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1 Introduction

The relevance of information theory to neural networks has become more apparent in recent years.
This theory has become important in analysing and understanding the nature of the neuronal code

that is relayed between cortical layers and the nature of the learning goals that guide neuronal
learning and synaptic modification. The rapid advance in recent years of single and multiple

electrode recording as well as other non-invasive techniques provides a window on neuronal activity
and synaptic modification. However, the puzzle is still unsolved; we do not know what are neuronal

learning goals, how they are being incorporated and most importantly, what is the nature of the
neuronal code and how it is being formed and interpreted by successive layers.

When we try to understand the nature of synaptic learning rules, we should be concerned with

possible goals that may underly synaptic changes. It is conceivable that knowing what could be
a useful goal under different input environments could serve for distinguishing between synaptic

plasticity theories. Only after this distinction between goals is indicated, can one continue further
and distinguish between learning rules aimed at achieving the same objective, on the basis of their

detailed mathematical properties, or computational complexity etc. In this paper, we concentrate
on the analysis of different neuronal goals and attempt to provide an update on the current related

issues and future directions.

2 Brief review on information theory

Information theory was developed about 50 years ago for the study of communication channels

(Shannon, 1948). Shannon considered information as a loss of uncertainty and gave a definition
as a function of the probability distribution of the code-words. If for example, the probability

distribution P (X) is concentrated on a single value, then the information we can transmit when
choosing values from this distribution is zero since we always transmit the same value. Thus, the

amount of information is a function of the variability of the distribution and actually the exact
shape of the distribution. This quantity which we denote by H(X) should satisfy an additivity
constraint which states that when two random variables are independent, the information contained
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in both of them should be the sum of the information contained in each of them, namely

P (X1, X2) = P1(X1)P2(X2) ⇒ H(X1, X2) = H(X1) + H(X2). (1)

Shannon has shown that the only function that is consistent with this condition and with few

other simple constraints is the Boltzmann entropy of statistical mechanics.1 The entropy2 in the
continuous and discrete cases respectively is given by:

H(X) = −

∫
P (x) logP (x)dx, H(X) = −

K∑
i=1

p(xi) log p(xi), (2)

where p(xi) is the probability of observing the value xi out of a possible K discrete values of the

random variable X . An intuitive way to look at this function is by considering the average number
of bits that is needed to produce an efficient code; It is desirable to use a small number of bits for

sending those words that appear with high probability, and use larger number of bits for sending
words that appear with lower probability. In the special case of n words arriving at the same

probability, the number of bits that are required for each word is log2 n.
Shannon formulated this idea for the problem of information flow through a bottleneck, having

to optimize the code so as to send the smallest number of bits on average. This led to questions
such as how does the receiver, given the transmitted information only, maximize his knowledge

about the data available at the sender side. For our purpose, we formulate the mutual information
idea in terms of a neural network of a single layer. Let di ∈ Rn be an input vector to the network
occurring with a probability distribution Pd, and let ci ∈ Rk be the corresponding k-dimensional

network activity with its probability distribution Pc. The relative entropy or the Kullback Leibler

distance between the two probability distributions is defined as3

D(Pd ‖ Pc) =
∑
di

Pd(di) log
Pd(di)

Pc(ci)
= EPd

[log(Pd)− log(Pc)]. (3)

Consider now the joint probability distribution of the input and output random variables P (d, c)
such that Pd and Pc are the corresponding marginal distributions. The mutual information I(d, c)

is the relative entropy between the joint distribution and the product distribution, namely,

I(d, c) = D(P (d, c) ‖ P (d)P (c))

=
∑
di

∑
cj

P (di, cj) log
P (di, cj)

P (di)P (cj)

=
∑
di

∑
cj

P (di, cj) log
P (di|cj)

P (di)

= H(d)− H(d|c). (4)

Additional properties4 of mutual information can be found in (Cover and Thomas, 1991).

1E. T. Jaynes has demonstrated the connection between information theory, statistics and statistical mechanics in
two papers from 1957 (Jaynes, 1957a; Jaynes, 1957b) which are also in a forthcoming book about his work (Jaynes,
1999).

2In information theory, it is customary to neglect the Boltzmann constant which sets up the units correctly, and
to use the logarithm of base 2 so that the information is measured in bits.

3Note that this is not symmetric and does not satisfy the triangle inequality.
4Note that by symmetry I(d,c) = H(c) − H(c|d), and I(d,c) = H(c) + H(d) − H(d, c).
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By maximizing the mutual information, we effectively minimize H(d|c) namely we reduce the
uncertainty about the input d by knowing the output c. Thus, given a constrained situation where

the output c carries less data than the input d, information theory tells us what the optimal output
should be for a given input so as to have, on average, maximal knowledge about the input. Synaptic
modification rules can be derived from solving the mutual information maximization problem under

various assumptions about the probability distribution of input words. The solution to such learning
rules is based on gradient ascent or a more sophisticated optimization algorithm, e.g., conjugate

gradient.

2.1 Distributions that maximize entropy under various constraints

When we observe a certain distribution, it is natural to ask if this distribution represents a re-

dundant coding or does it maximize entropy under certain constraints. In some cases we may
be interested to recover the constraints under which the distribution maximizes the entropy. In

this section we mention some of the most common constraints and the distributions which are
naturally connected with these constraints. Entropy maximization, or as it is sometimes called

the MAXENT principle, is a powerful statistical inference tool; Given a certain set of constraints
on a random variable, it suggests the only possible underlying distribution for the process. If the

observed distribution is different, this implies that there are additional or different constraints gov-
erning the process. An excellent review with connection to statistical mechanics can be found in
(Jaynes, 1957a) or in his forthcoming book (Jaynes, 1999). Applications of this inference tool are

many, see for example (Skilling, 1989).

Bounded distributions The uniform distribution maximizes the entropy of a random variable
with bounded values. Note that when discritizing a r.v., its distribution becomes automatically

bounded, but it is the non-discritized distribution which governs the process, thus, we would expect
a maximal entropy distribution of 8 bit gray level pictures to have a Gaussian and not a uniform

distribution.

Positive valued random variables Distributions that take only positive values or more gen-
erally, are bounded from below, are a special important case as they include for example to distri-

butions of spike counts over a certain measurement window. It turns out that under mean value
constraint the Poisson distribution maximizes the entropy. Under a variance constraint (of positive

valued distribution) the Gibbs distribution maximizes the entropy. This distribution occurs often
when a non-negative functional (also called an Energy or a Hamiltonian) can be associated with

a configuration state of a physical system. A famous example is the annealing process (Brillouin,
1956) and a numerical algorithm called simulated annealing (Kirkpatrick and Jr., 1983; Geman
and Geman, 1984).

Fixed variance constraint Under a fixed mean and variance and no bounds on the values the
random variable, the Gaussian distribution maximizes the entropy. This makes a strong connection
between minimizing entropy and searching for distributions that are far from Gaussian. It also

shows that a linear layered networks receiving Gaussian distributed inputs should extract the
projections which maximize the variance, namely find the principal components of the data in

order to maximize the entropy of the projections.
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3 The statistics of natural images and optimal retina-cortex maps

A coding scheme which generates a probability distribution that is different from the one that

maximizes entropy under the appropriate coding constraints is said to be redundant. It is thus
natural to study the signal distribution at various information junctions in the brain and determine
the rate of redundancy of code at those locations. The first place to start in the visual pathway is of

course the images themselves. It was demonstrated recently (Ruderman, 1994) that the single log
intensity of pixel distribution of a small collection of natural images is not Gaussian. indicates that

the multi-dimensional distribution of pixel images is not Gaussian, since otherwise, every (linear)
projection (including single pixel projections) should have been Gaussian. Ruderman suggests a

transformation of the pixel intensity, based on its local variance, which makes the new distribution
Gaussian. While the optimality of such a transformation is demonstrated from information theory

considerations, the biological basis of such transformation has yet to be found.
Atick and Redlich (1992) hypothesis that the main goal of retinal transformations is to eliminate

redundancy in input signals, particularly that due to pairwise correlations among pixels (second
order correlation). Their discussion of the optimal response of Ganglion cells is motivated by
information maximization.

Field (1987) suggests an interesting match between the spectrum of natural images, and the
log polar mapping from retina to cortex. Based on a small number of images, he observes

that the power spectrum goes down like 1/f2 where f is the frequency of the changes of grey
level in the image. Assuming that the coding is done similarly in each of the frequency bands,

this implies that differently frequency bands do not carry the same amount of information, thus,
leading to suboptimal coding of the information. He suggests that log polar retinotopic mapping,

in which, the bandwidth of each frequency band is a fraction of the central frequency, causes each
frequency band to carry the same amount of information, and is thus, optimal from information

theory view point. More recently Field suggested that the redundancy can be utilized to produce a
more constant response from highly varying spectra that is frequency dependent (Field and Brady,
1997).

Linsker (1986) had presented a set of equations stemming from a simple Hebbian rule with the
addition of some weight constraints for stability, as a framework for synaptic modification in early

layers of visual cortex. The neuronal goal was to maximize the mutual information between the
inputs and outputs of each layer in his network. He showed that on/off cells, simple and some types

of complex cells could emerge from this goal.
The above examples hypothesise that the goal of neuronal learning and data relay

maybe to reduce redundancy and transfer a non-Gaussian distribution into a Gaussian
one or to utilize the redundancy to gain other desired properties such as sensitivity

to varying spatial frequency. So far, we have not seen a reduction in the amount of
information relay, but merely a recoding that makes the code more efficient. We now
turn to methods that actually attempt to reduce the amount of relayed-information

by extracting important information (based on some criteria to be discussed) and
ignoring the rest. These methods actually emphasize the parts of the data that are

not Gaussian in a manner that is described below.
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4 Minimal description length

We have seen how information theory can suggest an optimal coding c for a given input d based on

the probability distribution of the inputs. In this case, only the resulting code is being transmitted
through the bottleneck transmission line to the receiver which then tries to reconstruct the inputs.
This formulation does not take into account the complexity of the code that is being sent, and the

complexity of constructing or decoding this code. A different information theoretic formulation,
which is more appropriate for supervised learning, does take the above considerations into account.

This formulation is based on the minimal description length principle (Rissanen, 1984) which states
that the way to choose a better model for the data is by minimizing concurrently the cost of

describing the model and the cost of describing the misfit between the model and the data. In terms
of the information bottleneck that we have described before, we can view the current situation as if

there is a teacher and student network, and the teacher is trying to send to the student the network
to solve a certain problem. Under a supervised setup, the assumption is that both the student and

teacher can see the input data (zero cost) but only the teacher knows what the output should be.
For the student to reconstruct the output, he would need to have a good model (network) namely
small misfit between network output and desired output and for a quick learning, the model should

be simple. Both these properties can be measured by the entropy of sending the information about
data misfit and about the model. In classical information theory it is often assumed that the cost of

learning a model can be neglected as learning takes place only once while data is sent continuously,
however when modeling learning, it is clear that the cost of learning plays an important role and

should not be neglected. It remains to be see whether measuring the model (or learning) cost using
the cost of sending the model parameters (entropy of the weight distribution) would turn out to be

a useful constraint and a useful neuronal learning goal.
Note that measuring model cost by the entropy of its parameters, may be radically different

than measuring model cost by the actual or effective number of parameters, as has been proposed
before (Akaike, 1974; Moody, 1992).

5 Projection pursuit and cortical plasticity

While we have so far discussed maximization of entropy under various conditions it turns out that
sometimes minimization of the entropy is sought. This occurs when a classification is sought,

when we want the output to have little ambiguity, when searching for independent components
(Comon, 1994) and most notably, when looking for structure in the data by searching for interesting

projections. It is due to the central limit theorem which says that given a list of independent
random variables with the same distribution, their mean is normally distributed. Thus, a random
projection of a high dimensional data would yield a single dimensional Gaussian distribution unless

there is a strong dependency between the projection vector and the data. Similarly, in the case of
independent components, the linear summation of sources makes the resulting data more Gaussian

than the original data and thus, to recover the original data, one has to search for largest deviations
from Gaussian distribution which is done by minimizing some approximation to the entropy. A

general framework that is useful for the above examples is exploratory projection pursuit (Friedman,
1987) and its supervised version, the projection pursuit regression (Friedman and Stuetzle, 1981).

Projection pursuit (PP) methods seek features which emphasize the non-Gaussian nature of
distributions (Huber, 1985, for review). They seek structure that is exhibited by (semi) linear
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projections of the data. The relevance to neural network theory is clear, since the activity of a
neuron is largely believed to be a semi linear function of the projection of the inputs on the vector of

synaptic weights. Diaconis and Freedman (1984) have shown that for most high-dimensional clouds
(of points), most low-dimensional projections are approximately Gaussian. This finding suggests
that important information in the data is conveyed in those directions whose single dimensional

projected distribution is far from Gaussian. Polynomial moments are good candidates for measuring
deviation from Gaussian distribution, for example, skewness and kurtosis which are functions of

the first four moments of the distribution, are frequently used in this respect.
Intrator and Cooper (1992) have shown that a BCM neuron can find structure in the input

distribution that exhibits deviation from Gaussian distribution in the form of multi-modality in the
projected distributions. Since clusters can not be found directly in the data due to its sparsity, this

type of deviation, which is measured by the first three moments of the distribution, is particularly
useful for finding clusters in high dimensional data and is thus useful for classification or recognition

tasks.

6 Summary

We have demonstrated the important role of information theory in conveying information through-

out visual cortex. We have presented cases in which information theory considerations led people
to seek methods for Gaussianizing the input distribution, and in other cases led people to seek

learning goals for non-Gaussian distributions. We have presented the MDL principle as a goal
for learning which takes into account the complexity of the decoding network, and have presented

projection pursuit methods as a framework for seeking projections that are far from Gaussian
(minimize entropy).
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