (axial) loop. This happens

when a natural subloop formulates one of the “walls” that

encloses the complete loop’s artificial “hole.” Furthermore,

superfluous “holes” exist, like those in Figs. 4a and 4b,

resulting from noisy pixels or remainders of traced-over

natural subloops. Therefore, general information on “hole”

inclusion or absence does not satisfactorily complete the

categorization task, so the architecture of the presumed

loop must be figured for each “hole” individually.
In addition to uncertainties in the association of some

observable “holes,” many others, both natural and artificial,

collapse and become hidden in the transition to a static

(binary) image format [40], [41], [42]. In this case, a blob
remains in the original position of the genuine “hole.” This
phenomenon results from blotting or blurring affects
common to mechanical writing tools. Figs. 4c and 4d
provides two examples of collapsed “holes,” a natural
hidden loop and a natural hidden subloop on the left and
right, respectively. Fig. 3a shows a collapsed artificial
“hole.”

Handwritten blobs also can be found in intersections of
strokes, junctions, and zones where consecutive strokes
touch or partially override each other. In fact, previous
studies showed that blob width could not distinguish the
derivatives of genuine loops from the other byproducts [25],
[41], [42], [43]. This task requires advanced shape analysis.

In the context of loops, then, one must be able to identify
and classify all authentic “holes” to bridge the gap between
offline and online and recover the topological structure of a
loop. Complete identification requires recovery of collapsed
“holes.” Successful classification means distinguishing
between natural, artificial, and superfluous “holes” a
posteriori.

3 THE MULTIPARTITE MATCHING APPROACH

3.1 Overview

Originally, a single stroke in real time produces two
contours on opposite sides, where a contour part is an
ordered list of the minimum on-the-edge adjacent pixels.
Usually, a contour piece would be located approximately
half a stroke-width away from the exact position of the pen
tip. Naturally, some valuable information is lost in the
transition to a static image representation. In this case, some
contour pieces that cross have disappeared, others become
difficult to sort because spatial connectivity is not iso-
morphic to the genuine temporal order, and the internal
manner in which the pixels of a single piece are traversed
(either forward or backward) is not properly defined either.
Two chains of concatenated matching contour pieces on
opposite sides, which were created with a continuous set of
strokes and produced a single connectivity component, can
be incorrectly represented by a static image. Specifically, the
resulting static image presents a deceptively diverse picture
of the contour. In this case, one element of the external
contour exists, a single integrated portion of contour pieces
that surrounds the whole body (one segment per con-
nectivity component), and several elements of the internal
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Fig. 3. Four artificial loops, each created by two sets of consecutive
strokes that introduce a separate contact point away from their
concatenation interface, sandwiching a blocked artificial “hole” between
them. The different loops suggest various alternatives of sets of stroke
combinations: (a) two natural subloops (“holes”), (b) a pole and a natural
subloop (“hole”), (c) a natural subloop (“hole”) and a simple line, and
(d) two poles. In addition, the expected blocked artificial “hole” in (a) is
not visible in the offline representation. All loops partition the axis by
presenting two interface points in diverse locations—the entrance and
exit, on the left and right sides, respectively.

Fig. 4. Two examples of superfluous “holes”: (a) the result of noisy pixel(s) and (b) traced-over legitimate natural subloop(s). Two examples of

collapsed “holes”: (c) natural ascending hidden loop and (d) natural ascending hidden subloop, featuring a left enclosing stroke in an artificial axial

loop.



contours, a collection of contour fragments that surround
each “hole.” Nevertheless, each and every visible contour
piece derived from the static image is a genuine contour
piece produced in real time.

Normally, contour pieces of consecutive strokes also
follow one another on the external edge of the resulting
static image. One chain of concatenated contour pieces
appears on the upper side of the external edge, while their
complements appear on the lower side.

However, abnormalities/singularities arise around junc-
tions where two strokes intersect and cross each other. In
this case, some contour pieces are covered and permanently
lost, leaving an inked gap between pairs of consecutive
contour parts. The neighbor of a contour piece at the
intersection point does not actually follow it. Instead, the
consecutive contour part would be found elsewhere along
an edge of the resulting static image. Given the continuous
nature of cursive handwriting, an intersection implies a
close outline, i.e., a loop, so the next pieces of the contour on
one side would appear inside the resulting “hole.” The
contact between such allegedly neighboring contour pieces
is referred to as a discontinuity point.

As a first step toward regaining the separation to two
distinguished sides, it is advisable to divide the external
contour into upper and lower. Without limiting generality,
the external contour begins at the original starting point
chosen by the writer (up to an exact location on the
perimeter of a loop). Likewise, one can presume the
authentic final point. The original finishing point partitions
the external contour into upper and lower: let the prefix up
to the original finishing point constrain the upper external
contour, and let the suffix from this point on describe the
lower external contour. Pieces surrounding ascenders (des-
cenders) can be further partitioned to left and right around
the piece’s uppermost (lowermost) local maximum (mini-
mum) point.

Fig. 5 presents the external (upper þ lower) and internal
contour pixels of the word “flat.”

The Multipartite Matching Approach enables either the
association of corresponding opposite-sided contour pieces
or the validation of such a presumed matching hypothesis,
to bridge/concatenate same-sided consecutive contour
pieces across junctions, and to locate lost internal contours.

Both opposite-sided contour piece association and lost
internal contour location rely on measurements of mutual
distances and shape similarity between contour pieces. Same-
sided consecutive contour piece bridging/concatenation

across junctions use smoothness in slope/gradient
changes and trend.

The Multipartite Matching Approach utilizes a dual
representation of contour pieces—pixel-based and section-
based. In this case, a section is a short straight line that
represents the smooth representation for the group of
consecutive pixels located in the interval between its
starting and ending points. Above this, we develop a
multilayer theory about inner and intercontour piece
relations, derived from both representations in parallel—see
the map in Fig. 6. The first level presents the basic attributes
of an atomic entity—a single pixel or section, respectively.
The second and third levels describe local and remote
relations between pairs of touching and distant atomic
entities, respectively, among which are turning angle and
direction, distance, and shape similarity. The fourth level
brings several operators that denote the existence of
association between pairs of atomic entities, the possibility
of legal concatenation between pairs of atomic entities, and
the prediction of whether a lost contour fragment occurs
between two chains of consecutive atomic entities of
contour pieces.

In the following sections, we elaborate on the labeling of
the various contour parts—upper, lower, left and right, the
isomorphism between pixels and sections, and the four
layers of information derived from and computed based on
contour representations.

One may also refer to other papers that have suggested
contour-based methods for various tasks in the document
and handwriting processing and recognition fields [21],
[25], [44].

3.2 Representation

Given a static image, the external contour is derived by
surrounding the word’s body segment in a clockwise
manner, keeping the neighboring background pixels to
the left at all times, in a way that each on-the-edge pixel is
visited at least once. In a similar way, each and every
internal contour element is the collection of minimal
ordered lists of on-the-edge adjacent pixels that surround
a “hole” in the word’s image, given each on-the-edge pixel
is visited at least once. Natural ascending (sub-)loops are
surrounded in a counterclockwise manner. Similarly,
natural descending (sub-)loops are surrounded in a clock-
wise manner. The method of surrounding artificial “holes”
is not properly defined. Pixel adjacency occurs in accor-
dance with the 8-neighbor rule. The white pixels in Fig. 7a
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Fig. 5. The various contour sides of the word “flat”: (a) upper external, (b) lower external, and (c) internal.



represent the external and internal contours of the character
“a,” derived from the word “flat.”

In our view, a complementary functional representation
for a piece of contour (other than an ordered list of adjacent
pixels) is a set of concatenated sections, where each section
is a (short) straight line that begins from and ends at a pixel
of the genuine set. This representation appears as a
smoothed version, based on the trade-off of eliminating
noise and significant but tiny fluctuations.

Fig. 7b provides the equivalent section-based representa-
tion to the external and internal pixel-based contours of the
character “a,” derived from the word “flat.”

3.3 Isomorphism

Section c ¼ ½p1; pn�—a straight line that connects p1 and pn is
the smooth representation of an ordered list of neighboring
pixels fp1; . . . ; png if and only if each one of the replaced
pixels is located not more than 1 pixel (or some other
predefined constant) away:

kpi � ck � 1 1 � i � n; ð1Þ

where the euclidean distance is the metric that measures the
distance between a pixel and the straight line representing
the section.

The minimal set of concatenated sections fc1; . . . ; cMg ¼
f½p1;begin; p1;end�; . . . ; ½pM;begin; pM;end�g provides the iso-
morphic section-based representation for the pixel-based
genuine format of a contour piece fp1; . . . ; pNg, where
p1;begin ¼ p1 and pM;end ¼ pN if and only if

pi;begin 2 fp1; . . . ; pNg; pi;end 2 fp1; . . . ; pNg; pi;end ¼ piþ1;begin

1 � i �M and

8pj 2 fpi;begin; . . . ; pi;endg kpj � cik � 1 1 � i �M:

ð2Þ

See Fig. 7b for further illustration.

3.4 Atomic Entities and Basic Attributes

The atomic entity of the pixel-based format of a contour
piece is one point represented by a two-dimensional vector:
p ¼ ðx; yÞ. Hence, the description of a pixel provides a single
basic attribute—its location in the image space.

The atomic entity of the section-based format of a contour
piece is one short straight line represented by two enclosing

pixels: c ¼ ½pbegin; pend� ¼ ½ðxbegin; ybeginÞ; ðxend; yendÞ�. In this
case, the description of a section provides several basic
attributes—the location of all of its constituent pixels; and
its shape given by the slant angle. See Fig. 7c for an
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Fig. 7. A zoom-in look on the external and internal contours of the character “a,” derived from the word “flat,” by pixel-based and section-based

representations in (a) and (b), respectively. (c) An illustration of a contour section’s shape (its slant angle), turning angle and turning direction with the

following one, and a beam of the projection coverage.

Fig. 6. A diagram of the four layers of information derived from the dual representation of contour pieces, pixel-based and section-based,

respectively, including basic attributes, local and remote relations, and operators.



illustration of this. Table 1 summarizes the basic attributes
of the atomic entities for both the pixel-based and section-
based representations.

3.5 Relations between Atomic Entities

3.5.1 Local

A building block of the pixel-based model of a contour
piece represents the local relation between two adjacent
pixels. Hence, the pair of pixels provides a joint attribu-
te—one of eight possible turning directions in which the
preceding pixel points to the one that follows in the ordered
list. A building block of the section-based model of a
contour piece is the local relation between two concatenated
sections (at their interface point). In this case, the pair of
sections provides a joint attribute—the turning angle
between the former and the subsequent in the set, given
by subtraction of the current slant angle from the following
one. See Fig. 7c for an illustration of this. The turning angle
normalizes to the interval [0, �]. The sign of the turning
angle, also referred to as the turning direction, is designated
positive for left turns and negative for right ones. Table 2
summarizes local relations between pairs of touching pixels
and sections, respectively.

3.5.2 Remote

A building block of the pixel-based model of a contour
piece is the remote relation between two pixels on opposite
sides ({external versus internal} or {upper versus lower} or
{left versus right}). Hence, the pair of pixels provides a joint
attribute—their mutual Geodesic distance, defined as the
minimum number of body pixels that separate the two
body points. Fig. 11b illustrates a shortest Geodesic path
that serves the distance calculation. Similarly, the distance
between a pixel and a piece of contour is given by the

minimum distance between the pixel and each one of the

pixels on the other piece.
A Breadth First Search (BFS) algorithm calculates the

distance matrix between pairs of pixels on opposite sides.

The search environment would be a graph isomorphic to

the word’s image—inked pixels associated with nodes and

8-neighboring relations represented by edges (see [45]).
A building block of the section-based model of a contour

piece is the remote relation between two sections on

opposite sides. In this case, the pair of sections provides

several joint attributes—their mutual distance, which is the

minimal distance between a pair of pixels one from each

section, their shape similarity given by the absolute differ-

ence between their slant angles, and their mutual projection

coverage, which tests the potential of one section to cross the

projection beam perpendicular to the other one (Fig. 7c),

and vice versa.
Table 3 summarizes remote relations between pairs of

distant pixels and sections, respectively.

3.6 Operators on Atomic Entities

3.6.1 Correspondence

In our view, two pixels from contour pieces on opposite

sides and that are near to one another may belong

heuristically to the same genuine stroke. Therefore, pixels

pi and pj on opposite contour sides are presumed to be

correspondence-based associated if and only if their mutual

Geodesic distance does not equal more than the stroke-

width:

Correspondenceðpi; pjÞ ¼ 1

iff Pixel Distanceðpi; pjÞ � stroke-width:
ð3Þ
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TABLE 1
Basic Attributes of the Atomic Entities of Contour Representation

TABLE 2
Local Relations between the Atomic Entities of Contour Representation



One can propagate the correspondence property to a
pixel-piece level as follows:

Correspondence pi; fq1; . . . ; qngð Þ ¼ 1

iff 9k 1 � k � n j Correspondenceðpi; qkÞ ¼ 1:
ð4Þ

Fig. 8a shows all possible pairs of corresponding pieces
within the external and internal contours and between the
upper and lower sides of the external contour.

3.6.2 Correlation

Two sections may heuristically belong to the same genuine
stroke if they originate from contour pieces on opposite
sides, present a similar shape, are not too far apart, and
have a positive projection coverage potential. Therefore,
sections ca and cb on opposite contour sides are presumed to
be correlation-based associated if and only if the absolute
difference between their angles is less than or equal to pi
over four, their mutual distance is less than or equal to

twice the stroke-width, and there is at least one pixel on one

section that crosses the projection beam of the other:

Correlationðca; cbÞ ¼ 1 iffðSection Similarityðca; cbÞ � �=4Þ ^
ðSection Distanceðca; cbÞ � 2 � stroke-widthÞ^
ððProjection Coverageðca; cbÞ ¼ 1Þ_
ðProjection Coverageðcb; caÞ ¼ 1ÞÞ:

ð5Þ

One can propagate the correlation property to a section-

piece level as follows:

Correlationðca; fd1; . . . ; dmgÞ ¼ 1

iff 91 1 � 1 � m j Correlationðca; dlÞ ¼ 1:
ð6Þ

Fig. 8b shows all possible pairs of correlated sections

within the external and internal contours and between the

upper and lower sides of the external contour.
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TABLE 3
Remote Relations between the Atomic Entities of Contour Representation

Fig. 8. (a) An illustration of all possible pairs of corresponding pieces within the external and internal contours and between the upper and lower sides
of the external contour. (b) An illustration of all possible pairs of correlated sections within the external and internal contours and between the upper
and lower sides of the external contour (pairs of parallel bars); two possible continuations between a section on the upper external contour and a
section on the internal contour and between a section on the lower external contour and a section on the upper external contour (dashed lines); and
all possible discontinuity points on the external contour (surrounding circles).



3.6.3 Continuation

The most common assumption about the oscillating hand

movement when practicing cursive handwriting is that it acts

under an objective to maintain smooth strokes as much as

possible in order to lose as little energy as possible (Gestalt’s

assumptions and parameters in [50]). In this case, one will

refrain from sharp turns and avoid switches of the general

trend from convex walk to concave, or vice versa, in the

middle of a stroke. Instead, the same turning direction will

appear all along the stroke. It seems that psychomotor factors

relate to this behavior. This assumption was widely utilized

in previous work (see, for example, [8], [25], and [28]).
Based on this paradigm, we have heuristically deter-

mined that a newly created section that concatenates two

pieces of contour into a single continuous stroke must

preserve the same general trend of walk, either convex or

concave, all the way from top to bottom, or vice versa,

including the prefix of the originating piece of contour and

the suffix of the destined one. From a practical standpoint,

the turning direction at the interface points surrounding the

newly created section must be preserved consistently.
Hence, a newly formed section cnew ð¼ ½pa;end; pb;begin�Þ

creates a legitimate continuation (bridge)

< . . . ; ca; cnew; cb; . . . >

between two sections ca ð¼ ½pa;begin; pa;end�Þ and cb ð¼
½pb;begin; pb;end�Þ on different sides of the contour around the

same junction if and only if all the related turning directions

(between the first and the newly formed sections, between

the newly formed and second sections, in front of the first

section, and behind the second section) are the same, and

the newly formed section does not cross or get too close to

background pixels, including “holes”:

Continuationðca; cbÞ ¼ 1 iff ðturning directionðca; cnewÞ
¼ turning directionðcnew; cbÞ
¼ turning directionðca�1; caÞ ¼ turning directionðcb; cbþ1ÞÞ
^ ðcnew is inside word0s bodyÞ:

ð7Þ

Fig. 8b presents two possible continuations by newly

formed sections that concatenate a section on the upper

external contour and a section on the internal contour of an

encapsulated “hole,” and a section on the lower external

contour and a section on the upper external contour.

3.6.4 Discontinuity

Continuing with the smooth path paradigm, we have

heuristically determined that a switch of the turning

direction trend far from an extremal point, which means a

transition from convex to concave walk, or vice versa, or a

sharp turn between two neighboring sections, may indicate

the existence of a discontinuity point. The latter is a possible

position for a contour split.
The interface between two neighboring sections ca and caþ1

is presumed to be a discontinuity point if and only if the turning

direction is not the same as the turning direction between the

first section and its predecessor, given neither the first nor the

second section shares an extremal point, or the absolute

turning angle is more than or equal to pi over two:

Discontinuityðca; caþ1Þ ¼ 1 iffððturning directionðca; caþ1Þ
6¼ turning directionðca�1; caÞÞ_
ðturning angleðca; caþ1Þ > �=2ÞÞ ^ ðpa;begin 6¼ extramum pointÞ
^ ðpaþ1;begin 6¼ extramum pointÞ:

ð8Þ

Fig. 8b shows all possible discontinuity points on the

external contour.

3.7 Computed Functions on Pieces of Contour

3.7.1 Internal Contour Recovery

Lacking a visible “hole,” a lost closed outline piece of an

internal contour is characterized by the shape of a truncated

ellipse with narrow waists—an aperture whose size approx-

imates the stroke-width pixels at the origin, around the

location of the genuine junction where the foregoing and

backtracking strokes crossed each other. See, for example,

the lost loop in Figs. 9a and 9b.
Two pieces of contour on opposite sides of a blob that

draw together an outline of an imaginary truncated ellipse
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Fig. 9. An illustration of the separation of an external contour fragment surrounding a collapsed “hole” to the left and right sides in (a) and (b),

respectively. The graphs of the distance functions between left and right, and vice versa, in (c) top and bottom, respectively.



may heuristically indicate the existence of a lost piece of an

internal contour surrounding a genuine “hole.”
Let < D1; . . . ; Dn > be the discrete function/vector of

the pixel-based distances between every pixel on one piece

of contour fp1; . . . ; png and a second piece of contour

fq1; . . . ; qmg on the opposite side, where 8i, 1 � i � n, Di ¼
Pixel Distanceðpi; fq1; . . . ; qmgÞ: The two portions could

enfold a natural “hole” if and only if a pixel exists on the

first piece, for which the attached distance function/vector
presents a substantial local minimum with respect to the

distance values of the surrounding pixels. In this case, a

substantial local minimum, used to reduce the effect of

natural gaps that emerge from normal quantization noise,

means that either at least one pixel separates the local

minimum and the local maximum that follows it or the

difference between the values at these points is at least one.

The distance values measured at the local minimum and

maximum are required to be less than or equal to stroke-

width and above stroke-width, respectively:

Recoverðfp1; . . . ; png; fq1; . . . ; qmgÞ ¼ 1

iff 9j i < j < kjðDi > DjÞ ^ ðDj < DkÞ ^
ððk� j � 2Þ _ ðDk �Dj � 1ÞÞ ^ ðDj � stroke-widthÞ ^
ðDk > stroke-widthÞ:

ð9Þ

In addition, one may require that the other discrete

function/vector, which represents the pixel-based distances

between every pixel on the second piece of contour

fq1; . . . ; qmg and the first piece of contour fp1; . . . ; png, will

also present a substantial local minimum point around the

same region.
Fig. 9c presents the distance functions between the left

and right sides of an external contour fragment, Figs. 9a and

9b, respectively, around the joint local maximum (see [46]

for elaborations).

4 MODULAR SOLUTION AND SYSTEM

4.1 Overview

Natural and artificial loops are always separated between

tarsi and axis, respectively, so the preliminary module of a

complete loop investigation solution/system partitions the

external contour into these two types. Next, axial loops can

be located and formed based on matches between pairs of

ascenders and descenders. For each one of these artificial

loops, any encapsulated “hole” is classified, validated, and

labeled. Thus, natural “holes” and subloops are distin-

guished and identified. Then, both hidden natural loops

and subloops are recovered on tarsi and within enclosing

walls of axial loops, respectively. See the flowchart in

Fig. 10.

4.2 Separating between Axis and Tarsi

The external contour partitions into axis and tarsi areas by

using the Correspondence operator between every pixel on

the upper side and all of the pixels on the lower side, and

vise versa. For every significant chain of consecutive

external contour pixels, where neither corresponds to the

other side of the external contour, it would be considered a

piece of tarsus.
Let fp1; . . . ; png and fq1; . . . ; qmg be the pixel-based

representation of the upper and lower contours, respec-

tively, then the subset fpi; . . . ; pjg is a possible ascender if

and only if
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Fig. 10. A flowchart of a complete loop investigation solution, including axial and on-tarsus loop analysis in general and recovery of hidden “holes” in

particular.



ðCorrespondenceðpk; fq1; . . . ; qmgÞ ¼ 0Þ
^ ðj� i � stroke-widthÞ i � k � j;

ð10Þ

and the subset fqr; . . . ; qsg is a possible descender if and

only if

ðCorrespondenceðqt; fp1; . . . ; pngÞ ¼ 0Þ
^ ðs� r � stroke-widthÞ r � t � s:

ð11Þ

The remaining pixels on both sides of the external

contour denote the axis parts.
See Fig. 11a for a full illustration of the extracted

ascenders and descenders in white. In this case, the

stroke-width proportional threshold was five pixels.

4.3 Forming Axial Loops

A pair of two matching opposite-sided tarsi on the upper

and lower contours, an ascender and a descender, forms an

axial loop if and only if no proven axial substroke occurs

between their roots on the axis. In this case, a proven axial

substroke requires correspondence between pixels to the

right of the ascender and others to the left of the descender,

respectively, or vice versa. Therefore, the ascender

fpi; . . . ; pjgmatches the descender fqr; . . . ; qsg for a common

axial loop if and only if

8k k < i ðCorrespondenceðpk; fq1; . . . ; qr�1gÞ ¼ 0Þ^
8k j < k ðCorrespondenceðpk; fqsþ1; . . . ; qmgÞ ¼ 0Þ^
8t t < r ðCorrespondenceðqt; fp1; . . . ; pi�1gÞ ¼ 0Þ^
8t s < t ðCorrespondenceðqt; fpjþ1; . . . ; pngÞ ¼ 0Þ:

ð12Þ

The complete perimeter of the axial loop is accepted by

the concatenation of the left- and rightmost pixels of the

ascender and the descender, pi with qs and pj with qr, by the

weighted shortest Geodesic path, biased in favor of the on-

the-edge pixels.
Fig. 11b illustrates an axial loop formation by connecting

the left and right ends of a pair of matching ascender and

descender.

4.4 Distinguishing Encapsulated Natural “Holes”
and Identifying Natural Subloops

A natural “hole” encapsulated within an axial loop is
designated using the Continuation operator between the
upper or lower external contour (separated to preceding
and following sections) and the internal “hole”-based
contour. We suggest that a natural “hole” refers to every
segment of internal contour that presents a continuation
potential with the relevant side of the external contour in
the proper manner.

Let fc1; . . . ; cug and fe1; . . . ; evg be the section-based
representations of the upper and lower external contours,
respectively, where the subsets fca; . . . ; cbg and feg; . . . ; ehg
are a pair of matching ascender and descender that forms an
axial loop, then the encapsulated segment of internal contour
ff1; . . . ; fwg is a possible natural “hole” if and only if

9z 1 � z � wj
ð9o 1 � o � a� 1jContinuationðco; fzÞ ¼ 1Þ_
ð9o bþ 1 � o � ujContinuationðfz; coÞ ¼ 1Þ_
ð9o 1 � o � g� 1jContinuationðeo; fzÞ ¼ 1Þ_
ð9o hþ 1 � o � vjContinuationðfz; eoÞ ¼ 1Þ:

ð13Þ

When the first condition is satisfied, i.e., the natural
“hole” is a continuation of the current upper left part of the
external contour, then the axial loop’s left enclosing stroke
is an upper left ascending natural subloop (see Fig. 8b). In a
similar way, the second, third, and fourth conditions refer
to upper right ascending, lower left descending, and lower
right descending natural subloops at the right, left, and
right enclosing strokes, respectively.

4.5 Validating Hypothesized Natural Subloops

Since an encapsulated natural “hole” refers to a natural
subloop, where the latter constructs one of the walls of the
hosting axial loop, some significant relation must exist
between matching parts of the internal and external
contours at that environment. In particular, an upper left
ascending natural subloop must associate with the left side
of the ascender half of the axial loop, an upper right
ascending natural subloop must associate with the right
side of the ascender half of the axial loop, and descending
natural subloops must associate with the originating side of
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Fig. 11. (a) An illustration of the ascenders and descenders in the word “flat” following the separation of the axis parts. (b) A zoom-in illustration of an

axial loop formation of the character “a” by the concatenation (dashed lines) of a pair of matching ascender and descender (in white) and the

suggested division mechanism of the area into quarters (full and semidashed white lines).



the descender half of the axial loop. The meaning of
association in this context denotes correspondence (Fig. 8a)
and/or correlation (Fig. 8b) between the matching parts of
the internal and external contours at the pixel and/or
section level, respectively. The complete natural subloop
validation is given in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2008.68.

4.6 Prioritizing Hypothesized Natural Subloops

Given the artificial loop model, in which a natural subloop
forms one and only one of the loop’s enclosing walls, two or
more hypothesized natural subloops cannot coexist when
both associate with the same side of the hosting axial loop
({left, right}) or share the same encapsulated “hole.” The
complete natural subloop prioritization is given in Appen-
dix B, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2008.68.

4.7 Recovering Internal Hidden Subloops

A hidden subloop encapsulated within an axial loop is
recovered using the Recover function between the internal
contour of a proven artificial “hole” and a related piece of
the surrounding external contour on the relevant of the four
subsides ({upper, lower} X {left, right}). A hidden subloop
would refer to every blob enfolded between matching
pieces of the internal and external contour that offer an
internal contour recovery potential.

Let f�bottom; . . . ; �topg be the set of pixels on the left
or right side of the internal contour and let
fpmatching bottom; . . . ; pmatching topg be the set of pixels on the
matching nearest piece of external contour, then a hidden
subloop exists between the two if and only if

ðRecoverðf�bottom;...;�topg;f�matching bottom;...;�matching topgÞ¼1Þ_

ðRecoverðf�matching bottom;...;�matching topg;f�bottom;...;�topgÞ¼1Þ:
ð14Þ

When investigating a vertical-oriented blob, it requires
that ymatching bottom ¼ ybottom and ymatching top ¼ ytop; in case of
a horizontal-oriented blob, the x coordinates of the
matching points prove identical.

4.8 Recovering On-Tarsus Hidden Loops

An on-tarsus hidden loop is recovered using the Recover
function between the left and right sides of the surrounding
piece of external contour. A hidden subloop may refer to
every tarsus with no visible “hole” that presents a recovery
potential between its two sides.

Let fppreceding extremity; . . . ; pboundaryg and fpboundaryþ1; . . . ;
pfollowing extremityg be the sets of pixels on the left and right
sides of the external contour surrounding a tarsus, where
both pieces touch at one end (the boundary) and are trailed
to the closest extremity points at the other end. A hidden
natural loop exists between the two if and only if

ðRecoverðfppreceding extremity; . . . ; pboundaryg;
fpboundaryþ1; . . . ; pfollowing extremitygÞ ¼ 1Þ_
ðRecoverðfpboundaryþ1; . . . ; pfollowing extremityg;
fppreceding extremity; . . . ; pboundarygÞ ¼ 1Þ:

ð15Þ

In contrast to the preferred boundary between the left

and right parts of a tarsus constructing an axial loop, the

first alternative is not a discontinuity point but rather the

presumed location of the end-point acting as the symmetry

axis. Usually, this would be the top or bottom point for

ascender and descender, respectively. See Figs. 9a and 9b

with the on-tarsus hidden loop, plus the left and right

trailed sides of the surrounding contour.

5 EXPERIMENTAL RESULTS

5.1 Protocol

We will evaluate the proposed loop investigation algorithm

on three tasks that demonstrate the robustness of our

algorithm to find the isomorphism between static images of

loops and the ground truth online trajectory. To continue

our earlier analysis of this isomorphism, see Sections 1 and

2, we have selected the following three key tasks:

. classification of “holes” encapsulated in axial loops,

. identification (recovery) of hidden natural loops
located on tarsi, and

. identification (recovery) of hidden natural subloops
encapsulated in axial loops.

The first task is equivalent to a full axial loop resolution

because collapsed artificial “holes” can also be recovered in

this way. The handwritten samples input for each experi-

ment derived from images of pure cursive words, where

loop investigation is highly crucial. The labeling process

needed to create the ground truth for comparison purposes

is labor intensive, so the amount of work that could be

accomplished in a reasonable time has been limited. Under

these circumstances, it is acceptable to test some aspects of

robustness by sharing the three evaluated tasks with two

databases. In this way, both cross-database and cross-task

within the same database comparisons were achieved. For

example, in each of the two databases, the resolution of the

images differed. As a result, the stroke-widths also differed.

An extended session in which each experiment would be

performed on all the available data sets falls beyond the

scope of this work. Nonetheless, this paper reports all the

experiments conducted to test the abovementioned three

tasks and does not filter inferior results.
All thresholds either remain constant or vary in

accordance with a single parameter—the stroke-width.

The latter parameter is neither writer dependent nor word

related. Instead, it is shared by all the images of a database

and should be estimated only once per database. For this

purpose, we select the most popular value of a histogram

measuring the distances between pixels on the external and

internal sides of the contour, respectively. Without limiting

generality, any stroke-width dependent parameter may be

fine-tuned by shifts of a few pixels—" < stroke-width. In a

similar way, negligible shifts of several degrees may occur

in angle-oriented parameters. Eventually, a single fixed

constant value will be established for each threshold per

database. In this case, one may consider calculating the

optimal value on a disjoint training set and applying it to

the remaining test set.
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5.2 Data

5.2.1 Experiment 1: Encapsulated “Hole” Classification

The experiment was conducted on 344 samples of the most
frequent axial loop-oriented characters, o�s and a�s, that
occurred in the middle of pure cursive words and did not
suffer from unrelated noisy phenomena typical to first and
last letters. All samples originated from the same directory
of the IRONOFF database [47], which includes a significant
collection of cursive words. Forty-seven writers penned
1-20 words each. The IRONOFF database provides the
online signal and a gray-scale image, taken simultaneously
with the digitizing process, per sample. The offline bitmap
image representation was achieved by mapping all gray-
scale values below a selected threshold to 0, and all those
above it to 1. The same threshold applied to all images in
the database. This threshold was manually selected because
it was an adaptation of the data to the required input format
and not part of the tested algorithm. Strokes approximately
five pixels wide were eventually achieved.

The 344 samples contained 540 “holes” according to the
following distribution: 287 natural, 241 artificial, and
12 superfluous, see Figs. 3 and 4.

Table 4 provides the distribution of the 344 axial loops as a
function of our natural subloop configuration mentioned in
Section 2 and with respect to the condition of the artificial
“hole” {hidden, visible} that shared a common encapsulation.

5.2.2 Experiment 2: Hidden Loop Identification

The experiment was conducted on 1,273 pure cursive words
taken from the Rumelhart’s data set [48], an extension of the
HP data set found in the UNIPEN collection [49]. Six
writers participated with 170–223 words each. In this case,
the offline bitmap image representation of a word was
produced artificially by a linear concatenation of all
neighboring pixels between every pair of pen-down, pen-
up operations. Each line was three pixels thick on the
average, so for every pixel along its central mass,
approximately one pixel on each side appears along the
gradient directions. Quantization aspects and intentional
noise provided real conditions on the edges. See Fig. 12 for
illustration.

Given a total number of 10,131 tarsi, 1,211 (12 percent)
were found irrelevant as being part of an axial loop, and
1,478 (14.6 percent) were disqualified because they had
branches or were convex, i.e., twisted and ended away from
the top or bottom point. Another 1,447 (14.3 percent) were
uninteresting because they surrounded on-tarsus visible
loops. Fig. 13 illustrates several examples for each one of the

abovementioned filtered tarsus types. The remaining

5,995 tarsi were distributed as follows: 547 real hidden

loops, 469 large hidden loops, and 4,979 poles (either small

hidden loops or no loop), see Fig. 1.

5.2.3 Experiment 3: Hidden Natural Subloop

Identification

A group of a-s acting as first letters was tested in the last

experiment. The specific directory of the IRONOFF data-

base [47] provided only a limited group of relevant words.

Eventually, 95 words were collected from more than

40 writers, who produced one to four samples each.

Nevertheless, eight of these words were manually disqua-

lified because they were ambiguous. In addition, some of

the remaining labels were overruled by our objective

assessment of the true class that represents a given stroke

(e.g., a very long hidden natural subloop that definitely

stands for a pole). The remaining 87 letters were distributed

between the two natural “hole”-less configurations: 51

hidden loops and 36 poles, see Fig. 14.

5.3 Results

5.3.1 Experiment 1: Encapsulated “Hole” Classification

Given 259 of 287 authentic natural subloops (90.2 percent)

were successfully detected, false alarms happened in 18 of

253 (7.1 percent) instances, where authentic artificial or

superfluous “holes” were mistakenly labeled as natural.

204 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 2, FEBRUARY 2009

TABLE 4
Axial Loop Distribution

1Including a single “hole” that shares both sides like an ascending\descending natural on-tarsus loop.

Fig. 12. An illustration of the offline bitmap image production: let the
enumerated pixels in (a) be the discrete locations recorded by the
digitizing tablet, then the thin trajectory in (b) would be the continuous
online signal representation and the thick trajectory in (c) would be the
artificial offline representation.



This produces a total “hole” identification rate of 91.5 per-

cent (494/540).
The complete axial loop recognition rates appear in

Table 5. In 80.2 percent of the axial loops, all encapsulated

“holes” were classified properly and associated with the

correct side.

5.3.2 Experiment 2: Hidden Loop Identification

Given 517 of 547 authentic real hidden loops (94.5 percent)

and 341 of 469 authentic large hidden loops (72.7 percent)

were successfully detected, false alarms happened in 563 of

4,979 (11.3 percent) instances, where authentic poles were

mistakenly labeled as hidden loops. This produces a total

concave tarsus classification rate of 88 percent (5,274/5,995).

5.3.3 Experiment 3: Hidden Natural Subloop

Identification

Given 36 of 51 authentic hidden natural subloops (70.6 per-

cent) were successfully detected, false alarms occurred in 10

of 36 (27.8 percent) instances, where authentic poles were

mistakenly labeled as hidden subloops. This produces a

total nonquestionable stroke interpretation rate of 71.3 per-

cent (62/87).

5.4 Discussion

5.4.1 Experiment 1: Encapsulated “Hole” Classification

Approximately one third of the misrecognized axial loops,
6.4 percent, could not have been resolved by the proposed
algorithm, because they do not behave according to the
artificial loop paradigm and present twists in place of
continuous smooth strokes—see Figs. 15a and 15b. One
particular writer produced most of these troublesome
instances.

In an additional 2.9 percent of the cases, the existing
natural subloop could not have been designated by the
proposed algorithm because the presumed continuation
does not satisfy the smooth inclination condition.

This extraordinary situation, illustrated in Fig. 15c,
occurs when an unexpected sharp turn is made in the
middle of the stroke. In this case, the assumption that one
maintains smooth strokes to lose as little energy as possible
(Section 3.6.3) was violated.

Noise offers explanation for the remaining portion of
failure cases. In 1.2 percent, the neighboring character
attaches to the substantial side of the axial loop, shadowing
the origination of the required continuation (concatenation).
A similar phenomenon was observed in another 1.7 percent
of the investigated loops, where extra ascenders exist
between the natural subloop and the axis. See an exemplar
in Fig. 15d.

5.4.2 Experiment 2: Hidden Loop Identification

A vast majority of the misdetections/false alarms relates to
quantization difficulties that affect the visualization of large
hidden loops in contrast with thin poles. Sometimes, similar
circumstances cause confusion between a real hidden loop
and a thick pole that has a trapeze shape. The transforma-
tion of a pair of true diagonal lines, denoting the left and
right sides of the (external) contour of a tarsus, into two sets
of discrete pixels is not well defined. As one can see in
Fig. 16, two parallel lines, even those representing a cusp
shape, could produce fluctuations in the mutual distance
functions. As a result, hidden loops and poles can be
substituted.
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Fig. 13. Four types of tarsi that are filtered-out and not tested for exclusive hidden loops: part of an axial loop, with branches, convex (twists and ends

away from the top or bottom point), and the surrounding of visible loops.

Fig. 14. The two natural “hole”-less configurations of axial loops acting

as first letter a-s. A hidden natural subloop forms the right enclosing

stroke of the artificial loop on the left. The loop on the right utilizes a pole

type of enclosing right stroke.



In some cases, the scanning and digitizing resolution
fails to distinguish the actual hidden loops. In other words,
the identified large hidden loops may have been perceived
as real, i.e., with a visible “hole,” if the resolution was
higher. The misrecognized hidden loops, however, are
probably not actual. When the resolution increases, the
signal-to-noise ratio of the Recover function can also be
improved by demanding higher differences between the
local minimum and maximum points. From a different
point of view, 3.5 percent of the mistakenly recovered blobs
contained small hidden loops that may be considered
ambiguous.

5.4.3 Experiment 3: Hidden Natural Subloop

Identification

In two of five misinterpreted loops, the reasons for failure
match those of Experiment 2. However, most of the

confused strokes, approximately 16 percent of the error
rate, concern bad handling of collisions between the origin
of the left stroke and the body of the right one.

Figs. 17a and 17b present two examples of misdetections,
where the critical parts of a genuine hidden natural subloop
were concealed. Figs. 17c and 17d illustrate the potential of
false alarms caused by interference of the other stroke.

6 DISCUSSION

We have proposed a novel contour-based handwriting
analysis approach. The discussed method showed excellent
results on various loop resolution scenarios, including axial
loop understanding and collapsed loop recovery. Although
we did not present experimental results that demonstrate
the direct impact of our algorithm on word recognition and
writer modeling systems, the theoretic analysis and
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TABLE 5
Complete Axial Loop Recognition Rates

Fig. 15. Two misrecognized axial loops that do not behave according to the artificial loop paradigm: (a) and (b) the left stroke twists to the right and
completes a natural subloop in a clockwise manner. Additional two groups of unresolved axial loops: (c) natural subloops with extraordinary
deformations caused by unexpected sharp turns in the middle of the constructing strokes and (d) natural subloops blocked between pairs of
substrokes, where one of each couple acts as an extra ascender that separates the “hole” from the axis. In both cases, a direct continuation cannot
be presumed.

Fig. 16. (a) A misdetected large hidden loop in comparison with a similar-looking pole. Both tarsi present matching staircases, with only one pixel

difference in the mutual distances. Thus, both resemble a pole. (b) A false alarmed pole, mistakenly considered as hidden loop, in comparison with a

similar-looking large hidden loop. Both tarsi present narrow waists that widen a few pixels away, giving the impression of an aperture behind a

collapsed loop.



supporting references we described offer ample evidence of

the importance of loop interpretation as a preprocessing

step in such applications. In this case, when utilizing the

suggested method, one may be provided with additional

valuable information that may distinguish among loop-

based handwritten patterns that appear similar in their

topological and geometrical structure in advance.

Furthermore, we found strong evidence that loop under-

standing supports character recognition. In this case, we

learned that the frequency of some common structures

changes dramatically between letters. Writer identification/

verification is supported similarly by the proposed algo-

rithm, given that the correspondence between writers and

styles of loops is high. The robustness of the proposed

algorithm was demonstrated using two databases that

provided samples in different resolutions and stroke-

widths. In particular, the method demonstrated its practi-

cality for use with low-resolution images.

Future work would generalize the suggested method

and expand the framework of events that can be treated.

Improved recovery capabilities can be achieved by utilizing

the preliminary dehooking technique that was partially

practiced and discussed in the context of the hidden natural

subloop identification on the first letter a-s. In that way,

subbranches, like the two sides of a t-bar, might be filtered.

For the same purpose, it would be beneficial to have the

ability of tracing genuine end-points that are neither the

uppermost nor the lowermost pixels in order to handle

convex tarsi such as c-strokes and open s-s. A complete

implementation of this approach to the beginning and

ending letters of a word also requires an adaptation of the

axial loop model in addition to the abovementioned

dehooking preprocess.

The presented algorithm is highly relevant to other tasks

and applications in the field of handwriting analysis. We

strongly believe the advanced tools developed here, along

with the contour-based concept and guidelines, may prove

useful in other fields of logical image understanding, where

one can define a set of constraining rules on the visible

edges and their interconnections. Examples could include

medical visualizations, urban landscape interpretation, and

automatic target recognition.
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