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Abstract

We study the statistical properties of a BCM neuron whose synapses are stimulated by inputs
described as a stationary Markov process. We characterize the stable equilibria for the average
equations of the synaptic weights as the maxima of a cubic function, associated to the third
moments of the inputs distribution, constrained on an ellipsoid defined by the inputs covariance
matrix. We do this approach to study the selectivity of a BCM neuron when the input signals
are perturbed by a random noise as a function of the noise Root Mean Square (RMS) and the
dimension of the input space. We prove the existence of critical values for the noise RMS which
define the selectivity properties of the BCM neuron.

Introduction

The BCM theory of cortical plasticity has been introduced by Bienenstock, Cooper and Munro
[Bienenstock et al., 1982] to account for the changes observed in cell response of visual cortex
due to changes in visual environment. This learning model allows modeling and theoretical
analysis of various visual deprivation experiments such as monocular deprivation (MD), binoc-
ular deprivation (BD) and reversed suture (RS) [Intrator and Cooper, 1992] and is in agree-
ment with the many experimental results on visual cortical plasticity [Clothiaux et al., 1991,
Shouval et al., 2000]. More recently it was shown that the so called ¢ function and its sliding
threshold 6, a nonlinear function of the past neuronal history, support the framework of bidirec-
tional synaptic plasticity. In particular the BCM theory [Bear et al., 1987] becomes consistent
with two forms of neuronal plasticity observed in hippo-campus; the Long Term Depression
(LTD) and the Long Term Potentiation (LTP) if the threshold is related to the calcium entry
through the NMDA receptors. A laterally connected network of BCM neurons shows structural
properties that are in good agreement with the columnar organization of visual cortex. A vari-
ant of this theory [Intrator and Cooper, 1992] supports an energy functional minimization and
performs exploratory projection pursuit using a projection index that seeks for multi-modality
in data distributions. More precisely, the average behavior of BCM neuron is characterized by
the stationary points of an ”energy” function that compares the third moments of the output of
the neuron with the square of the second moments. This variant has been used in visual cortical
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modeling [Shouval et al., 1996, Shouval et al., 1997, Blais et al., 1998] and in real-world high
dimensional classification applications, e.g. :  [Intrator and Gold, 1993]
[Reisfeld and Yeshurun, 1992],[Huynh et al., 1998]. The analysis performed in [Intrator and Cooper, 1992]
characterized the solution of n linearly independent vectors in an n dimensional space. It further
showed that for sufficiently small Gaussian noise around each of the independent inputs, the
solution of n clusters is close to the solution of the linearly independent case. Further analysis
[Castellani et al., 1999] characterized the solution in the case of a laterally interacting network.
This paper extends earlier analysis [Intrator and Cooper, 1992, Castellani et al., 1999] to the
more general case of inputs distributions. In particular, it characterizes sufficient conditions
on the noise so that the solution of a system of n linearly independent inputs with additional
additive noise is “close” to the solution characterized by the non-noisy system. It further charac-
terizes the noise properties as a function of the dimensionality of the system, and concludes that
when the noise is bounded by O(n'/%), the solution of the non-noisy system fully characterizes
the solution of the clustered situation. In simple words, we show that due to the inherent spar-
sity of high-dimensional spaces, the case of n linearly independent input vectors, with additive
Gaussian noise, becomes more realistic as the dimensionality of the systems becomes large and
the linear independent case is a reasonable approximation. For this analysis, we develop a new
method to compute the solutions and their stability. This method, in the case of a bimodal
distribution, gives a closed relation for the two peaks discrimination depending on parameters
like variance of each peak and peaks distance of the input distribution. The generalization to a
multi-modal distribution follows in a natural way from the bidimensional case. We also discuss
the average behavior of a network of connected BCM neurons.

Our method can be applied to study the selectivity property of a BCM neuron as a function
of the second and third moments of the input distribution.

The paper is organized as follows:

1) in section 1 we develop a general method to compute the average equilibrium solutions of
a BCM neuron and their stability;

2) in section 2 we discuss the explicit case of a bimodal distribution in the plane;

3) in section 3 we study the equilibrium solution of a BCM neural network.

1 BCM Neuron as Feature Detector

We consider the evolution of the synaptic weights m € IR™ of a BCM neuron which is stimulated

by the external signal d(¢). We assume that d(t) is described by a stationary Markov process
[J.L.Doob, 1953] whose covariance matrix and cubic moments are given by

where E[ | denotes the expectation value with respect to the probability distribution of the
external signal. We consider the neuron in the linear approximation so that the activity z is
defined 2 = 17 - d. According to the BCM theory, the time evolution of the weights m are given
by the equation )

m=xz(z—0d mdelR" (2)

where 0 is a threshold that depends on the past activity of the neuron; when the input signal
is a stationary stochastic process, 6 can be defined as E[z?] [Intrator, 1990]. We describe the
mean evolution of the weights m by averaging the equations (2)

Tfli = E[Z’2d¢] — QE[Z'CZZ] = Bijkmjmk — CklmkmlC’ijmj (3)



Bazzani et al. The Diminishing Effect of Noise in BCM Neuron

This approximation is correct if the input signal z(¢) has a fast decaying correlation between the
past history and the future [Khas’minskii, 1966]. The average BCM equations can be written
in the covariant form m = 0€/0n if one introduces the "energy” [Intrator and Cooper, 1992]

2
Bijkmimjmk (Cwm,mj)

£= 3 T4 )

The study of the existence and the properties of critical points of the energy (4) could be not
an easy task therefore we propose to simplify the problem by relating the existence of stable
fixed point for the system (3) to the existence of local maxima of a cubic function constrained
on an ellipsoid in the IR™ space. The main idea is to write the system (3) in the base of the
eigenvectors of the covariance matrix C' and to show that the nontrivial fixed points correspond
to the critical points of the cubic function f(y) = (Bijryiy;yk)/3, ¥ € IR™ constrained on the
ellipsoid

1911 = Ay =1 ()

where A is the diagonal form of the covariance matrix. Moreover the stable fixed points are
related to the local maxima of the cubic function f(¢). The detail of the proof are reported in
Appendix 1.

2 Analysis of single neuron behaviour

We shall apply the previous method to some explicit cases in order to point out the main
properties and limits of the statistical analysis of the input space performed by a BCM neural
network. To simplify the calculations, we do not consider the most general case but the results
are completely generic. First we show how the selectivity of a BCM neuron is recovered by our
approach. Let us consider a BCM neuron which is stimulated by n linearly independent vectors
U, € R™ k =1, ..,n; the input signal is defined

d=" & (6)
k=1

where 5 is a random vector which take the values on the canonical base é; of IR"™ with equal
probability. The covariance matrix reads

¢ = ; ; E{&k&n 00} = % ];16k17k (7)

Since we can always perform the ortogonal change of variables that reduces the matrix (7) to a
diagonal form on the initial vectors v}, without loss of generality we assume from the beginning
that the covariance matrix has a diagonal form A and that the eigenvalues of C' scale like 1/n
as a function of the number of degrees of freedom. Then we compute the cubic defined by the

third order moments .

@) =5 D) geR” Q
k=1

According to the results of the previous section the existence of stable fixed points for the BCM
average equation is related of the existence of local maxima of the cubic (8) constrained on the
ellipsoid

> Ny =1 9)
=1
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where ); are the eigenvalues of the covariance matrix. This problem can be easily solved if we
introduce the new variables ' = v/A7 and the vectors @, = vV A=1%}, so that the cubic (8) reads

@) =5 S )’ (10)

k=1

N

and 3/ are defined on the unit sphere. In Appendix 2 we show that the cubic (10) has always n

local maxima on the unit sphere that are defined by the dual base of the vectors ¥, In such a case

the BCM neuron has a complete selectivity for the space of initial inputs [Castellani et al., 1999].
Let us generalize the previuos model by adding a noise 7 to the input signal according to

d= ngﬁk + 17 (11)
k=1

where 77 is a vector of independent gaussian variables with E[7] = 0 and E[7?] = o2/nI (I is
the identity n x n matrix). We remark that the total noise variance 0 does not depend on the
number n of the degrees of freedom; as a consequence the noise level on each components scales
as 1/n. In this way, the ratio between the norm of the signal and the norm of the noise (S/N
ratio) is independent of the dimensionality. The eigenvalues of the correlation matrix have the
same scaling law 1/n as a function of the number of degrees of freedoms. A straightforward
calculation shows that the covariance matrix reads

3

1 = 2
=S G+ =1 (12)
et n

The matrix (12) has the same eigenvectors as the matrix (7) with eigenvalues Ay + 0?/n. The
equilibrium points are the critical points of the cubic

F) = 23 (7 st S~ (13)
Y 3n L~ vk Y kaln)\j—l-ch

defined on the unit sphere. To simplify the calculations we assume that the eigenvalues of C are
all equal to (1 + ¢2)/n. Then the cubic (13) reads

)= 53 @ e+ 2w ) (14

In Appendix 2, we show that the the approximation of the n dimensional noisy system to a
system of n linearly independent neurons holds when the noise does not grow faster than

n
2n—1

This is due to the strong law of large numbers which implies that the effect of the noise is
averaged over all dimensions. points; if ¢ > o, the BCM neuron looses its selectivity since the
fixed points move into the complex space. Consider now the effect of noise when the eigenvalues
of the correlation matrix are all equal to 1/n + o2 except for the last one A, = (A + ¢2)/n. In
such a case the cubic (14) reads

Oc =

(15)

1 n
1723—”2 )

k=1
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o2 Lo n—l_ﬂ/2 1+0_2 L
3 W ) ;(yj) + 35 ) (16)

We discuss the existence of local maxima on the unit sphere in Appendix 2. For a fixed value
of X there is a critical value of o for the existence of n local maxima of the cubic (16) on the
unit sphere.

In the first case A\ = .5 we see that for all n the critical value decreases with respect to
o. and we loose the selecticity for the v, vector; moreover the scaling law with n seems to be
different and we do not improve the critical values o, increasing n as in the case (15). In the
second case A = 2 we still have a decreasing of the critical value with respect to o except for
n < 4 where an increase is observed; in such a case we loose the selectivity for the vectors v
k =1,...,n— 1. The initial behaviour can be explained because for A > 1 we have a bigger
signal and the selectivity of BCM neuron is enforced, but when n increases the presence of an
eigenvector of the covariance matrix (12) with a big eigenvalue decreases the selectivity of the
BCM neuron with respect to the other eigenvectors. The scaling law with n appears to be the
same as in the first case.

3 Extension to BCM Neural Network

We consider a network of M N-dimensional neurons which are connected by synapses whose
weights are given by a symmetric matrix L. The evolution of the weights i, of the r-neuron is

My = xp(@r —0:)d  r=1,...,N (17)

where the output z,. of the r-neuron is defined x, = m,. - d+ L,sxs , 6, is the threshold of the
r-neuron (6, = E[z2]). We assume that L is time-independent and that the matrix I — L can
be inverted. As a consequence the outputs x, can be written in the form

Ts = DgpMiy - J (18)

where we have defined the matrix A = (I — L)™'; A turns out to be positive defined. If we
introduce the modified weights 7] = A,smis and we average the equations (17) on the space of
input signals, the evolution equations read

Ty = A (B2 — (17, Cl,) i) (19)

where C and B are defined by eq. (1).
The equations (19) can be written in a covariant form m/, = A,;0E/0m, where the energy £ is

Bijemigmigmy,  (mlCrnml, )?
& = J sk sl~in'"sn 20

4

Therefore we can compute the equilibrium solutions of the network by using the same procedure
as for the single neuron. The equilibrium solutions correspond to the equilibria of a single BCM
neuron and the whole network has 2¥™ — 1 nontrivial equilibria.

It is not difficult to prove that the stable equilibria are the direct product of the stable solutions
of the single neuron equations. Therefore a network of M N-dimensional neurons has N stable
equilibria.

Finally we remark that the effect of the connections between the different neurons is contained
in the matrix A that can change the relative stability between the different solutions. More
precisely when the weights L are positive the solutions where all the neurons are in the same
state turns out to be more stable (i.e. the corresponding eigenvalues of the linearized equations
are bigger in absolute value) than the solutions where the neurons are in different states.
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4 Conclusions

This paper continues earlier analysis of the BCM neuron and shows that a system with n linearly
independent cluster centers and addiditive gaussian noise is governed by analysis of the (simple)
case of n linearly independent input vectors. This holds for noise levels on the order of n'/?
and implies that when the neuron dimensionality grows, the analysis of the linearly independent
case become more appropriate for a larger class of clustered inputs. The mathematical tools
which were introduced here, were able to characterize the dependency for a network of neurons
and are not limited to Gaussian distributions only, but to general distributions which have the
same covariance structure.
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Appendix 1

We study the existence of stable equilibrium for the average BCM equation (3). It is convenient
to write the equation (3) in the base of the eigenvectors of the matrix C'. Let O be the orthogonal
matrix which diagonalizes the correlation matrix according to A = OCOY, where A is a diagonal
matrix. We define the new synaptic weights @ = Onmi. The energy (4) takes the form

Bt (wAw)?

€= 4

(21)

and the averaged equations read )
w = i — A ]| (22)

where (3 are the cubic moments of the new inputs Od and ||]|2 = WA is the metric defined
by the correlation matrix. We observe that if an eigenvalue of the correlation matrix is zero the
corresponding weight is constant since the r.h.s. of eq. (22) is zero too. Then we can reduce
the dimensionality of the system (22) and without loss of generality we assume [[]] = 0 if and
only if «f = 0.

The equilibrium solutions are defined by the equations

i — Aad|w]|* = 0 (23)

Since we are interested in the non-trivial solutions of system (23), it is convenient to use the
following Lemma I: »
A vector w* is a non-trivial solution of the system (23) if and only if ¥* = ”gﬁ” where y* is a
non-trivial solution of the system

Bif = Ay (24)
We observe that by definition ||| = 1/||n*|| and that the equation (24) has a covariant form
0E /0y = 0 if we introduce the reduced energy

(25)

Then we prove the Proposition I:

let us consider the homogeneous cubic function f(7) = (34°/3 defined on a n-dimensional
ellipsoid || #]|?> = r, then each stationary point #* of f(%) corresponds to a non-trivial equilibrium
solution of the system (23) w* = 3f(7*)/rtg*
Proof
By using the method of the Lagrange multipliers, we introduce the new function

F() = £(§) — 27> = r?) (26)
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where v is a real parameter. Then the stationary points of f(7) are given by the equation

oF B OF 1, 0 o
o7 By — Ay > 2(Ilyll %) =0 (27)

If * is a solution of eqs. (27), then ~r? = 3f(¥*) and w* = ~/r? * turns out to be a solution
of eq. (23). In particular if we choose r = 1 and scale the variables according to gj’ = VA-1y,
the existence of fixed directions for the BCM equation (3) is related to the stationary points of
a homogeneous cubic function f (?j') on the unit sphere.

In a non-degenerate situation the system (24) has 2™ — 1 non-trivial solutions, which corre-
sponds to the maximum number of non-trivial equilibria of a BCM neuron with n synapses. In
this case we observe that the cubic function f(y) has 2(2™ — 1) critical points on a sphere due
to the ambiguity in the choice of the sign of the stationary points.

The stable equilibrium solutions are the maxima of the energy function (4). To study the
stability of the fixed points we linearize the eqs. (23) around an equilibrium solution w* by
introducing the variables dw = w — w™*. The leading terms of eq. read

0w = 20w* 6 — ASw|| |2 — 200" (@ - 6%) + Bow? + O(||6w||?) (28)

We study the stability of the fixed point «* by considering the time derivative of ), dw} which
corresponds to a Ljapounov function for the system (28).
We distinguish the cases @* = 0 and @* # 0. In the first case eq. (28) reduces

o = Bowsw (29)

so that the trivial solution is always unstable along the directions 6w which satisfy f(dw) > 0.
In the second case we introduce the vector 7* = */||w*||? and the stability depends on the

eigenvalues of the symmetric matrix
S =20y — A —2|l0*||*(Ay*)? (30)

The following Lemma II holds:
The equilibrium solution w* is stable if and only if the matrix S is negative definite in the linear
space tangent to the ellipsoid

19117 = 1/]|@"| (31)
at the point y*.
Proof
Using eq. (24), we get by a direct calculation Sy* = —Ay*.We decompose any vector

according to dw = dw* + §U where dw* is parallel to ¥ and 0¥ belongs to the tangent space of
the ellipsoid (31) at the point ¥* (i.e. dUAy* = 0). The stability of the equilibrium solution w*
is a consequence of the inequality

SWSSW = — || 6w ||* 4 20W* S6% + 6TS6T < 0 N (32)
According to our hypothesis we have
dw*Sév o 2" By v — 3y AT =0 (33)

Therefore the inequality 607500 < 0 V 64 is a necessary and sufficient condition for the stability.
As a consequence we have Proposition II:

Let @w* a nontrivial equilibrium position of the system (23), if the eigenvalues of the reduced
symmetric matrix

S =287 — A (34)
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defined on the tangent space of the ellipsoid (31) at the point * o w*, are all negative then w*
is a stable equilibrium. . .

By a straightforward calculation one can see that *S7* = ||7*||?, so that the matrix S at
the stable equilibrium solutions y* without any restriction has n — 1 negative eigenvalues and
1 positive eigenvalue. Then due to topological reasons [J.Milnor, 1958] the number of stable
solutions among the 2" — 1 equilibria are at most n, that corresponds to the case of maximal
selectivity of the BCM neuron. We observe that the matrix S is the Hessian matrix of the reduced
energy function (25). By using the previous arguments as a Corollary to the Proposition I we
get:

the equilibrium solution ¢* of the system (28) defines a stable direction if and only if it is a
local maximum of the cubic f(7) = 872 /3 on the ellipsoid ||7] = 1.

Appendix 2

We compute the local maxima of the cubic function

@) =5 S )’ (35)

k=1

where ¢ is defined on the unit sphere of IR". We introduce the new variables ¢, = ¢ - 7, that
are related to the output of the BCM neuron. We remark that there exists an invertible linear
relation between the ¢ and the 7 variables since we have assumed that the initial vectors v}, are
independent. Moreover it is straigthforward to check that Y, ¢; = n. In the ¢ variables the
cubic (10) has the simple form

1 n
=3 (36)
k=1

constrained on the unit sphere. Let us suppose that ¢, # 0, then by differentiating eq. (36) we

get the system

22 0 k=tl.n-1 Im_ @ (37)

2
c +
Jdey, cn,
Therefore the critical points with ¢, # 0 are computed by the system

cr(ey —cn) =0 k=1,..,n—1 (38)

It is easy to check that equation (38) defines an unique local maximum ¢y =0fork=1,...,n—1
and ¢, = 1 which corresponds to the choice of synaptic weights that select the n-th input vector
¥p. The neuron output c¢; for all the other input vectors is zero. The other local maxima can
be computed in the same way.

According to eq. (14), the effect of a gaussian noise added to the input vectors under the
hypothesis that the correlation matrix is proportional to the identity reduces to a problem of
studying the critical points

I .
= -2 [0’ +36°(F - )] (39)
k=1
constrained on the unit sphere where
2
f— (40)
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Introducing the variables ¢, = ' - ¥}, the equation (39) reads
1 ¢ 2 2
flu) = o ;f’“ (ck +35%) (41)

with the constraint Y, ¢ = n/(1 + no?) We again assume ¢,, # 0 and consider the effect of
noise on the selectivity property of the n-th input vector. If we differentiate eq. (41) we get the
system

(cnck — 62)(ck —cn) =0 k=1,..,n-1 (42)

If ¢, < ¢, we have a local maximum at ¢, = &2 /cn, where

n 1 /1 n—1
Cp = m \/54‘ Z —(11—2)0'4 (43)

In the limit ¢ — 0 this solution converges towards a stable solution ¢y =0 for k =1,....,.n—1
and ¢, = n. It follows that when the noise o reaches the critical value

n
2vn —1

the solution moves into the complex space. Beyond the critical value (44) the BCM neuron is
no more able to develop selectivity for the n-th input vector.

Oc =

(44)
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