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Abstract 
 
To examine the basis for the fine (~2 µs) echo-delay resolution of big brown bats 
(Eptesicus fuscus), we developed a time/frequency model of the bat’s auditory system 
and computed its performance at resolving closely-spaced FM sonar echoes in the bat’s 
20-100 kHz band at different signal-to-noise ratios.  The model uses parallel bandpass 
filters spaced over this band to generate envelopes that individually can have much lower 
bandwidth than the bat’s ultrasonic sonar sounds and still achieve fine delay resolution.  
Because fine delay separations are inside the integration time of the model’s filters 
(~250-300 µs), resolving them means using interference patterns along the frequency 
dimension (spectral peaks and notches).  The low bandwidth content of the filter outputs 
is suitable for relay of information to higher auditory areas that have intrinsically poor 
temporal response properties.  If implemented in fully parallel analog-digital hardware, 
the model is computationally extremely efficient and would improve resolution in 
military and industrial sonar receivers.  
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I. INTRODUCTION 
The behavior of echolocating bats that emit frequency-modulated (FM) biosonar 

sounds shows that they create a detailed 3-dimensional representation of their immediate 
environment from processing echoes of these sounds (Neuweiler, 2000; Popper and Fay, 
1995).  The images these bats perceive incorporate the shapes of objects at their correct 
locations over the operating range of their sonar (e.g., ~5 m for big brown bats; Kick, 
1982).  Experimental evidence indicates that FM bats are capable of perceiving objects 
with a resolution of the order of millimeters and fractions of a millimeter (Simmons, et 
al., 1995; 1996, 1998). This performance is amazing because the neural representations 
that support the bat’s images are formed by auditory midbrain and cortical neurons whose 
responses have a temporal precision of hundreds of microseconds to several milliseconds 
at best (Casseday and Covey, 1995; O’Neill, 1995; Dear, et al., 1993; Pollak and 
Casseday, 1989).  Not only is the sharpness of the bat’s images better than individual 
neurons seem able to sustain, but the computations required to place the spatial 
information the bats perceive into images from sonar signals are very intensive, involving 
large numbers of parallel temporal calculations.  For example, the big brown bat 
(Eptesicus fuscus) transmits FM signals containing two to three harmonics that 
collectively span the band from 20 to 100 kHz.  These broadcasts are beamed broadly, so 
they ensonify objects in nearly every direction, especially towards the bat’s front.  
Consequently, echoes are effectively received from all the objects in the field of “view,” 
which makes it necessary to explicitly form simultaneous distinct representations for each 
object so that they become segregated in perception (Simmons, et al., 1996).  Then, the 
representation of each object derived from any single broadcast has to be integrated with 
the corresponding representations from previous and subsequent broadcasts so that the 
object’s path can be tracked and its shape reconstructed as a single coherent picture from 
the succession of echoes (Grinnell, 1995; Kalko and Schnitzler, 1998)  These types of 
calculations resemble computerized tomography or 3D reconstruction by rotating and 
overlaying individual images having less dimensionality, and they probably cannot be 
done at the early stages of the auditory pathways. 

To create the bat’s images, detailed information about the wideband, intrinsically 
high-resolution time-series FM waveforms of broadcasts and echoes first has to be 
converted into a representation capable of being transferred efficiently into higher 
auditory, presumably cortical areas, without using a bandwidth for transmission in any 
one neural channel that exceeds the surprisingly limited temporal response properties of 
the higher-level neurons that accept this information.  Information necessary for 
measuring the arrival-times and arrival-time separations of multiple echoes has to survive 
the compression of the representation implied by the abrupt decrease in the temporal 
precision of neural responses between the auditory brainstem and the midbrain (Haplea, 
et al., 1994; Casseday and Covey, 1995) so the bat can perceive the objects with high 
resolution using its seemingly low-resolution computational elements.  The desired 
representation presumably takes advantage of the ability of parallel neurons arranged in 
neuronal maps to carry the detailed information using multiple, parallel low-pass 
representations. 

We propose a model of biosonar processing which performs a set of detailed 
measurements on echo returns in the brainstem and sends the outcome of these 
measurements using multiple low-bandwidth neuronal channels to higher areas of the 
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auditory system, in the midbrain and cortex.  This paper focuses on retention of high 
resolution for the delay of closely spaced echoes in a computational representation 
suitable for incorporating delay differences as range and cross-range information in 
spatial images of objects.  In the context of delay resolution, we demonstrate the 
connection between the signal-to-noise ratio of the echoes and the resolution of echo 
separation, as would be embodied in neural responses in higher cortical areas.  While it is 
not surprising that higher bandwidth is required for higher resolution, it is somewhat 
surprising that for a given echo resolution, lower signal-to-noise ratios require broader- 
rather than narrower-band processing.  Normally systems are designed to focus on 
narrower signal bands when noise is strong to boost the energy available for overcoming 
the noise. 
 
 
II. MODEL 

A. Background 
Localization of objects from their echoes is a fundamental problem for analysis of 

acoustic signals.  It is the basis of object exploration and scene analysis in sonar systems.  
Wideband active acoustic exploration of scenes relies on transmitting a series of pings, 
which impinge on objects and then return from different edges and surfaces.  Distances to 
different parts of objects can be determined from the arrival-times of the individual 
replicas of the incident sound included in the overall return, and the cross-range locations 
of these parts can be determined from disparities in delay at two or more receiving points.  
The problem for understanding the performance of FM bats in such tasks as 
discrimination of airborne mealworms from disks (Griffin, et al., 1965) is how to 
conceive of the information necessary to reconstruct the range and cross-range 
appearance of objects being carried in the responses of neurons in the bat’s auditory 
pathways. 

When a sonar signal hits an object that is composed of several scattering points or 
planes (called “glints” in wideband parlance), there are multiple returns from the object.  
The delay between those returns gives an accurate indication of the structure in depth of 
object surfaces, or the separation of the glints in range.  Using such delays at both ears, 
the bat may be able to achieve a complete reconstruction of the object in the range-
crossrange plane.  The resolution of the sonar is determined by the smallest detectable 
temporal difference between echoes.  Higher temporal resolution between echoes leads to 
a higher depth and shape resolution of objects.  For high temporal resolution, the 
transmitted signal should be wideband.  There also is a competing requirement for being 
able to detect targets at long range from weak echoes.  The maximum range for object 
detection is governed by the energy of the signal—that is, by its amplitude and duration.  
Longer duration leads to higher integrated energy and thus longer operating range.  
Echolocating bats apply the classical “chirp-radar” solution to this problem—they 
transmit FM sounds whose bandwidth is kept high by the frequency span of the FM 
sweep, while energy is increased by increasing the signal’s duration in conditions of  low 
echo strength.  However, this solution becomes complicated by the transducer design of 
mammalian hearing (Kössl and Vater, 1995; Ruggiero, 1992).  The bat’s inner ear 
receives the FM sweeps through parallel bandpass filters whose outputs are smoothed to 
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create an integration-time of several hundred microseconds for echo reception (Simmons, 
et al., 1995, 1996).  The resulting auditory representation is a spectrogram-like time-
frequency distribution for the energy in the sound made up of the envelopes of the 
bandpass-filtered, smoothed segments of the FM sweeps.  The integration-time of the 
bat’s auditory spectrograms is relatively long compared to the intrinsic time resolution of 
the bat’s signals, which for big brown bats is crudely indexed to be about 12 µs from the 
reciprocal of the broadcast bandwidth (~ kHz).  The much longer integration-time of the 
bat’s auditory filters means that echoes arriving closer together in time than several 
hundred microseconds will merge together to form a single sound at separations far larger 
than the resolution limit of the signals themselves.  Big brown bats nevertheless can 
assign two closely-spaced echoes their own arrival-times at far smaller separations.  They 
readily distinguish echoes only 10-30 µs apart as separate, for example (Simmons, et al., 
1995).  The bat’s limit of resolution at moderate signal-to-noise ratios is about 2 µs 
(Simmons, et al., 1998).  When two echoes arrive closer together than the integration-
time, they mix to create an interference pattern of peaks and notches in the spectrum, 
where the frequency spacing of the notches is the reciprocal of the time separation of the 
echoes.  If the big brown bat can resolve echoes as separate if they are only 10-30 µs 
apart, it must use the interference pattern in frequency to estimate the separation in time.  
This conclusion implies that the bat uses its spectrogram-like time-frequency 
representation as more than just the format of its initial auditory code—it uses the 
properties of the two dimensions of time and frequency as the basis for computations to 
assemble spatial images of objects (Simmons, et al., 1996).  Here, we examine the 
resolution attainable from a time-frequency representation of the big brown bat’s FM 
signals for two echoes arriving at close time separations and different signal-to-noise 
ratios.   

 
B. Outline of the model 

Our model is based on the generation of multiple time/frequency templates 
representing ideal responses of the bat’s auditory filters for different two-glint echo 
separations in the absence of noise. The model is evaluated by supplying input signals at 
different time separations and signal-to-noise ratios to test the ability of the time-
frequency templates for resolving two-glint delay separations.  The structure of the 
simulations resembles a psychophysical experiment on echo-delay resolution by bats.  
The filters that generate the frequency axis of the time/frequency representation are 
analogous to the cochlear block of the SCAT model (Saillant et al., 1993).  This model 
describes a comprehensive imaging system based on auditory-like time-frequency 
representations (Matsuo, et al., 2002; Peremans and Hallam, 1998; Saillant, et al., 1993).  
We modeled the action of the inner ear by a bank of band-pass filters followed by an 
envelope-smoothing process. The frequency selectivity of the basilar membrane in the 
bat’s cochlea is simulated by 81 10th-order IIR Butterworth filters, with a constant Q=10, 
and center frequencies hyperbolically spaced between 25 kHz and 100 kHz. The 
excitation of the hair cells and primary auditory neurons is modeled by half-wave 
rectification and low-pass filtering using an IIR Butterworth 1st-order filter with a cut-off 
frequency of 3 kHz. 

Figure 1 illustrates the effect of the different stages of the transduction filtering 
process on a frequency-modulated (FM) hyperbolic chirp with two harmonics, a start-
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frequency of 100 kHz and an end-frequency of 25 kHz (Figure 1a). Figure 1b is the 
output of a band-pass filter with a center frequency of 40 kHz and Q=10. The output is 
then half-wave rectified (Figure 1c) and low-pass filtered (Figure 1d). 

The effect of the entire filter bank is to encode the waveforms in the spectrogram-
like time/frequency format characteristic of the mammalian auditory system. Figure 2 
shows the output of the entire filter bank for three different signals. Each horizontal slice 
in the bottom plots corresponds to the output of one of the 81 cochlear filters after half-
wave rectification and low-pass filtering. The signals in this example are based on a 
hyperbolic chirp with one harmonic. Since the center frequencies of the filters are 
hyperbolically spaced as well, the peaks in the response curves that trace the FM sweep 
fall on a straight line (the chirp’s sweep is linearized). 

If the echo is composed of distinct overlapping reflections from two closely-spaced 
glints, then interference occurs. In particular, if the delay between the two glints is larger 
than the integration time of the filters (~300µs in our model), then the echoes from the 
two glints generate two separate response ridges in the time-frequency representation 
(Figure 2, right), and the distance from each glint to the emitted pulse can be computed 
independently entirely from the locations of the ridges in time. However, for smaller two-
glint separations, it is no longer possible to distinguish between the two glints in the time 
domain because together they produce only one ridge.  Interference gives rise to notches 
in the ridge whose number and location in frequency depend on the two-glint separation 
in time (Figure 2, center).  Figure 2 shows these effects with a single harmonic to 
simplify the illustration, but the same effects occur for multiple harmonic signals. In our 
simulations we used a more biologically realistic chirp with two harmonics, the first 
harmonic spanning the interval between 25 kHz to 50 kHz. The difference between one 
and two harmonics covering the same 25-100 kHz band are shown in Figure 3. 

In order to study the effects of background noise on the two-glint discrimination 
task, we generated band-limited white noise in the frequency range of the pulse − i.e. 
from 25 kHz to 100 kHz − and added this noise to the echoes used in the simulations. The 
signal-to-noise ratio (SNR) was computed according to Menne and Hackbarth, 1986: 
 

0
10

2log20)(
N

EdBSNR =         (1) 

 
where E is the total energy of the returning signal and N0 is the spectral density of the 
noise. Figure 4 shows the effect of different noise levels on the amplitude of a two-glint 
echo (A) and on its time frequency representation (B). Notice that, as the noise level 
increases (i.e. the SNR decreases), the location of the notches becomes increasingly more 
difficult to determine (Figure 4B, center). For very high noise levels the notches are 
almost completely masked by the noise (Figure 4B). 

To build the model of echo-processing, a set of time-frequency templates was 
generated by applying the bandpass filter bank to a set of FM signals with different two-
glint separations but no noise. These templates were then used as a set of parallel 
matched filters on the time-frequency representation of echoes mixed with noise created 
using the same bandpass filters.  Figure 5 shows a collection of time-frequency templates 
used in the simulation.  Each template corresponds to a specific two-glint separation, 
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from 0 µs to 48 µs, with steps of 2 µs.  The resolution of this set of templates thus is 2 µs. 
To explore higher resolution levels we generated a different set of templates in the same 
way, but using 0.2 µs intervals from 0 µs to 5 µs in the two-glint separations. We will 
refer to the 2-µs interval simulation as coarse and to the 0.2-µs interval simulation as 
fine. 

For a given two-glint separation ∆t in the echo at a fixed SNR, we generated its 
time-frequency representation X(∆t) using the 81 cochlear filters described earlier. We 
then compared this representation to each time-frequency template Y(n) according to the 
following similarity measure: 
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The curve M∆t= M∆t(n) represents the responses of the collection of templates to the 

particular echo. The two-glint delay separation corresponding to the template with the 
highest response was used as our estimate  for the two-glint separation ∆ . This 
procedure was used for a series of two-glint echoes with different ∆t’s.  In particular, we 
used 

t∆̂ t

s50 , s,4 s,2 s,0 µµµµ K=∆t
s5 , s,40. s,20. s,

 for the coarse resolution simulations and 
0 µµµµ K=∆t  for the fine resolutions ones. For any given SNR, the 

family of response curves corresponding to different ∆t’s can be combined together to 
form a surface, which we will refer to as the response surface. Since the delays in both 
the filters and the echoes are the same, i.e. s50 , s,4 s,2 s,0 µµµµ K=∆t  for the coarse 
resolution simulation, the correct estimates lay on the diagonal of the base plane of the 
surface. Figure 6 shows the response surface for single simulations of the coarse 
resolution experiment at three different noise levels. As the noise level increases (from 
top to bottom) the maximum response in some regions shifts away form this diagonal. 
For very low signal-to-noise levels the responses of each template to different two-glint 
separation in the echo are approximately equal (bottom figure), indicating a reduced 
discrimination power. Figure 7 shows the same surfaces for fine resolution simulations. 
 
III. RESULTS 
 

Each of our simulated experiments with the model is performed with a specific 
SNR and two-glint separation ∆t in the echo. The outcome of each experiment is the 
estimate ∆  of the two-glint separation. We performed a Monte Carlo simulation for each 
experiment, generating 20 realizations of the noise for each given SNR, and determining 
a new  for each realization. The variability in the estimate of the two-glint separation 
can be visually assessed by looking at the histogram of . Each box in figure 8 and 9 
shows the histogram of  for a given Monte Carlo simulation at different two-glint 
separations (columns) and noise levels (rows). In each box a thin vertical line marks the 
position of the correct response. For large signal-to-noise ratios, the template with the 
highest response corresponds to the correct value of ∆t, and all the points in the histogram 
fall in this correct bin. For lower SNRs, the model starts making mistakes, so that some 

tˆ

t∆̂
t∆̂

t∆̂
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points in the histograms appear in the wrong bins (e.g. SRN=30, 25 in figure 8, SNR=45 
in figure 9). For very low SNRs, most of the responses fall in the 0 µs bin, for both the 
fine and the coarse resolution experiments. In addition, in the coarse experiment some of 
the responses cluster around the values 22 µs and 46 µs. 

The bottom row of Figure 8 and 9 shows the combined histogram of the errors for 
all the Monte Carlo simulations with the same SNR, and provides a summary of the 
model’s performance for a specific noise level. These summary histograms are centered 
on 0µs as the nominally correct delay separation for all the different actual delay 
separations in the columns above. As the SNR decreases, the combined histogram 
becomes flatter and its spread around the 0 µs center increases. Notice that for very low 
SNR there are only errors on the negative side of 0 µs. This is a consequence of the bias 
towards the 0 µs template for all the high noise levels mentioned earlier. 

A major reason for doing these experiments was to evaluate the effects of changing 
a physiologically-relevant component of the model, the smoothing filter applied to the 
half-wave rectified output of each cochlear band-pass filter. Previous work has identified 
the frequency cutoff of this smoothing filter as the critical design parameter for echo 
transduction (Simmons, 1980).  We compared the performance of various models that 
differ in the smoothing frequency (COF) of the low-pass filter in each of the 81 parallel 
cochlear band-pass channels. As expected, high COFs are more resilient to noise than 
low ones. Figure 10 and 11 show error histograms for different COFs (rows) and SNRs 
(columns). The band-pass filter case (BP only) corresponds to a COF= ∞. A summary 
plot for all the simulations discussed so far is shown in figure 12, which shows the root 
mean square error (RMSE) in µs versus signal-to-noise level in dB. Different curves 
correspond to different cut-off frequencies in the low pass filter; circles correspond to no 
halfway rectification and no low-pass filtering, i.e. the band-pass filters alone are used to 
create the time-frequency representation. The top figure shows the results for a collection 
of templates generated with increments of 2 µs in the two-glint separation. The dashed 
lines correspond to the case of 0.2-µs increments. Notice that for high SNRs, the coarse 
resolution lines all start at 2 µs, and the fine resolutions ones all start at 0.2 µs, since 
those are the maximal resolutions of the coarse and fine template sets. Form figure the 
fine resolution model is more sensitive to noise than the coarse one. In fact, the 
differences between the templates in the coarse resolution experiment are more 
substantial. The templates for the fine resolution experiments are more similar to each 
other, and lower levels of noise can easily mask those differences. In particular, the break 
points in SNR appear to be shifted between the two models by approximately 10 dB for 
high COFs, to 15-20 dB for lower ones. 
  
IV. DISCUSSION 

The mammalian auditory system segments the frequencies in sounds into parallel 
frequency bands at the inner ear, smoothes the envelopes of the filtered signals, and 
transmits them in volleys of neural action potentials to higher brain centers for processing 
of acoustic information into auditory images.  The inner ear of the little brown bat 
(Myotis lucifugus), a close relative of the big brown bat, contains about 900 inner hair 
cells (each comprising a single frequency-tuned channel), and the auditory nerve contains 
about 55,000 afferent fibers for transforming receptor activity into neural spikes 
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(Ramprashad, et al., 1978).  These spikes are transmitted to a cascade of higher auditory 
centers (brainstem to midbrain to cortex) for processing the acoustic information they 
convey into images of objects.  Nuclei at the first several stages of this cascade 
(brainstem) contain neurons numbered in thousands and tens of thousands with temporal 
and spectral response properties similar to the frequency tuning and time constants of the 
bandpass filters themselves.  These neurons have to perform early auditory processing on 
the initial time-frequency representation so that it that can be efficiently relayed to higher 
auditory areas. In contrast, neurons in the inferior colliculus (midbrain) and auditory 
cortex are numbered in millions and have poor temporal response properties.  Only their 
frequency tuning resembles that of the bandpass filters, and even this is modified by 
inhibitory responses at frequencies adjacent to excitatory frequencies (Casseday and 
Covey, 1995; Pollak and Casseday, 1989). These areas are candidates for performing the 
3D scene analysis from acoustic data delivered in a time/frequency format from the 
brainstem.  It seems likely that one function of the very large numbers of higher-level 
neurons is to support a representation of the spectrum of echoes with different degrees of 
frequency resolution to accommodate coarse to fine local spectral shape around each 
frequency.  It is also likely that these auditory areas perform the binding of 
time/frequency information into perceived objects, so that the fine delay separations 
extracted from the interference pattern in frequency come to be associated with each 
target’s correct absolute range extracted in the time-domain from the overall delay of 
echoes.  Echoes that return from different objects at different distances and directions on 
successive pings have to be integrated into objects that are stable across multiple pings.  
The time scale for this kind of integration across pings necessarily is much longer than 
the 300 µs integration-time of the bandpass filters because it has to encompass the entire 
time interval from one ping to the next, which typically is 1 to 50 ms in bats.  The 
temporal response properties of midbrain and cortical neurons are aligned with this 
longer epoch, implicating them in the interpretation and registration of stable acoustic 
scenes.  The efficient relay of data from lower centers (brainstem) should convey 
information about the fine temporal structure of echoes while using low bandwidth 
channels to match the ascending information about each echo to the time scale of target 
scene analysis.   

The echolocation of bats at ultrasonic frequencies requires perception of aspects of 
the detailed temporal structure of the waveform of echoes measured in microseconds, 
even though the neural channels for conveying this information upward to the auditory 
midbrain and cortex have much lower bandwidth and poor temporal response properties 
measured in milliseconds.  Closely-spaced echoes fall inside the approximately 300 µs 
integration-time of the inner ear’s bandpass filters, so their time separation is transposed 
into an interference pattern of amplitudes (notches and flanking peaks) at different 
frequencies.  Transmission of spectral shape in parallel frequency channels can be 
achieved at low data rates compared to direct transmission of the equivalent time 
separations, and the auditory system may have evolved to exploit this feature of 
time/frequency coding so that higher auditory centers can have the long time constants 
required to assemble acoustic scenes across successive pings and still be able to receive 
and use information extracted from each echo.  We have found that a time/frequency 
representation can be used to break the high-frequency, broad bandwidth signals received 
by the bat into parallel signals of greatly reduced frequency and bandwidth to register the 
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interference pattern of overlapping echoes in a time-frequency representation so that 
channels with biologically realistic low temporal resolution can still account for the bat’s 
fine delay resolution.  We have specifically found that adequate resolution is achievable 
with parallel channels limited by input smoothing to frequencies no higher than 7 kHz.  
This representation is very efficient, being suitable for higher cortical areas to perform 
additional calculations on the fine temporal structure using slow neurons, and as such 
offers a valuable approach to high-resolution sonar receiver design.   
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FIG. 1. (A) Hyperbolic chirp with two harmonics. (B) Output of a band-pass filter with 
center frequency of 40kHz and Q=10. (C) Output after halfway rectification. (D) Output 
of a low-pass frequency with COF=3kHz. 
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FIG. 2. FM hyperbolic echo with one harmonic and different two-glint separations (top 
row). Output of the filter-bank (bottom row). The band-pass filters have center 
frequencies hyperbolically spaced between 25 kHz and 100kHz and have constant Q=10. 
The low pass filter has a COF=3kHz. 
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FIG. 3. One harmonic versus two harmonics. 
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FIG. 4. (A) Echo with two glints separated by 40µs embedded in band-limited noise for 
different signal-to-noise ratios. The frequency band of the noise is set to be equal to that 
of the pulse. (B) Time-frequency representation corresponding to the signals in (A). 
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FIG. 5. Time-frequency templates used in the simulation. Each template corresponds to a 
specific two-glint separation, from 0µs to 48µs with a step of 2µs. 
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FIG. 6. Response surface of the templates for different two-glint separations in the echo. 
The main diagonal represents the correct response. As the noise level increases (from top 
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to bottom) the maximum response moves away form the diagonal. For very low signal-
to-noise levels the responses of each template to different two-glint separation in the echo 
are approximately equal (bottom figure), indicating a reduced discrimination power. The 
above figures correspond to a COF = 7kH. 
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FIG. 7. Response surface of the templates in the case of 0.2µs increments in the two-glint 
separations. 
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FIG. 8. Histogram of estimates from the maximum responses of the templates for 
different two-glint separations (columns) and signal-to-noise ratios (rows). The bottom 
row shows the combined histogram of these estimates of delay separation for the entire 
collection of trials in the corresponding column (with 

t∆̂

t∆ values centered on nominal 
values as zero). Results are given for a low-pass COF = 7kHz, and 2µs increments in the 
two-glint separations of the templates. 
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FIG. 9. Histogram of estimates from the maximum responses of the templates for 
different two-glint separations (columns) and signal-to-noise ratios (rows). The bottom 
row shows the combined histogram of these estimates of delay separation for the entire 
collection of trials in the corresponding column (with 

t∆̂

t∆ values centered on nominal 
values as zero). Results are given for a low-pass COF = 7kHz, and 0.2µs increments in 
the two-glint separations of the templates. 
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FIG. 10. Plots of summary histograms for errors in coarse-resolution (2-µs steps) 
simulations across the entire collection of trials (bottom rows in Fig. 8) for different 
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COFs and SNRs.   
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FIG. 11. Plots of summary histograms for errors in fine-resolution (0.2-µs steps) 
simulations across the entire collection of trials (bottom rows in Fig. 9) for different 
COFs and SNRs. 

 

FIG. 12. Root mean square error (RMSE) in µs versus signal-to-noise level in dB. 
Different curves correspond to different cut-off frequencies in the low pass filter; circles 
correspond to no halfway rectification and no low-pass filtering, i.e. the band-pass filters 
alone are used to create the time-frequency representation. The solid lines in the top part 
of the graph shows the results for a collection of templates generated with coarse 
increments of 2µs in the two-glint separation. The dashed lines in the lower part of the 
graph the case of fine 0.2µs increments. 
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