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Gradient-based optimization of mother wavelets
Nicola Neretti Nathan Intrator

Abstract— We present a general framework for the design
of a mother wavelet best adapted to a specific signal or to
a class of signals. The filter’s coefficients are obtained via
optimization of a smooth objective function. We develop
an unconstrained gradient-based optimization algorithm for
a discrete wavelet transform. The algorithm is extended
to the joint optimization of the mother wavelet and of the
wavelet packets basis.

Keywords— Wavelets, Wavelet Pakets, Filter Banks,
Polyphase Matrix, Lattice Decomposition, Optimization.

I. Introduction

THE general problem we are trying to address is to find
an invertible linear transform L that minimizes an ob-

jective function φ for a specific signal or for a class of sig-
nals. The linear transform depends in general on a set
of parameters, ~p ∈ P ⊂ Rq. Then, for a specific signal
~x = [x0, . . . , xM ]T , the minimum is obtained for:

~po(~x) = argmin~p∈P φ (L~p [~x])

L~p [~x] : RM+1 7→ Rk ,k ≤M + 1

L~p [a~x + b~y] = aL~p [~x] + bL~p [~y]

(1)

For a class of signals, the objective function is redefined
to compute some statistics from the collection of data. We
concentrate on the class of linear transforms known as dis-
crete wavelet transforms.

In is paper we describe a novel optimization for the pur-
pose of wavelet filter decomposition or of more general ba-
sis function decompositions based on wavelet packets. The
optimization is based on the lattice decomposition of filter
banks and leads to a fast unconstrained algorithm.

II. Formulation of the discrete wavelet
transform

In the discrete wavelet transform, a low-pass and a high-
pass filter are applied to the signal, and the output is down-
sampled by two. The high-pass coefficients are retained,
while the process is repeated on the low-pass coefficients,
until the length of the residual signal’s coefficients equals
that of the filter. In order for this transform to be invert-
ible, the filters have to satisfy some constrains. In par-
ticular, orthonormality is required to obtain an orthonor-
mal basis. These constrains can be expressed in different
forms. Exact details of the various forms can be found
in chapter 5 of [1]. Here, in particular, we use two for-
mulations: 1) the time-domain method and 2) the lattice
method. The first approach expresses the constrains di-
rectly on the filters’ coefficients. This leads to a constrained
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optimization algorithm. The second approach is based on
the lattice structure method. With this method it is possi-
ble to reparametrize the coefficients so that the constrains
are automatically satisfied. This leads to an unconstrained
optimization algorithm.

Without loss of generality, we concentrate on wavelet
transforms with periodic boundaries. What follows can be
extended to wavelets with different boundary conditions
(e.g. Appendix C) .

A. The time-domain method

Consider an example which demonstrates how a discrete
wavelet transform is computed and how some constrains
on the filter’s coefficients arise from the orthogonality con-
dition. In what follows, the length of the signals will be
a power of 2. The case of a filter of length 4 acting on a
signal of length 8 is described in detail, as well as gener-
alization to filters of even length. We use a notation from
[1], where signals and filters are indexed from 0 to N , so
that the total length is N + 1.

Let ~x = [x0, . . . , x7]
T be the original signal, c0, . . . c3 and

d0, . . . d3 the low-pass and high-pass filters’ coefficients re-
spectively. After applying the two filters to ~x, the result
is decimated by two. These two operations, application of
the filters and decimation, can be done more efficiently in
a single step. In matrix form they are equivalent to the
following:

[σ0, σ1, σ2, σ3, δ0, δ1, δ2, δ3]
T = C1~x, (2)

where

C1 =



c3 c2 c1 c0 0 0 0 0

0 0 c3 c2 c1 c0 0 0

0 0 0 0 c3 c2 c1 c0

c1 c0 0 0 0 0 c3 c2

d3 d2 d1 d0 0 0 0 0

0 0 d3 d2 d1 d0 0 0

0 0 0 0 d3 d2 d1 d0

d1 d0 0 0 0 0 d3 d2



. (3)

Then the same process is repeated just on the s’s, the low-
pass coefficients:

[Σ0,Σ1,∆0,∆1, δ0, δ1, δ2, δ3]
T

= C2 [σ0, σ1, σ2, σ3, δ0, δ1, δ2, δ3]
T

,

(4)

where
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C2 =



c3 c2 c1 c0 0 0 0 0

c2 c0 c3 c1 0 0 0 0

d3 d2 d1 d0 0 0 0 0

d1 d0 d3 d2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (5)

Combining the two steps together, the transformed sig-
nal ~y is given by:

~y = C~x = C2C1~x, (6)

It is easy to see that when C1 is orthonormal, C2 and
hence C are orthonormal. The condition for orthonormal-
ity are:

c2
0 + c2

1 + c2
2 + c2

3 = 1,
c0c2 + c1c3 = 0, (7)

d2
0 + d2

1 + d2
2 + d2

3 = 1,
d0d2 + d1d3 = 0, (8)

c0d0 + c1d1 + c2d2 + c3d3 = 0,
c0d2 + c1d3 = 0,
c0d0 + c3d1 = 0,

(9)

If the c’s satisfy (7), it is possible to solve all the equa-
tions in (8) and (9) with the following choice:

dk = (−1)kc3−k , k = 0, . . . , 3. (10)

In general, a filter of even length N + 1, acts on a signal
of length M+1, where M+1 is a power of 2. The transform
is given by:

~y = C~x, (11)

where the matrix C is the product of Q orthonormal ma-
trices:

C = CQCQ−1 · · ·C2C1 , Q ≤ Qmax , (12)

where Qmax , the maximum number of decomposition lev-
els allowed, depends on both the length of the signal and
that of the filter (MATLAB notation):

Qmax = floor
(

log2

M + 1
N + 1

)
. (13)

The orthonormality conditions can then be expressed in a
compact form:
• Conditions on the c’s:

N∑
n=2k

cncn−2k = δ(k) , k = 0, . . . , (N − 1)/2 (14)

• Conditions on the d’s:

N∑
n=2k

dndn−2k = δ(k) , k = 0, . . . , (N − 1)/2 (15)

• Relations between the c’s and the d’s:

∑N
n=2k cndn−2k = δ(k) , k = 0, . . . , (N − 1)/2∑N
n=2k cn−2kdn = δ(k) , k = 0, . . . , (N − 1)/2

(16)
The high-pass coefficients can be computed from the low-
pass ones just like in (10):

dk = (−1)kcN−k , k = 0, . . . , N. (17)

With this choice, if (14) is satisfied, then (15) and (16) are.
Thus, summarizing all the constrains on the c’s, we have:

normalization
c2
0 + c2

1 + · · ·+ c2
N = 1

orthogonality
c0c2 + c1c3 + · · ·+ cN−2cN = 0
c0c5 + c1c6 + · · ·+ cN−4cN = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c0cN−1 + c1cN = 0

(18)

B. The lattice method: reparametrization of the filter’s co-
efficients

It is possible to reparametrize the coefficients c0, . . . , cN

so that the constrains in (18) are automatically satisfied.
Starting from the simple case of 4 coefficients, the con-
strains in (7) imply that:

[c0 + c2]
2 + [c1 + c3]

2 = 1, (19)

which is automatically satisfied setting{
c0 + c2 = cos(θ1 + θ2)
c1 + c3 = sin(θ1 + θ2)

(20)

Using the trigonometric addition formulas

cos(α + β) = cos α cos β − sinα sinβ
sin(α + β) = sinα cos β + cos α sinβ

(21)

we get 
c0 = cos θ1 cos θ2

c1 = cos θ1 sin θ2

c2 = − sin θ1 sin θ2

c3 = sin θ1 cos θ2

(22)

It would be natural to extend this procedure to the gen-
eral case. In fact, the orthonormality conditions in (18)
imply that: ( ∑

n even

cn

)2

+

(∑
n odd

cn

)2

= 1, (23)
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so that we can set

∑(N−1)/2
n=0 c2n = cos

(∑(N−1)/2
n=0 θn

)
∑(N−1)/2

n=0 c2n+1 = sin
(∑(N−1)/2

n=0 θn

) (24)

The right-hand side in both the above equations contains
(N +1)/2 terms, but the expansions of the left-hand sides,
obtained using the generalized trigonometric addition for-
mula, contain 2(N−1)/2 terms. Distributing the trigono-
metric monomials to the various filter’s coefficients is not
straightforward. However, this problem can be solved in a
systematic and very elegant way using the lattice factoriza-
tion from the theory of filter banks. In fact, the polyphase
matrix of any two channel orthogonal filter bank can be
factorize as [1] [2] [3]:

H(K)
p = ρ(θ1)Λ(z)ρ(θ2) · · ·Λ(z)ρ(θK) (25)

where ρ(θ) ∈ O(2) and

Λ(z) =
[

1 0
0 z−1

]
. (26)

The factorization of the polyphase matrix leads naturally
to a factorization of the wavelet transform in the time do-
main. This factorization process is illustrated below for a
filter having six coefficients operating on a signal of length
eight. Although illustrated for this example, the process
can be extended to filters of even length and signals of ar-
bitrary length (see Appendices A and C for details).

Equation (25) can be rewritten as:

H(K)
p = H(K−1)

p Λ(z)ρ(θK) (27)

which links the coefficients of a filter of length 2K to those
of a filter of length 2(K−1), and allows an iterative proce-
dure to build a filter of arbitrary lenght. In particular, the
polyphase matrices for filters of length six, four and two
are given by:

H
(3)
p =[
c
(3)
0 + z−1c

(3)
2 + z−2c

(3)
4 c

(3)
1 + z−1c

(3)
3 + z−2c

(3)
5

d
(3)
0 + z−1d

(3)
2 + z−2d

(3)
4 d

(3)
1 + z−1d

(3)
3 + z−2d

(3)
5

]

H
(2)
p =

[
c
(2)
0 + z−1c

(2)
2 c

(2)
1 + z−1c

(2)
3

d
(2)
0 + z−1d

(2)
2 d

(2)
1 + z−1d

(2)
3

]

H
(1)
p =

[
c
(1)
0 c

(1)
1

d
(1)
0 d

(1)
1

]
(28)

where the othonormality is assured for H
(1)
p and all

polyphase matrices derived from it when

H(1)
p = ρ (θ1) =

[
cos θ1 sin θ1

− sin θ1 cos θ1

]
(29)

Thus from equation (27), H
(2)
p is given by:

H(2)
p = H(1)

p Λ(z)ρ(θ2) (30)

which can be written as:[
c
(2)
0 + z−1c

(2)
2 c

(2)
1 + z−1c

(2)
3

d
(2)
0 + z−1d

(2)
2 d

(2)
1 + z−1d

(2)
3

]
=

[
cos θ1 sin θ1

− sin θ1 cos(θ1

] [
1 0
0 z−1

]
×

×
[

cos θ2 sin θ2

− sin θ2 cos θ2

]
(31)

Multiplying the right-hand side and solving for the value
of the various coefficients on the left-hand side can be de-
termined using the reparameterized coefficients directly by
equating powers of z. This leads to:

c
(2)
0 = cos θ1 cos θ2 = c

(1)
0 cos θ2

c
(2)
1 = cos θ1 sin θ2 = c

(1)
0 sin θ2

c
(2)
2 = − sin θ1 sin θ2 = −c

(1)
1 sin θ2

c
(2)
3 = sin θ1 cos θ2 = c

(1)
1 cos θ2

(32)

and similarly for the d’s:

d
(2)
0 = − sin θ1 cos θ2 = d

(1)
0 cos θ2

d
(2)
1 = − sin θ1 sin θ2 = d

(1)
0 sin θ2

d
(2)
2 = − cos θ1 sin θ2 = −d

(1)
1 sin θ2

d
(2)
3 = cos θ1 cos θ2 = d

(1)
1 cos θ2

(33)

These relationships can be rewritten in matrix form as:
c
(2)
3

c
(2)
2

c
(2)
1

c
(2)
0

 =


cos θ2 0
− sin θ2 0

0 sin θ2

0 cos θ2


[

c
(1)
1

c
(1)
0

]
(34)


d
(2)
3

d
(2)
2

d
(2)
1

d
(2)
0

 =


cos θ2 0
− sin θ2 0

0 sin θ2

0 cos θ2


[

d
(1)
1

d
(1)
0

]
(35)

As noted above in equation (27), the next polyphase matrix
H

(3)
p can be found as a function of H

(2)
p . Multiplying the

matrices and equating like powers of z as above yields:

[
c
(3)
5 c

(3)
4 c

(3)
3 c

(3)
2 c

(3)
1 c

(3)
0

]T
=


cos θ3 0 0 0
− sin θ3 0 0 0

0 sin θ3 cos θ3 0
0 cos θ3 − sin θ3 0
0 0 0 sin θ3

0 0 0 cos θ3




c
(2)
3

c
(3)
2

c
(2)
1

c
(2)
0


(36)
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Substituting equation (34) in (36) yields

[
c
(3)
5 c

(3)
4 c

(3)
3 c

(3)
2 c

(3)
1 c

(3)
0

]T
=


cos θ3 0 0 0
− sin θ3 0 0 0

0 sin θ3 cos θ3 0
0 cos θ3 − sin θ3 0
0 0 0 sin θ3

0 0 0 cos θ3

×


cos θ2 0
− sin θ2 0

0 sin θ2

0 cos θ2

[ sin θ1

cos θ1

]
(37)

A similar expression hold for the ds, so that combining the
two together we have

[
c
(3)
5 c

(3)
4 c

(3)
3 c

(3)
2 c

(3)
1 c

(3)
0

d
(3)
5 d

(3)
4 d

(3)
3 d

(3)
2 d

(3)
1 d

(3)
0

]
=

[
sin θ1 cos θ1

cos θ1 − sin θ1

]
×

[
cos θ2 − sin θ2 0 0

0 0 sin θ2 cos θ2

]
×


cos θ3 − sin θ3 0 0 0 0

0 0 sin θ3 cos θ3 0 0
0 0 cos θ3 − sin θ3 0 0
0 0 0 0 sin θ3 cos θ3


(38)

Thus, each coefficient can be found as a function of the
reparameterized angle coefficients. Performing the matrix
multiplication in equation (35) defines each coefficient as a
linear combination of two or more trigonometric functions.
The matrix C1 that performs the first step in the wavelet
cascade of filters is given by

E



c
(3)
5 c

(3)
4 c

(3)
3 c

(3)
2 c

(3)
1 c

(3)
0 0 0

d
(3)
5 d

(3)
4 d

(3)
3 d

(3)
2 d

(3)
1 d

(3)
0 0 0

0 0 c
(3)
5 c

(3)
4 c

(3)
3 c

(3)
2 c

(3)
1 c

(3)
0

0 0 d
(3)
5 d

(3)
4 d

(3)
3 d

(3)
2 d

(3)
1 d

(3)
0

c
(3)
1 c

(3)
0 0 0 c

(3)
5 c

(3)
4 c

(3)
3 c

(3)
2

d
(3)
1 d

(3)
0 0 0 d

(3)
5 d

(3)
4 d

(3)
3 d

(3)
2

c
(3)
3 c

(3)
2 c

(3)
1 c

(3)
0 0 0 c

(3)
5 c

(3)
4

d
(3)
3 d

(3)
2 d

(3)
1 d

(3)
0 0 0 d

(3)
5 d

(3)
4


(39)

where E separates the high-pass coefficients from the low-
pass ones. Plugging (38) into equation (39), C1 can be
decomposed into the product of six matrices:

C1 = ER (θ1)SR (θ2) SR (θ3) (40)

where

R (θj) =



sj kj 0 0 0 0 0 0
kj −sj 0 0 0 0 0 0
0 0 sj kj 0 0 0 0
0 0 kj −sj 0 0 0 0
0 0 0 0 sj kj 0 0
0 0 0 0 kj −sj 0 0
0 0 0 0 0 0 sj kj

0 0 0 0 0 0 kj −sj


(41)

S =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


(42)

and sj = sin θj , kj = cos θj . Notice that R (θj) are rotation
matrices and S is an up-shift matrix. In general, for a filter
of length 2K we have (see Appendix A for more details):

C1 = ER(θ1)SR(θ2)S · · ·SR(θK) (43)

III. Extension to wavelet packets

A library of wavelet packet bases [4] [5] is defined to be
a collection of orthonormal bases composed of functions of
the form Wf (2−sx − p), where s, p ∈ Z, f ∈ N. There-
fore, each basis is determined by a subset of the indices: a
scaling parameter s, a localization parameter p, and an os-
cillation parameter f . These are natural parameters, since
the function Wf (2−sx− p) is roughly centered at 2sk, has
support of size ≈ 2s, and oscillates ≈ f times.

The library can be obtained as follows. A low-pass filter
H and a high-pass filter G are applied iteratively to the sig-
nal (see Figure 1, A). After the first step (second row from
the top), we obtain two different representations of the sig-
nal: an averaged version and a detailed version. Each of
the two representations has a number of coefficients equal
to half the original one. The combination of the two repre-
sents a projection on an orthonormal basis. In the second
iteration, the filters are applied to the two blocks to obtain
a set of four blocks. Again, these new four blocks represent
a projection on a new basis (Figure 1, C). The process is
iterated until we reach blocks containing a single value.

It can be demonstrated that every collection of non-
overlapping blocks that spans the entire length of the sig-
nal is an orthonormal basis. Figure 1 shows examples of
bases that can be extracted. The library contains as a spe-
cial case the standard wavelet basis (B), as well as a basis
whose elements have the same scale (C); other bases can
be extracted (D). The total number of basis functions for
a signal of length n is n log(n), and they can be combined
to create 2n bases.
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Fig. 1. Wavelet packet decomposition tree obtained applying recur-
sively a high-pass filter G and a low-pass filter H (A); discrete wavelet
basis (B); fixed-level wavelet packet basis (C); another wavelet packet
basis (D).

The library of wavelet packet bases can be searched to
find the best basis according to some criterion, for exam-
ple to minimize an objective function. Coifman et al. [4]
showed that, if the objective function is additive a divide
and conquer formulation can be applied to the search, so
that a library of 2n bases can be searched in n log(n).

The wavelet transform formulation in terms of a product
of matrices can be easily extended to compute any basis
in the wavelet packets table. Expression (12) still holds:
Cl, 1 ≤ l ≤ Q is a block matrix; each block corresponds
to either the identity, if that component of the signal is
not decomposed any further, or a wavelet matrix. Equa-
tion (43) provides a factorization for a single step in the
wavelet transform. Putting all the pieces together we ob-
tain a factorization for a generic wavelet packets basis:

C = EQRQ(θ1)SQRQ(θ2)SQ · · ·SQRQ(θK)︸ ︷︷ ︸
CQ

· · ·

· · ·E1R1(θ1)S1R1(θ2)S1 · · ·S1R1(θK)︸ ︷︷ ︸
C1

(44)

IV. Optimization

The formulation given in (44) is very natural for a gradi-
ent optimization. It thus serves our goal to find the optimal
parameterization of the transform given a signal or a class
of signals. This is obtained by minimizing an appropri-
ate objective function. A general procedure for its mini-
mization based on the computation of the derivatives with
respect to the parameters is given below. Due to the linear-
ity of the transform, these derivatives can be expressed in a
simple form. Consider for example the optimization prob-
lem in (1), with ~y = L~p [~x]. The gradient of the objective
function with respect to the parameters of the transform
is:

∇pφ = JT
p∇yφ , (45)

where Jp is the Jacobian of L. For L~p [~x] = C~x

Jp =
[
(∂p1C)~x, (∂p2C)~x, . . . ,

(
∂pqC

)
~x
]

. (46)

An explicit form for the derivatives with respect to the
lattice parameters can be obtained through equation (44):

∂jC(θ1, . . . , θK) =

= (∂jCQ)CQ−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1 +
+ CQ (∂jCQ−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1 +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+ CQCQ−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (∂jC1) =

= ERQ(θ1)SQ · · · ∂jRQ(θj) . . . . . . . . . . S1R1(θK) +
+ ERQ(θ1)SQ · · · · · · ∂jRQ−1(θj) . . . . . S1R1(θK) +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+ ERQ(θ1)SQ · · · · · · · · · · · · ∂jR1(θj) . .S1R1(θK) =

= ERQ(θ1)SQ · · ·RQ(θj + π
2 ) . . . . . . . . S1R1(θK) +

+ ERQ(θ1)SQ · · · · · ·RQ−1(θj + π
2 ) . . .S1R1(θK) +

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+ ERQ(θ1)SQ · · · · · · · · · · · ·R1(θj + π

2 )S1R1(θK)
(47)

where ∂j ≡ ∂
∂θj

, j = 1, . . . ,K, and in the last equality we
used the fact that sin′ θ = cos θ = sin(θ+π/2) and cos′ θ =
− sin θ = cos(θ + π/2).

It is possible to express the above derivative in terms of
rotations of the original angles, making storage and com-
putation more efficient. In fact, the derivative of a rotation
block can be expressed as:

ρ̃ ′(θ) = ρ̃(θ + π/2) =
[

0 1
−1 0

]
ρ̃(θ) , (48)

so that

∂jRl(θj) = DlRl(θj) , (49)

where Dl is a block-diagonal matrix. Then (47) becomes:
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∂jC(θ1, . . . , θK) =

= ERQ(θ1)SQ · · ·DQRQ(θj) · · ·S1R1(θK) +
+ ERQ(θ1)SQ · · · · · ·DQ−1RQ−1(θj) · · ·S1R1(θK) +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+ ERQ(θ1)SQ · · · · · · · · · · · ·D1R1(θj) · · ·S1R1(θK)

(50)
With the appropriate choice of the matrices C1, . . . , CQ,

the above expression allows the computation of the gra-
dient with respect to the lattice angles for any basis in
the wavelet packets table. It is then possible to combine
a best basis algorithm with the optimization of the filters’
coefficients in various ways (e.g. iterative two steps opti-
mization). Moreover, given a basis in the wavelet packet
table, the computation of the transform and of it’s gradient
with respect to the lattice angles can procede in parallel.
Figure 2 shows the filter bank that computes two steps of
the wavelet transform and its gradient for the case of two
lattice angles.

It is possible to add additional contrains to the filter’s
coefficients – for example a certain number of vanishing
moments can be required – but in general this leads to a
constrained optimization. However, it is possible to impose
a zero-mean conidition to the high-pass filter at very little
cost, and recast the optimization into an unconstrained
one. The details for this procedure are given in Appendix
B.

V. Discussion

We have shown that it is possible to find an optimal
mother wavelet with respect to a given objective func-
tion through an unconstrained optimization over a compact
manifold, which guaranties the existence of a minimum.
We explicitely reparametrized the filters’ coefficients using
the lattice decomposition so that the orthogonality con-
strains are automatically satisfied, and derived an expres-
sion for the gradient of the objective function with respect
to the lattice angles. Any gradient based optimization can
then be used to find the optimal solution. We showed
that the framework we have developed is not constrained
to wavelet transforms, but can be extended directly to a
generic wavelet packets’ basis. It is then possible to opti-
mize the specific basis and the filters jointly.

Wavelet design is usually based on the optimization of
wavelets according to some property of the filter itself,
such as stopband attenuation, coding gain, or degree of
smoothness. It has been shown that for some specific ob-
jective function it is convenient to optimize the filters coef-
ficients in the time-domain [6]. This was possible because
the optimization problem could be cast into a quadratic-
constrained least-squares minimization one; moreover, the
optimization was performed on a single step of the trans-
form.

The constrained optimization leads to a polynomial with
a degree proportional to the length of the filter and of the
number of decomposition steps, which is in general linked
to the length of the filter. Thus, realistic filters cannot be

practically optimized due to the roughness of the polyno-
mial error surface.

In our approach, the design is driven by the data them-
selves and the whole cascade of filters is taken into ac-
count. Preliminary work shows that there exist classes of
signals for which the optimal solution is far from the clas-
sical wavelets developed with the above methods.

Furthermore, starting from the lattice formulation, it is
simple to decompose the transform into lifting steps. In
fact, every Givens rotation in the polyphase matrix (25)
can be decomposed into three lifting steps [7]. Thus, once
an optimal set of parameters are obtained through opti-
mization, the corresponding lifting implementation can be
used, making it possible to exploit all the advantages of the
latter formulation.

Appendices

A. Generalization to arbitrary filter and signal
lengths

This section describes how the factorization of the
wavelet matrices can be extended to filters and signals of
arbitrary even length, the length of the signal being a power
of two. First, we rewrite Λ(z) in (26) as:

Λ(z) = A + Bz−1 , (51)

where

A =
[

1 0
0 0

]
, B =

[
0 0
0 1

]
, (52)

and introduce

h
(K)
j =

[
c
(K)
2j c

(K)
2j+1

d
(K)
2j d

(K)
2j+1

]
. (53)

Then we can write the following series expansion of the
polyphase matrix:

H(K)
p = h

(K)
0 + h

(K)
1 z−1 + · · ·+ h

(K)
K−1z

−(K−1). (54)

Case K = 1. This is the trivial case where:

h
(1)
0 =

[
c
(1)
0 c

(1)
1

d
(1)
0 d

(1)
1

]
= ρ1 . (55)

Case K = 2. Equation (25) gives:

h
(2)
0 + h

(2)
1 z−1 = h

(1)
0

(
A + Bz−1

)
ρ2 =

= h
(1)
0 Aρ2 + h

(1)
0 Bρ2z

−1

(56)

which is solved by equating the different powers of z sepa-
rately: {

h
(2)
0 = h

(1)
0 Aρ2

h
(2)
1 = h

(1)
0 Bρ2

(57)
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Fig. 2. Filter bank that computes two steps of the wavelet transform and its gradient for the case of two lattice angles.

or, in matrix form:

[
h

(2)
0 , h

(2)
1

]
= h

(1)
0 [A,B]

[
ρ2 0
0 ρ2

]
. (58)

We introduce a flip operator for 2 by 2 matrices. This
will allow us to build a convolution matrix for a causal FIR
2-filter bank. If

F =
[

0 1
1 0

]
(59)

and V is a 2 by 2 matrix, then Ṽ = V F is obtained by
flipping each row of V , while V̂ = FV is obtained by flip-
ping each column of V . Since F 2 = I, equation (58) can
be rewritten as:

[
h̃

(2)
1 , h̃

(2)
0

]
= h̃

(1)
0

[
B̂, Â

] [
ρ̃2 0
0 ρ̃2

]
. (60)

Based on the preceding decomposition, it is easy to verify
that the following holds:


h̃

(2)
1 h̃

(2)
0

h̃
(2)
1 h̃

(2)
0

. . .

 =


h̃

(1)
0

. . .
h̃

(1)
0

×
 B̂ Â

B̂ Â
. . .

×
 ρ̃2

. . .
ρ̃2



(61)

The left hand side of equation (61) is the matrix that per-
forms one step of the wavelet transform based on a filter
with four coefficients. Moreover, the first matrix in the
right hand side of the same equation is the wavelet matrix
for a transform with filters of length 2.

Generic K. For K angles we have:
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h
(K)
0 + h

(K)
1 z−1 + · · ·+ h

(K)
K−1z

−(K−1) =

=
[
h

(K−1)
0 + h

(K−1)
1 z−1 + · · ·+ h

(K−1)
k−2 z−(K−2)

]
×

×
(
A + Bz−1

)
ρK =

= h
(K−1)
0 AρK +

[
h

(K−1)
0 B + h

(K−1)
1 A

]
ρKz−1 + · · ·

· · ·+ h
(K−1)
K−2 BρKz−(K−1)

(62)

which is true if

[
h

(K)
0 , . . . , h

(K)
K−1

]
=
[
h

(K−1)
0 , . . . , h

(K−1)
K−2

]
×


A B

A B
. . .

A B

×


ρK

ρK

. . .
ρK

 .

(63)

or, equivalently

2×2K︷ ︸︸ ︷[
h̃

(K)
K−1, . . . , h̃

(K)
0

]
=

2×[2(K−1)]︷ ︸︸ ︷[
h̃

(K−1)
K−2 , . . . , h̃

(K−1)
0

]
×


B̂ Â

B̂ Â
. . .

B̂ Â


︸ ︷︷ ︸

[2(K−1)]×2K


ρ̃K

ρ̃K

. . .
ρ̃K


︸ ︷︷ ︸

2K×2K

.

(64)

Using (64) as a building block it is possible to build a
wavelet matrix for a signal of length 2m:

2m×2m︷ ︸︸ ︷
h̃K(K − 1) . . . h̃K(0) 0 . . . . . . . . . . . . . . . . . 0
0 h̃K(K − 1) . . . h̃K(0) 0 . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
h̃K(K − 2) . . . h̃K−1(0) 0 . . . 0 h̃K(K − 1)

 =

=

2m×2m︷ ︸︸ ︷
h̃K−1(K − 2) . . . h̃K−1(0) 0 . . . . . . . . . . . . . . . . . 0
0 h̃K−1(K − 2) . . . h̃K−1(0) 0 . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
h̃K−1(K − 3) . . . h̃K−1(0) 0 . . . 0 h̃K−1(K − 2)

×

×

2m×2m︷ ︸︸ ︷ B̂ Â

B̂ Â
. . .


S

2m×2m︷ ︸︸ ︷
ρ̃K

ρ̃K

. . .
ρ̃K


R(θK)

.

(65)
Notice that the above expression is nothing but a relation

between two wavelet matrices with a different number of
filter parameters. Thus, iterating (65), the first step of a
wavelet transform, i.e. the analogous of matrix C1 in (3),
can be factorized as:

C1 = ER(θ1)SR(θ2)S · · ·SR(θK), (66)

where E separates the high-pass coefficients from the low-
pass ones.

B. Zero-mean filters

It is convenient to require that the mean of the highpass
filter be zero, so that no DC component is passed through
the filter at any time. In the time-domain formulation this
is equivalent to the following:

N∑
n=0

(−1)ncN−n = 0 (67)

The above constrain can be easily translated into the
lattice formulation. In fact, from the two equalities in (24)
we get: ∑N

n=0(−1)ncN−n =

=
∑(N−1)/2

n=0 c2n −
∑(N−1)/2

n=0 c2n+1 =

= cos
(∑K

j=1 θj

)
− sin

(∑K
j=1 θj

)
= 0

(68)

which is true if

K∑
j=1

θj =
π

4
. (69)

The search for the optimal filter coefficients is then a
constrained optimization problem:



9

~θmin = argmin∑K

j=1
θj=π/4

φ (θ1, . . . , θK) (70)

onto the plane defined by (69). It is however very simple to
express the gradient of the objective function on this plane.
Define the objective function on this plane as:

Φ (θ1, . . . , θK−1) = φ

θ1, . . . ,
π

4
−

K−1∑
j=1

θj

 (71)

then its gradient is given by

∇Φ (θ1, . . . , θK−1) =

 1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1

×
×∇φ

(
θ1, . . . ,

π
4 −

∑K−1
j=1 θj

) (72)

C. Boundary filters

Consider the case of a filter with four coefficients. Equa-
tion (38) can be rewritten as:

H2︷ ︸︸ ︷[
c
(2)
3 c

(2)
2 c

(2)
1 c

(2)
0

d
(2)
3 d

(2)
2 d

(2)
1 d

(2)
0

]
=

[
c
(1)
1 c

(1)
0

d
(1)
1 d

(1)
0

]
×

×
[

0 1 0 0
0 0 1 0

]
k2 s2 0 0
−s2 k2 0 0
0 0 k2 s2

0 0 −s2 k2

 =

=

[
c
(1)
1 c

(1)
0

d
(1)
1 d

(1)
0

]
︸ ︷︷ ︸

H1

[
−s2 k2 0 0
0 0 k2 s2

]
︸ ︷︷ ︸

Q2

(73)

with k2
2 +s2

2 = 1. It is easy to verify that H2H
T
2 = I, which

simply expresses the orthonormality of the filters. However
HT

2 H2 6= I in general. In fact:

HT
2 H2 = (H1Q2)

T (H1Q2) =

= QT
2 HT

1 H1Q2 = QT
2 Q2 =

=


−s2 0
k2 0
0 k2

0 s2

[ −s2 k2 0 0
0 0 k2 s2

]
=

=


s2
2 −s2k2 0 0

−s2k2 k2
2 0 0

0 0 k2
2 s2k2

0 0 s2k2 s2
2



(74)

where we used the fact that HT
1 H1 = I. If we define

P2 = I −HT
2 H2 =

=


k2
2 s2k2 0 0

s2k2 s2
2 0 0

0 0 s2
2 −s2k2

0 0 −s2k2 k2
2

 (75)

then

H2P2 = H2 −H2H
T
2 H2 = H2 −H2 = 0 (76)

This means that the columns of P2 are orthogonal to the
original filters in H2. Notice that the first two columns are
linearly dependent, and so are the last two. Thus, we have
two vectors that are orthogonal to the original filters:

~vleft = [k2, s2, 0, 0]T

~vright = [0, 0, s2,−k2]
T (77)

For a filter of length six:

HT
3 H3 = (H2Q3)

T (H2Q3) =

= (H1Q2Q3)
T (H1Q2Q3) =

(
QT

3 QT
2

)
(Q2Q3) =

=


−s3 0 0 0
k3 0 0 0
0 k3 −s3 0
0 s3 k3 0
0 0 0 k3

0 0 0 s3



−s2 0
k2 0
0 k2

0 s2

×

×
[
−s2 k2 0 0
0 0 k2 s2

]
×

×


−s3 k3 0 0 0 0
0 0 k3 s3 0 0
0 0 −s3 k3 0 0
0 0 0 0 k3 s3

 =

=


s2s3 0
−s2k3 0
k2k3 −k2s3

k2s3 k2k3

0 s2k3

0 s2s3

×

×
[

s2s3 −s2k3 k2k3 k2s3 0 0
0 0 −k2s3 k2k3 s2k3 s2s3

]

(78)

which gives
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HT
3 H3 =

s2
2s

2
3, −s2

1s3k3, s2k2s3k3, s2k2s
2
3, 0, 0

−s2
2s3k3, s2

2k
2
3, −s2k2k

2
3, −s2k2s3k3, 0, 0

s2k2s3k3, −s2k2k
2
3, k2

2, 0, −s2k2s3k3, −s2k2s
2
3

s2k2s
2
3, −s2k2s3k3, 0, k2

2, s2k2s3k3, s2k2s
2
3

0, 0, −s2k2s3k3, s2k2k
2
3, s2

2k
2
3, s2

2s3k3

0, 0, −s2k2s
2
3, s2k2s3k3, s2

2s3k3, s2
2s

2
3


(79)

A matrix whose columns are orthogonal to the original
filters can again be obtained as:

P3 = I −HT
3 H3 =

1− s2
2s

2
3, s2

1s3k3, −s2k2s3k3, −s2k2s
2
3, 0, 0

s2
2s3k3, 1− s2

2k
2
3, s2k2k

2
3, s2k2s3k3, 0, 0

−s2k2s3k3, s2k2k
2
3, s2

2, 0, s2k2s3k3, s2k2s
2
3

−s2k2s
2
3, s2k2s3k3, 0, s2

2, −s2k2s3k3, −s2k2s
2
3

0, 0, s2k2s3k3, −s2k2k
2
3, 1− s2

2k
2
3, −s2

2s3k3

0, 0, s2k2s
2
3, −s2k2s3k3, −s2

2s3k3, 1− s2
2s

2
3


(80)

This time, the first two columns of P3 – and the last
two as well – are linearly independent. Every linear com-
bination will still be orthogonal to the filters. If we de-
note the first column of HT

3 H3 as ~u, the first two columns
of P3 can be rewritten as ~v1 = [1, 0, 0, 0, 0, 0]T − ~u and
~v2 = [0, 1, 0, 0, 0, 0]T + k3/s3 ~u respectively. Then

~vleft = k3~v1 + s3~v2 = [k3, s3, 0, 0, 0, 0]T (81)
is orthogonal to the filters. The same argument can be ap-
plied to the last two columns obtaining another orthogonal
vector:

~vright = [0, 0, 0, 0, s3,−k3]
T (82)
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