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Abstract. To learn a visual code in an unsupervised manner, one may
attempt to capture those features of the stimulus set that would con-
tribute significantly to a statistically efficient representation (as dictated,
e.g., by the Minimum Description Length principle). Paradoxically, all
the candidate features in this approach need to be known before statis-
tics over them can be computed. This paradox may be circumvented
by confining the repertoire of candidate features to actual scene frag-
ments, which resemble the “what+where” receptive fields found in the
ventral visual stream in primates. We describe a single-layer network that
learns such fragments from unsegmented raw images of structured ob-
jects. The learning method combines fast imprinting in the feedforward
stream with lateral interactions to achieve single-epoch unsupervised ac-
quisition of spatially localized features that can support systematic treat-
ment of structured objects [1].

1 A paradox and some ways of resolving it

It is logically impossible to form a principled structural description of a visual
scene without prior knowledge of related scenes. Adapting an observation made
by R. A. Fisher, such knowledge must, in the first instance, be statistical. Several
recent studies indeed showed that subjects are capable of unsupervised acquisi-
tion of statistical regularities (e.g., conditional probabilities of constituents) that
can support structural interpretation of novel scenes composed of a few simple
objects [2, 3]. Theoretical understanding of unsupervised statistical learning is,
however, hindered by a paradox perceived as ”monstrous and unmeaning” al-
ready in the Socratic epistemology: statistics can only be computed over a set of
candidate primitive descriptors if these are identified in advance, yet the identi-
fication of the candidates requires prior statistical data (cf. [4]).1

Figure 1 illustrates the paradox at hand in the context of scene interpretation.
To decide whether the image on the left is better seen as containing horses
(and riders) rather than centaurs requires tracking the representational utility
of horse over a sequence of images. But for that one must have already acquired



the notion of horse — an undertaking that we aimed to alleviate in the first
place, by running statistics over multiple stimuli. In what follows, we describe
a way of breaking out of this vicious circle, suggested by computational and
neurobiological considerations.

Fig. 1. An intuitive illustration of the fundamental problem of unsupervised discovery
of the structural units best suited for describing a visual scene (cf. Left). Is the being
in the forefront of this picture integral or composite? The visual system of the Native
Americans, who in their first encounter reportedly perceived mounted Spaniards as
centaur-like creatures (cf. [5], p.127), presumably acted on a principle that prescribes
an integral interpretation, in the absence of evidence to the contrary. A sophisticated
visual system should perceive such evidence in the appearance of certain candidate
units in multiple contexts (cf. Middle, where the conquistadors are seen dismounted).
Units should not have to appear in isolation (Right) to be seen as independent.

1.1 Computational considerations

The choice of primitives or features in terms of which composite objects and
their structure are to be described is the central issue at the intersection of
high-level vision and computational learning theory. Studies of unsupervised
feature extraction (see e.g. [6] for a review) typically concentrate on the need for
supporting recognition, that is, telling objects apart. Here, we are concerned with
the complementary need — seeking to capture commonalities between objects —
which stems from the coupled constraints of making explicit object structure, as
per the principle of systematicity [1], and maintaining representational economy,
as per the Minimum Description Length (MDL) principle [7].

One biologically relevant representational framework that aims for system-
aticity while observing parsimony is the Chorus of Fragments (CoF [8, 1]). In the
CoF model, the graded responses of “what+where” cells [9, 10] coarsely tuned
both to shape and to location form a distributed representation of stimulus
structure. In this paper, we describe a method for unsupervised acquisition of
“what+where” receptive fields from examples.



Fig. 2. The challenge of unsupervised learning of shape fragments that could be useful
for representing structured objects is exemplified by this set of 80 images, showing
triplets of Kanji characters. A recent psychophysical study [3] showed that observers
unfamiliar with the Kanji script learn representations that capture the pair-wise con-
ditional probability between the characters over this set, tending to treat frequently
co-occurring characters as wholes. This learning takes place after a single exposure to
the images in a randomly ordered sequence.

To appreciate the challenges inherent in the unsupervised structural learning
task, consider the set of 80 images of triplets of Kanji characters appearing in
Figure 2. A recent psychophysical study showed that observers unfamiliar with
the Kanji script learn representations that capture subtle statistical dependen-
cies among the characters, after being exposed to a randomly ordered sequence
of these images just once [3]. When translated into a constraint on the functional
architecture of the CoF model, this result calls for a fast imprinting of the feed-
forward connections leading to the “what+where” cells. Another requirement,
that of competition among same-location cells, arises from the need to achieve a
sufficient diversity of the local shape basis. Finally, cooperation among far-apart
cells, seems to be necessary to detect co-occurrences among spatially distinct
fragments.



The latter two requirements can be fulfilled by lateral connections [11] whose
sign depends on the retinotopic separation between the cells they link. Although
lateral connections play a central role in many approaches to feature extraction
[6], their role is usually limited to the orthogonalization of the selectivities of
different cells that receive the same input. In one version of our model, such short-
range inhibition is supplemented by longer-range excitation, a combination that
is found in certain models of low-level vision (see the review in [11]). These lateral
connections are relevant, we believe, to the understanding of neural response
properties and plasticity higher up in the ventral processing stream, in areas V4
and TEO/TE.

1.2 Biological motivation

We now briefly survey the biological support for the functional model proposed
above.

– Joint coding of shape and location information. Cells with “what+where”
receptive fields, originally found in the prefrontal cortex [9], are also very
common in the inferotemporal areas [10].

– Lateral interactions. The anatomical substrate for the lateral interactions
proposed here exists in the form of “intrinsic” connections at all levels of the
visual cortical hierarchy [12]. Physiologically, the “inverted Mexican hat”
spatial pattern of lateral inputs converging on a given cell, of the kind used
in our first model (described in section 2.1) is consistent with the reports of
selective connections linking V1 cells with like response properties (see, e.g.,
the chapter by Polat et al. in [11]). The specific role of neighborhood (lateral)
competition in shaping the response profiles of TE neurons is supported by
findings such as that of selective augmentation of neuron responses by locally
blocking GABA, a neurotransmitter that mediates inhibition [18].

– Fast learning. Fast synaptic modification following various versions of the
Hebb rule [13], which we used in one of the models described below, has been
reported in the visual cortex [14] and elsewhere in the brain [15]. Evidence
in support of the biological relevance of the other learning rule we tested,
BCM [16] is also available [17].

2 Learning “what+where” receptive fields

Intuitively, spatial (“where”) selectivity of the “what+where” cell can be pro-
vided by properly weighting its feedforward connections, so as to create a window
corresponding to a fragment of the input image; shape (“what”) selectivity can
then be obtained by fast learning (ultimately from a single example) that would
create, within that window, a template for the stimulus fragment. The networks
we experimented with consisted of nine groups of such cells, arranged on a loose
grid (Figure 3, left). In the experiments described here the networks contained
either 3 or 8 cells per location. Each cell saw the entire input image through



a window corresponding to the cell’s location; for reasons of biological plausi-
bility, the windows were graded (Gaussian; see Figure 4, left). Results obtained
with the two learning rules we studied, of the Hebbian and BCM varieties, are
described in sections 2.1 and 2.2, respectively.
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Fig. 3. Left: the Hebbian network consisted of groups of “what+where” cells arranged
retinotopically, on a 3 × 3 loose grid, over the input image. Each cell received the
160× 160 “retinal” input, initially weighted by a Gaussian window (Figure 4, left). In
addition, the cells were fully interconnected by lateral links, weighted by a difference
of Gaussians, so that weights between nearby cells were inhibitory, and between far-
apart cells excitatory (Figure 4, right). Right: a numerical solution for the feedforward
connection weight w(t) given a constant input x = 1, with the learning rate ε (left
pane) and w(0) (right pane) varying in 10 steps between 0.1 and 1 (see eqns. 1 and 2).

2.1 Hebbian learning

For use with the Hebbian rule, the “what+where” cells were fully interconnected
by lateral links with weights following the inverted Mexican hat profile (Figure 4,
right). Given an input image x, the output of cell i was computed as:

yi = tanh(c+)
c+ = c sign(c)
c = (x.wi +

∑
j 6=ivijyj)− θ

θ(t) = 0.5(max{c(t− h), . . . , c(t− 1)} −min{c(t− h), . . . , c(t− 1)}) (1)

where wi is the synaptic weight vector, θ(t) is a history-dependent threshold
(set to the mean of the last h values of c), vij = G(dij , 1.6σ) − G(dij , σ) is the
strength of the lateral connection between cells i and j; G(x, σ) is the value at x
of a Gaussian of width σ centered at 0 (the dependence of v on d is illustrated
in Figure 4, right).



Fig. 4. Left: the initial (pre-exposure) feedforward weights constituting the receptive
field (RF) of the cell in the lower left corner of the 3×3 grid (cf. Figure 3). The initial RF
had the shape of a Gaussian whose standard deviation was 40 pixels (equal to the retinal
separation of adjacent cells on the grid). The centers of the RFs were randomly shifted
by up to ±10 pixels in each retinal coordinate according to a uniform distribution. The
Gaussian was superimposed on random noise with amplitude uniformly distributed
between 0 and 0.01. Right: the lateral weights in the Hebbian network, converging on
the cell whose initial RF is shown on the left, plotted as a function of the retinotopic
location of the source cell.

The training consisted of showing the images to the network in a random
order, in a single pass (epoch), as in the psychophysical study [3]. Each input was
held for a small number of “dwell cycles” (2-5), to allow the lateral interactions
to take effect. In each such cycle, the feedforward weights wmn for pixels xmn
were modified according to this rule:

wmn(t+ 1) = wmn(t) + η(yxmn(t)wmn(0)− y2wmn(t)) (2)

In this rule, the initial (Gaussian) weight matrix, w(0), determines the effec-
tive synaptic modification rate throughout the learning process. To visualize the
dynamics of this process, we integrated eq. 2 numerically; the results, plotted in
Figure 3, right, support the intuition just stated. Note that eq. 2 resembles Oja’s
self-regulating version of the Hebbian rule, and is local to each synapse, hence
particularly appealing from the standpoint of biological modeling. Note also that
the dynamic nature of the threshold θ(t) and the presence of a nonlinearity in
eq. 1 resemble the BCM rule of [19].

The receptive fields (RFs) of the “what+where” cells acquired in a typical
run through a single exposure of the Hebbian network to a randomly ordered
sequence of the 80 images of Figure 2, are shown in Figure 5. Characters more
frequent in the training set (such as the ones appearing in the top locations in
Figure 2) were generally the first to be learned. Importantly, the learned RFs
are relatively “crisp,” with the template for one (or two) of the characters from
the training data standing out clearly from the background. Pixels from other
characters are attenuated (and can probably be discarded by thresholding). A
parametric exploration determined that (1) the learning rate η in eq. 2 had to



Fig. 5. The receptive fields of a 72-cell Hebbian network (8 cells per location) that has
been exposed to the images of Figure 2. Each row shows the RFs formed for one of the
image locations.

be close to 1.0 for meaningful fragments to be learned; (2) the results were only
slightly affected by varying the number of dwell cycles between 2 and 20; (3) the
formation of distinct RFs for the same location depended on the competitive
influence of the lateral connections.

To visualize concisely the outcome of 20 learning runs of the network (equiv-
alent to running an ensemble of 20 networks in parallel), we submitted the
resulting 1440 RFs (each of dimensionality 160 × 160 = 25600) to a k-means
routine, set to extract 72 clusters. Among the RFs thus identified (Figure 6),
one finds templates for single-character shapes (e.g., #1, 14), for character pairs
with a high mutual conditional probability in the data set (e.g., #7), an occa-
sional “snapshot” of an entire triplet (#52), as well as a minority of RFs that
look like a mix of pixels from different characters (#50, 51). Note that even these
latter RFs could serve as useful features for projecting the data on, given the
extremely high dimensionality of the raw data space (25600).

The MDL and related principles [20, 7] suggest that features that tend to co-
occur frequently should be coded together. To assess the sensitivity of our RF
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Fig. 6. The 72 RFs that are the cluster centroids identified by a k-means procedure in
a set of 1440 RFs (generated by 20 runs of a 3 × 3 × 8 Hebbian network, exposed to
the images of Figure 2. See text for discussion.

learning method to the statistical structure of the stimulus set, we calculated
the number of RFs acquired in the 20 learning runs, for each of the four kinds of
input patterns whose occurrences in Figure 2 were controlled (for the purposes
of an earlier psychophysical study [3]). The patterns could be of “fragment” or
“composite” kind (consisting of one or two characters, respectively), and could
belong to a pair that appeared together always (conditional probability of 1) or in
half of the instances (CP = 0.5). The RF numbers reflected these probabilities,
indicating that the algorithm was indeed sensitive to the statistics of the data
set.

To demonstrate that the learning method developed here can be used with
gray-level images of 3D objects (and not only with binary character images), we
ran a 27-unit network (3 cells per location) on the 36 images of composite shapes
shown in Figure 7, top. As with the character images, the network proved capable
of extracting fragments corresponding to meaningful parts (Figure 7, bottom;
e.g., #1, 19) or to combination of such parts (e.g., #4, 13).



Fig. 7. Fribbles. Top: 36 images of “fribbles” (composite objects available for download
from http://www.cog.brown.edu/∼tarr/stimuli.html. Bottom: fragments extracted from
these images by a 3× 3× 3 Hebbian network of “what+where” cells.

2.2 BCM learning

The second version of the model learned its RFs by optimizing a BCM objec-
tive function [16] using simple batch-mode gradient descent with momentum.
The total gradient was computed as a weighted sum of the gradient contribu-
tions from the feedforward BCM learning rule, a lateral inhibition term, and the
norm of the weights. The lateral inhibition pattern was uniform: activations were
inhibited by a constant sum of the activations of the other neurons. A sigmoidal
transfer function (tanh) was then applied to this modified activation in order to
prevent individual activations from growing too high. The limiting value of this
nonlinearity controls the minimal probability of the event to which a neuron



Fig. 8. The receptive fields of a 72-cell BCM network (8 cells per location) that has
been exposed to the Kanji character images of Figure 2.

becomes selectively tuned [16]. By limiting the activation to about 10, events
with probability of about 1/10 could be found (without this step, each neuron
would eventually converge to one of the individual inputs).

The activity of neuron k in the BCM network is ck = x.wk, where wk is
its synaptic weight vector. The inhibited activity of the k’th neuron and its
threshold are:

c̃k = ck − η
∑
j 6=k

cj Θ̃kM = E[c̃2k] (3)

where E[·] denotes expectation. When the nonlinearity of the neuron is included,
the inhibited activity is given by: c̃k = tanh(ck − η

∑
j 6=k cj), and the learning

rule becomes:



Fig. 9. The receptive fields of a 72-cell BCM network (8 cells per location) that has
been exposed to the fribble images of Figure 7.

ẇk = µ

E [φ(c̃k, Θ̃kM )σ′(c̃k)x
]
− η

∑
j 6=k

E
[
φ(c̃j , Θ̃jm)σ′(c̃j)x

]− λ‖wk‖ (4)

where σ′ is the derivative of tanh, φ(c, θ) .= c(c − θ) [16]; µ and η are learning
rates, the last term is the weight decay, and λ is a small regularization param-
eter determined empirically. Note that the lateral inhibition network performs
a search of k-dimensional projections jointly; thus may find a richer structure,
which a stepwise approach might miss [21].

The RFs learned by a 72-cell (3×3×8) BCM network are shown in Figures 8
and 9. As with the Hebbian network, individual characters and fribble fragments
were picked up and imprinted onto the RFs of the neurons.

To compare the performance of the two biologically motivated statistical
learning methods to a well-known benchmark, we carried out an independent
component analysis (ICA) on the fribble image set, asking for 27 components.



Although it is not clear a priori that the existing ICA algorithms are suitable for
our extremely high-dimensional learning problem, pixels belonging to distinct
parts of the fribble objects are statistically independent and should be amenable
to detection by ICA. The first 9 of the components extracted by a publicly
available implementation of ICA are shown in Figure 10. By and large, these are
not nearly as localized as the components learned by the Hebbian and the BCM
methods, suggesting that their use as structural primitives would be limited.
A full, quantitative investigation of the utility of distributed representations
employing Hebbian, BCM and ICA features is beyond the scope of the present
study.

Fig. 10. The first 9 of 27 independent components extracted from the
fribbles image set (36 vectors of dimensionality 25600) by FastICA
(http://www.cis.hut.fi/projects/ica/fastica/, courtesy of A. Hyvärinen); we used
symmetrical decorrelation, 100 iterations, and the default settings for the other
parameters.

3 Discussion

The unsupervised acquisition of meaningful shape fragments from raw, unseg-
mented image sequences exhibited by our networks is made possible by two of
their properties: (1) fast feedforward learning, and (2) lateral interactions. In the
Hebbian case, these characteristics are crucial: learning must be fast (it occurs
within a single epoch, or, if the learning constant is too low, not at all), and the
lateral interactions must combine local competition (to keep the representation
sparse) with global cooperation (to capture sufficiently large chunks of objects).
A parallel can be drawn between our space-variable lateral/Hebb rule and the
use of lateral inhibition for feature decorrelation in unsupervised learning in
general (e.g., [22, 19, 16]). The “lateral” interactions in algorithms such as the
extended BCM [16] are not normally described in spatial terms. Interestingly,
experience with our BCM implementation indeed suggests that lateral interac-
tions incorporated into it need not be spatially variant to ensure useful behavior.
An inquiry into the role of these parameters in learning spatial structure across
multiple scales is currently under way in our lab.

Our models learn to find structure in raw images residing in a very high-
dimensional space, which makes the problem extremely difficult [19]; yet, pre-
senting the images in register with each other obviates the need to tolerate



translation, making the task much easier. In a more realistic setting, the learning
would occur over base representations that are both more stable under stimu-
lus transformations such as translation, and have lower dimensionality than the
raw images. A biologically plausible modification to our models along these lines
would involve feeding them the output of a simulated primary visual cortex,
including simple, complex and hypercomplex cells, and employing space-variant
resolution. Other challenges for the future include deriving our Hebbian learning
rule from an objective function formulated from first principles such as MDL,
and making its lateral interactions more realistic, e.g., by letting the network
learn the strength of the lateral connections, perhaps using the same Hebbian
mechanism as in the feedforward pathway. In the meanwhile, our results show
that the paradox of unsupervised statistical learning can be circumvented: mean-
ingful fragments of visual structure can be picked up from raw input by a joint
application of computational and biological principles.

Notes
1The sense of paradox is well captured by the following passage from Plato’s Theaete-

tus (360BC), in which Socrates points out the circularity in treating syllables as com-
binations of letters, if the latter are to be defined merely as parts of syllables:

Soc. ... there is one point in what has been said which does not quite satisfy
me.

The. What was it?
Soc. What might seem to be the most ingenious notion of all: - that the elements

or letters are unknown, but the combination or syllables known [...] can
he be ignorant of either singly and yet know both together?

The. Such a supposition, Socrates, is monstrous and unmeaning.
Soc. But if he cannot know both without knowing each, then if he is ever to

know the syllable, he must know the letters first; and thus the fine theory
[that there can be no knowledge apart from definition and true opinion]
has again taken wings and departed.

The. Yes, with wonderful celerity.
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