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Adaptive Pulse Optimization for Improved
Sonar Range Accuracy

Nicola Neretti, Nathan Intrator, and Leon N Cooper

Abstract—Using the theory of optimal receivers, the range accu-
racy of echolocating systems can be expressed as a function of pulse
bandwidth and SNR through the well-known Woodward equation.
That equation, however, was developed in the limit of very high
SNRs and assumes that the correct peak of the cross-correlation
function is known a priori. In this letter, we show that for increasing
levels of noise, the accuracy of the cross-correlation receiver under-
goes a sharp transition from the Woodward equation for a coherent
receiver to a modified Woodward equation for a semicoherent re-
ceiver. Since this transition appears at different SNRs for pulses
with different center frequencies and bandwidths, it is possible to
choose the optimal pulse for any given SNR. We show that the
adaptive method we propose outperforms the classical cross-cor-
relation receiver for low SNRs. The same ideas can be applied to
the case of a fixed broadband signal, by performing the cross cor-
relation at the receiver end separately in a set of frequency bands
with the appropriate center frequencies and bandwidths.

Index Terms—Adaptive sonar, matched filter, noise, optimal
receiver, range accuracy.

I. INTRODUCTION

THE THEORY OF optimal receivers studies the design
of pulses and receivers to obtain optimal detection in

the presence of noise. Considerable work on the theoretical
accuracy of range measurements has been done in the past,
and the Woodward equation has been derived using different
methods. A comprehensive description can be found in [1].
However, it appears that interest in the mathematical aspects of
the derivation of that equation has faded [2], while its use has
become a standard in the field. In this letter, we show that the
validity of this equation depends on various assumptions, in
particular the assumptions of very low SNRs; therefore, it must
be reexamined for the case of low SNRs. The theory of optimal
receivers shows that the matched filter receiver maximizes the
output peak-signal-to-mean-noise (power) ratio [2], [3], and
is the optimum method for the detection of signals in noise.
Information about the distance of the target is extracted by
computing the time at which the cross correlation between the
echo and a replica of the pulse is a maximum. This delay is
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converted into a distance by means of the sound velocity in the
particular medium in consideration (e.g., water or air). This
type of receiver is generally referred to as a coherent receiver.

The classical theory of optimal receivers describes the range
accuracy of a sonar system via the well-known Woodward equa-
tion, which can be derived by using a variety of methods [1],
[4]–[7]. However, all of them rely upon the common crucial as-
sumption of a large SNR, which implies a priori knowledge of
the location of the central lobe in the cross-correlation function.
For small SNRs, one of the parameters in the classical equa-
tion—i.e., the bandwidth—has to be modified, and the receiver
is then called semicoherent. In this letter, we show that the tran-
sition between the two types of behaviors occurs at different
SNRs, depending on characteristics of the pulses such as band-
width and center frequency. With this observation, we devise
a novel system based on an adaptive choice of the pulse; this
can improve accuracy in the case of relatively low SNR, when
ambiguity in the choice of the correct peak of the cross-correla-
tion function cannot be avoided. This method can be generalized
to the case of a fixed broadband pulse. In this case, both pulse
and echo can be passed through a set of filters with appropriate
center frequencies and bandwidths, and cross correlation can be
performed separately in each frequency band.

II. WOODWARD EQUATION

If we define to be the pulse sent by the sonar and
to be the echo coming from a target at a distance , then

, where , is the sound velocity in the
particular medium in consideration (e.g., water or air), and
is generally white noise. The cross correlation between pulse
and echo can be expressed as

(1)

where the first term in the sum is the autocorrelation function
of the pulse centered at , and the second term is band-lim-
ited white noise, with frequency limits defined by the spectrum
of the pulse. In the absence of noise, only the first term sur-
vives, and the distance from the target can be computed from the
delay in time corresponding to the maximum of the cross-cor-
relation function. When the noise level is sufficiently low, its
effect is to jitter the position of the maximum around the true
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Fig. 1. Effect of noise level on the accuracy of the temporal measurement for
pulses with the same bandwidth and different center frequencies. (Solid line)
Smallest f . (Dotted line) Intermediate f . (Dashed line) Largest f . (a) Delay
estimate error with no peak ambiguity (high SNR). (b) Delay estimate error due
to peak ambiguity (low SNR).

value of the delay . To a first approximation, the jitter can
be related to the width of the central peak in the autocorre-
lation function, which is a function of the signal’s bandwidth
and center frequency [Fig. 1(a)]. By using a rigorous argument
based on the concept of inverse probability due to Woodward
[6], it is possible to demonstrate that the standard deviation of
the location in time of the maximum around the true value is

. In this formula, is the root mean
square (RMS) bandwidth of the pulse and is defined as

, where is the power spectral

density of the pulse, and the SNR is a function
of the ratio between the total energy of the echo (measured
in watts), and the spectral density of the noise [measured
in watts per hertz equals watts per second ( )].
In the case of uniform Gaussian noise with variance , the
spectral density of the noise sampled at a rate can be ex-
pressed as . The SNR is usually expressed in
decibels as . Notice that the RMS band-
width can be written as , where

is the center frequency of the signal, and

is the centralized
RMS (CRMS) bandwidth. When the center frequency is much
larger than the CRMS bandwidth (a condition which is gener-
ally satisfied for radar), then .

The above description corresponds to the case of a coherent
receiver. Such a receiver computes the cross-correlation func-
tion of the pulse and the echo and estimates echo delay as the
time corresponding to the maximum peak in the fine structure
of the cross-correlation function. An alternative type of receiver,
the semicoherent receiver, estimates echo delay as the time cor-
responding to the maximum of the envelope of the cross-corre-
lation function between the pulse and the echo. For the semico-
herent receiver, delay accuracy can be expressed by modifying
the Woodward equation by substituting the signal CRMS band-
width to the RMS bandwidth, so that .

III. SNR BREAKPOINT

Uncertainty in the delay estimate increases with noise. For
relatively low levels of noise, the time jitter falls within the cen-
tral peak of the autocorrelation function and is inversely pro-
portional to the SNR. However, when the noise level becomes
comparable to the difference in amplitude between the center
peak and the first side lobe, ambiguity in the choice of the cor-
rect peak arises. Fig. 1 illustrates the effect of the noise level
on the accuracy of the temporal measurement. Fig. 1(a) shows
a detail of the autocorrelation function in the neighborhood of
the central peak for three pulses with the same bandwidth and
different center frequencies. The jitter in amplitude introduced
by the noise is translated into a jitter in time that is controlled by
the width of the central peak: the higher the center frequency, the
smaller the jitter in time. However, when the noise level is of the
order of the difference between the amplitude of the central peak
and the first side lobe, the situation is reversed [Fig. 1(b)]. In
fact, the difference in amplitude is smaller for higher center fre-
quencies, so that signals with high center frequencies are more
susceptible to peak ambiguity.

To study the effect of increasing levels of noise as a function
of signal CRMS bandwidth and center frequency, we ran a set of
Monte Carlo simulations. The pulses we considered are cosine
packets of the form ,
where is the center frequency, controls the spread in
time of the pulse and its frequency bandwidth, and is
a normalization factor such that . This
signal can be used without loss of generality. Analogous results
would be obtained using different types of pulses with the
same center frequencies and CRMS bandwidths used in our
simulations. In each simulation, white noise is added to the
pulse to generate an echo, and the delay estimate is computed as
the time corresponding to the maximum amplitude in the cross
correlation between pulse and echo. In each set of simulations,
200 realizations of the noise were generated. Different sets
corresponded to pulses with different center frequencies and
CRMS bandwidths. Fig. 2(a) shows the RMS error (RMSE)
computed using the Monte Carlo simulations, for a fixed
center frequency and CRMS bandwidth. Confidence intervals
have been computed through bootstrapping, by sampling
with replacement from the empirical distribution of the delay
estimates obtained from the simulation. For high SNRs (region
IV), performance is in accordance with the standard Woodward
equation for the coherent receiver. As the SNR decreases,
the performance shows a sharp transition (region III) to the
modified version of the Woodward equation, corresponding to
the semicoherent receiver (region II). For very low levels of
SNR (region I), the intensity of the noise is so high that the
accuracy rapidly decreases to zero. This behavior is common to
all pulses. However, the transition region is different according
to the center frequency and CRMS bandwidth [Fig. 2(b) and
(c)]. Fig. 2(b) shows the RMSE of the delay estimates as a
function of SNR in decibels (SNR ) and CRMS bandwidth,
for a fixed center frequency. For high SNRs, all signals follow
the standard Woodward equation [Fig. 2(a)]. As the SNR
decreases, signals with lower CRMS bandwidths are affected
by peak ambiguity first, and their performance degrades to
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Fig. 2. Results of the Monte Carlo simulations. (a) RMSE of the delay estimates for a fixed center frequency and CRMS bandwidth. (b) RMSE as a function of
SNR in decibels and CRMS bandwidth, for a fixed center frequency. (c) RMSE as a function of SNR in decibels and center frequency, for a fixed CRMS bandwidth.
(d) Optimal performance curve obtained through this adaptive method.

that of a semicoherent receiver. Signals with larger CRMS
bandwidths are more resilient to peak ambiguity and continue
to perform according to the standard Woodward equation for
even lower SNRs. The breaking point for each signal is marked
with a square.

Fig. 2(c) shows the case of a fixed CRMS bandwidth and
different center frequencies. For high SNRs, all signals follow
the standard Woodward equation [Fig. 2(a)]. As the noise level
increases, signals with higher center frequencies are affected by
peak ambiguity first, and their performance degrades to that of
a semicoherent receiver. Signals with lower center frequencies
are more resilient to peak ambiguity and continue to perform
according to the standard Woodward equation for lower SNRs.

IV. PULSE OPTIMIZATION

The above simulations show that the performance of the
receiver degrades from coherent to semicoherent as the SNR

decreases. Pulses with different center frequencies and CRMS
bandwidths undergo this transition at different levels of noise,
such that for each SNR it is possible to find an optimal pulse
with respect to the RMSE of the delay estimate. Ideally, the
larger the CRMS bandwidth, the higher the accuracy that can be
achieved. However, in a realistic system, only a limited range
of frequencies is available to both the pulse and the receiver.
This limitation introduces an upper bound for both the pulse’s
center frequency and CRMS bandwidth.

For a given SNR and bandwidth, there exists an optimal signal
in terms of RMSE of the delay estimate, i.e., the signal with
the highest center frequency that has not yet been affected by
ambiguity (its RMSE is enclosed in a square). Fig. 2(d) shows
the optimal performance curve obtained through the adaptive
method, when the maximal CRMS bandwidth allowed is the
same for all pulses. Three regions can be identified. For high
SNR (region III), the RMSE follows the Woodward equation
corresponding to the maximum center frequency allowed; this
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limitation is a direct consequence of the limited frequency avail-
able to the system (87 kHz in this example). For intermediate
SNR values (region II), high accuracy can be achieved adapting
the system to use the pulse with the highest center frequency that
has not yet been affected by ambiguity. As the SNR decreases,
the choice falls onto pulses with decreasing center frequencies,
hence decreasing accuracies. When the value of the optimal
pulse’s center frequency is of the order of the common CRMS
bandwidth, the RMSE curve crosses the Woodward equation
curve corresponding to the semicoherent receiver. For lower
values of SNR (region I), the intensity of the noise is so high
that the accuracy rapidly decreases to zero.

The pulse optimization algorithm we propose is based on the
adaptation of the pulse center frequency to the operating noise
level. The constraints on the pulse’s bandwidth and frequency
range generate a plot like the one in Fig. 2(c), where the SNR
breakpoints for different center frequencies are shown. Then,
for a given SNR, we choose the pulse with the highest center
frequency that has not yet been affected by ambiguity.

V. CONCLUSION

We show that for increasing levels of noise the accuracy of
the range estimate undergoes a sharp transition from the Wood-
ward equation for a coherent receiver to a modified Woodward
equation for a semicoherent receiver, due to ambiguity in the
choice of the correct peak of the cross correlation between pulse
and echo. We find that the breakpoint appears for lower SNRs

in pulses with lower center frequencies and larger CRMS band-
widths, so that it is possible to optimize the pulse for a given
SNR. The accuracy of the adaptive method we propose is equal
to that of a coherent receiver for high SNRs, but significantly
better for lower SNRs, since peak ambiguity is removed by the
optimal choice of the pulse. The same ideas can be extended to
the case of a fixed broadband signal, by performing the cross
correlation at the receiver end separately in a set of frequency
bands with the appropriate center frequencies and bandwidths.
While the Woodward equation is not derived for the case of non-
additive (such as reverberation) noise, the proposed method of
estimating the effect on the cross-correlation function should
still be applicable. This will be tested in future simulations.
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