
LETTER Communicated by Robert Jacobs

Boosted Mixture of Experts: An Ensemble Learning Scheme

Ran Avnimelech
Nathan Intrator
Department of Computer Science, Sackler Faculty of Exact Sciences, Tel-Aviv Univer-
sity, Tel-Aviv, Israel

We present a new supervised learning procedure for ensemble machines,
in which outputs of predictors, trained on different distributions, are com-
bined by a dynamic classifier combination model. This procedure may be
viewed as either a version of mixture of experts (Jacobs, Jordan, Nowlan,
& Hinton, 1991), applied to classification, or a variant of the boosting al-
gorithm (Schapire, 1990). As a variant of the mixture of experts, it can be
made appropriate for general classification and regression problems by
initializing the partition of the data set to different experts in a boostlike
manner. If viewed as a variant of the boosting algorithm, its main gain is
the use of a dynamic combination model for the outputs of the networks.
Results are demonstrated on a synthetic example and a digit recognition
task from the NIST database and compared with classical ensemble ap-
proaches.

1 Introduction

The mixture-of-experts approach has great potential for improving perfor-
mance in machine learning. The improved classification and regression per-
formance achieved by using an ensemble of networks rather than a single
net for classification and regression tasks is well established (Hansen & Sala-
mon, 1990; Wolpert, 1992; Breiman, 1996c; Perrone & Cooper, 1993; Raviv
& Intrator, 1996). Earlier work focused on voting schemes—majority and
plurality—but in later studies, averaging of the outputs was usually found
to be superior.

Advanced methods for combining the output of different classifiers are
suggested in Ho, Hull, and Srihari (1994). Logistic regression (perceptron) is
applied on the output of the classifiers to achieve better results than simple
averaging; furthermore, the static combination of experts is replaced by a
dynamic model (DCS), so that only one of several logistic regression func-
tions is chosen, according to the input or to the classifier outputs. Generally
there are two approaches to combining outputs of different classifiers: selec-
tion, or choosing the locally best classifier, and averaging, or reducing the
variance by combining outputs that are not fully correlated. DCS and other
methods combine these approaches by using a dynamic weighted average.

Neural Computation 11, 483–497 (1999) c© 1999 Massachusetts Institute of Technology



484 Ran Avnimelech and Nathan Intrator

Stacking is another framework for combining estimators that uses a non-
symmetric combination (Wolpert, 1992; Breiman, 1996c). The principle is to
use several levels of learners, in a manner that is basically an extension of
choosing a learner by cross-validation. To avoid training the combination
level on overfit outputs of the lower-level learners, each input pattern to
the combination learner is extracted by copies of the learners trained on the
data, excluding that pattern. The algorithm is applicable for either multiple
learners or a single learner. The popular form of stacking uses two lev-
els with a linear combination model, possibly with constrained coefficients
(e.g., nonnegative, sum to 1).

Other methods use dynamic linear combination models, using a confi-
dence measure of the ensemble members regarding each pattern. Different
measures of the confidence of each predictor can be used for determining
the relative contribution of each expert (Tresp & Taniguchi, 1995; Shimshoni
& Intrator, 1996).

All of these algorithms train the individual classifiers independently for
the same goal. More specifically, the different parts of the training set that are
used to train individual classifiers are all drawn from the same distribution.
This holds when different types of classifiers are used, in cross-validation
(Meir, 1995; Krogh & Vedelsby, 1995), or when different noisy bootstrap
copies are used (Raviv & Intrator, 1996). A different approach is training the
classifiers on different parts of the training set, partitioned in a manner such
that their distributions differ. Such an approach, which is presented here,
combines two algorithms: boosting and mixture of experts.

Sections 2 and 3 describe the boosting and adaptive mixture-of-experts
algorithms. These algorithms are compared in section 4, and various ways
to combine them are suggested in section 5. Following this discussion we
present in section 6 the basic and advanced versions of the new algorithm.
The empirical evaluation of the algorithm on a demonstration problem and
on a character recognition task from the NIST database is reported in sec-
tion 7.

2 Theory of Boosting

The boosting algorithm can improve the performance of learning machines
(Schapire, 1990). Its theoretic basis relies on a proof of the equivalence of the
strong and weak PAC (probably approximately correct) learning models. In
the standard PAC model, for any distribution of patterns and for arbitrary
small δ and ε, the learner must be able to produce a hypothesis about the
underlying concept, with an error rate of at most ε with a probability of at
least (1− δ). The weak PAC model, however, requires just ε < 1/2—slightly
better than a random guess on this two-class model.

Schapire proved the equivalence of the two models by proposing a tech-
nique for converting any weak learning algorithm (on any given distribu-
tion) to a strong learning algorithm. He termed this provably correct tech-



Boosted Mixture of Experts 485

nique boosting. The basis of the technique is creating different distributions
on which different subhypotheses are trained. Schapire has proved that if
three such weak subhypotheses, which have an error rate of α < 1/2 (on the
respective distributions), are combined, the resulting ensemble hypothesis
will have an error rate of 3α2 − 2α3, which is smaller than α. Schapire sug-
gested hierarchical combinations of classifiers, such that an arbitrarily low
error rate can be achieved.

A procedure for creating appropriate distributions is the following: A
classifier is trained on the original distribution. Fifty percent of the training
set for the second classifier are patterns misclassified by the first classifier,
and 50% are patterns correctly classified by it (no change in the internal
distribution of each of these two groups). The third classifier is designed
to break ties. Its training set contains only patterns on which the first two
classifiers disagree.

Real-world machine learning tasks do not necessarily match the weak
PAC model, and even if they did, the assured performance for worst-case
scenario would not necessarily be higher than the practically achieved per-
formance of simple classifiers. Still, boosting proved to be not just a theoret-
ical technique, but also a practical tool for enhancing performance. Drucker,
Schapire, and Simard (1993) demonstrated its advantage over a combina-
tion of independently trained classifiers (parallel machine) on a handwritten
recognition task. Recently, boosting achieved an extremely low error rate
on the same problem (Bottou et al., 1994).

Various improvements have been made to the original boosting algo-
rithm. Freund (1990) suggested using a simpler structure for combining
many subhypotheses: instead of having a tree of majority gates, all subhy-
potheses are presented to one majority gate. AdaBoost (Freund & Schapire,
1995) is a more advanced algorithm, in which each pattern is assigned a dif-
ferent probability to appear in the training set presented to the new learner.
This version also prefers a flat structure for combining the classifiers rather
than a hierarchical one. Another idea mentioned within the AdaBoost frame-
work is the use of a weighted combination of the individual classifiers.
Recently several applications of AdaBoost have been reported (Breiman,
1996b; Schwenk & Bengio, 1997). Breiman regards boosting as one exam-
ple of an algorithm performing adaptive resampling of the training set and
suggests other such algorithms. He applied these algorithms to decision
trees (CARTs) on various data. Schwenk and Bengio applied Adaboost to
multilayer perceptrons (MLPs) and autoencoder-based classifiers (“diabolo
networks”) on character recognition tasks.

3 The Mixture-of-Experts Learning Procedure

The adaptive mixture of local experts (Jacobs et al., 1991) is a learning proce-
dure that achieves improved performance in certain problems by assigning
different subtasks to different learners. Its basic idea is concurrently to train



486 Ran Avnimelech and Nathan Intrator

several expert classifiers (or regression estimators) and a gating function.
The gating function assigns probability to each of the experts based on the
current input. In the training stage, this value states the probability of a pat-
tern’s appearing in an expert’s training set. In the test stage, it defines the
relative contribution of each expert to the ensemble. The training attempts
to achieve two goals: (1) for a given expert, find the optimal gating function,
and (2) for a given gating function, train each expert to achieve maximal
performance on the distribution assigned to it by the gating function. This
decomposition of the learning task motivates an expectation-maximization
version of the algorithm, though simultaneous training was also used.

Much emphasis is given in this framework to making the experts lo-
cal, which is a key to improving performance over ensembles of networks
trained on similar distributions. A basic level of locality is achieved by
targeting each expert for maximal performance on its distribution instead
of having it compensate for errors of other experts. Further localization is
achieved by giving higher learning rates to the better-performing expert on
each pattern.

This idea was later extended into a tree structure termed hierarchical
mixture of experts (HME), in which experts may be built from lower-level
experts and gating functions (Jordan & Jacobs, 1992). In later work, the EM
algorithm was used for training the HME (Jordan & Jacobs, 1994). Water-
house and Robinson (1996) describe how to grow these recursive learning
machines gradually. The mixture-of-experts procedure achieves superior
generalization and fast learning when the learning task corresponds to dif-
ferent subtasks for distinct portions of the input space.

The mixture-of-experts algorithm differs from other ensemble algorithms
in the relation between the combination model and the basic learners (and
our algorithm follows it). Most ensemble learning algorithms, such as stack-
ing, first train the basic predictors (or use existing predictors) and then try
to tune the combination model. The mixture-of-experts algorithm trains the
combination model simultaneously with the basic learners, and the cur-
rent model determines the data sets provided to each learner for its further
training.

4 Comparison of the Two Algorithms

Boosting and mixture of experts were developed for different types of prob-
lems and thus have different advantages and weaknesses. Any attempt to
combine principles from both should address their limitations and over-
come them by combining elements of the other method.

The mixture of experts is suitable when the patterns can be naturally
divided into simpler (homogeneous) subsets, and the learning task in each
of these subsets is not as difficult as the original one. However, real-world
problems may not exhibit this property, and, furthermore, even when such a
partition exists, the required gating function may be complex and the initial



Boosted Mixture of Experts 487

stage of localizing the experts has a chicken-and-egg nature. In boosting,
the distributions are selected to encourage each classifier to become an ex-
pert on patterns on which the previous classifiers err or disagree1—difficult
patterns—while maintaining a reasonably good performance on easier pat-
terns.

The two main advantages of the mixture of experts are localization of the
different experts and use of a dynamic model for combining the outputs.
In boosting, the first classifier is trained on all patterns, and the localization
criterion for the distributions presented to the two other classifiers is the
level of difficulty of the patterns as measured by classification performance.
The limitation of this criterion is that it cannot be applied to unlabeled data,
therefore disabling the use of a dynamic model based on a similar criterion.

5 Combining Boosting and HME Algorithms

There are several approaches for combining features of boosting and mix-
ture of experts:

• Improved boosting. Adding a dynamic model for combining the outputs
of the classifiers. (This feature is not unique to mixture of experts.)

• Initialized mixture of experts. The main boosting feature one would like
to introduce to the mixture-of-experts framework is the ability to ini-
tialize a split of the training set to different experts.

• Multilevel approach. Using a mixture-of-experts classifier as the second
or third boosting classifier can solve two problems: The difficult pat-
terns may be more easily partitioned to subgroups, while the second
and third boosting classifiers usually handle a more difficult problem
from the original one. This approach incorporates classifier selection
and classifier combination.

Waterhouse and Cook (1997) have attempted to combine boosting with
the mixture of experts using the first two approaches. They report that using
a dynamic model for combining boost-trained networks achieved improved
performance versus simple addition. They also report that the mixture of
experts was best when bootstrapped from boosted networks (bootstrapping
from simple ensemble was also superior to starting from random weights).

6 The Boosted Mixture of Experts

The work presented here attempts to design a new algorithm that applies
principles of both boosting and the mixture of experts and has high per-
formance on classification or regression problems. The proposed boosted-
mixture-of-experts (BME) algorithm may be considered either as a boost-

1 More precisely, patterns on which the output may have maximal influence on the
ensemble’s classification.



488 Ran Avnimelech and Nathan Intrator

wise initialized mixture of experts or as a variant of boosting that uses a
dynamic model for combining output of the classifiers.

The main boosting feature we want to include in our scheme is the ability
to initialize a split of the training set to different experts. This split is based
on a difficulty criterion. In boosting, this difficulty criterion is the errors
of the first classifier or the disagreement between the first two classifiers.
We prefer using a confidence measure rather than errors as our difficulty
criterion. This has several advantages: the size of the difficult set is more
flexible (a flexible error-oriented criterion is actually error plus confidence),
it focuses on the patterns that could be classified correctly, and it avoids
focusing on mislabels. This also enables using other confidence-oriented
methods. (Such an approach is actually used for constructing the training
set of the third classifier in boosting.)

Our method includes an important component that boosting lacks: a dy-
namic model for combining the outputs of the classifiers. This requires a
method for assigning each of the unlabeled patterns to the best-fitting clas-
sifier (or weighted combination). We follow the mixture-of-experts scheme
and use the same gating function used for partitioning the data between the
experts during training as the gating function for combining the outputs.
Instead of training a separate gating function, we use a confidence measure,
which is available for unlabeled patterns too.

6.1 The Basic Algorithm. The algorithm is designed for an arbitrary
number of experts as the ensemble is constructed gradually by adding a
new expert and repartitioning the data. The experts used in our work are
neural nets, though any classifier with a good confidence measure is appro-
priate. The confidence measure is a key to achieving improved performance,
and the flexibility in choosing it extends the range of applications of the al-
gorithm.

Basically, the algorithm trains several learners on different (possibly over-
lapping) portions of the data. The confidence measure—Ci(x) = C(oi(x))—
is a scalar function of the basic learner’s output vector, which is used as
a gating function. It determines the probability of patterns to be assigned
to the data set of any learner; thus, these training sets may change as the
learners evolve and their output vectors change. In addition to the confi-
dence, the gating may be influenced from the basic reliability of each learner:
gi(x) = wi · Ci(x). The reliability may be calculated by finding the optimal
weighted average of the (output*confidence) of each classifier, and its value
changes as the learners evolve. The output of this gating function is also
used in the dynamic combination model as the coefficient assigned to each
predictor for this pattern.

The confidence measure may be based on specifics of the predictor used.
For an MLP performing classification, with continuous-valued output, it
may be some function of the output vector. The confidence should increase
as the highest output is higher and decrease as any of the other outputs



Boosted Mixture of Experts 489

is higher. Other confidence measures, reported in machine learning litera-
ture, may also be used. Tresp and Taniguchi (1995) use various confidence
measures of different predictors, in their combination model. One they use
is the variance of the predictor as it is measured by the local sensitivity to
changes in weights. Another approach they mention is assuming that the
different predictors were trained on different data sets (e.g., American ver-
sus European digit data), and a hidden input indicates the set to which a
pattern belongs. Estimating that value may be used to extract confidence
information. Tresp and Taniguchi also suggest a unified approach, of which
these two methods are extreme cases. Shimshoni and Intrator (1996) used
base-level ensembles of several similar estimators as the different experts.
The variance within each base-level ensemble indicates its confidence. A
monotone function can be applied to the confidence measure to determine
whether a soft or a hard partition of the data is to be used.

The confidence measure we used on a multiclass classification task was
based on the difference between the two highest outputs. This is the net-
work’s estimate of its confidence margin and is a “natural” confidence mea-
sure provided by the MLP. We found that in order to encourage good lo-
calization, it was better to apply some power higher than 1 to the basic
confidence measure. With a continuous-valued output, with rankings {R},
the confidence of the ith expert is Ci(x) = [Oi

R1
(x)−Oi

R2
(x)]n.

The algorithm for constructing a BME consists of several procedures:

• A procedure for training a single classifier on a given training set (we
used a variant of BP).

• A procedure for adding a classifier to an existing ensemble—assigning
a training set for its initial training. We took a predefined portion from
the training set of each of the experts, consisting of the patterns on
which it was less confident.

• A refining procedure. Repartition the data according to the current
confidence level of each expert on each pattern. This can be done de-
terministically, by assigning each pattern to the most confident expert,
or stochastically, by which the probability of assigning a pattern to a
certain expert is proportional to its confidence (we used the stochastic
version).

The following algorithm describes how these different components fit into
the constructive algorithm for creating a BME:

Algorithm.

1. Train the first expert on all the training set.

2. Assign the patterns on which the current experts are not confident to the
initial training set of the new expert and train it.

3. Refining stage: for i=1:N



490 Ran Avnimelech and Nathan Intrator

• Partition the data according to the confidence of each expert on each
pattern.

• Train each expert on its training set.

4. If more experts are required, return to step 2.

Once the experts are trained, they may be used as an ensemble. The
classifier combination model is based on the same gating function used for
the localization of the experts. The exact choice of the gating function—both
the confidence measure and the applied function—defines a specific variant
of this algorithm. This gives the algorithm its flexibility and enables further
improvement by handcrafting a confidence measure matching the specific
problem (although we did not find this extra tuning necessary). The flexible
nature of this algorithm makes it appropriate for most pattern recognition
problems. The choice of the function may depend on specific features of the
problem and of the basic learners.

The effective number of parameters used by a BME ensemble is greater
than that used by an ensemble that averages similar classifiers, trained on
the same data set (parallel machine). A parallel machine with k classifiers,
each withN effective parameters, also hasN effective parameters. A BME
effectively has more parameters because of the difference between the data
sets (because the confidence measure is a constant simple function of the
output vector, it adds no parameters). The upper bound is kN parameters,
but the actual number is much closer to the lower bound.

6.2 Multilevel Ensembles: Model Selection Plus Averaging. We em-
phasized the different advantages of two basic combination schemes: clas-
sifier selection and averaging. We argue that by applying two levels of
ensembles—one for selection and the other for averaging—the advantages
of each ensemble approach may be exploited in a better way than by a
compromise.

Most studies state that from a certain number of classifiers, the perfor-
mance of an ensemble becomes steady. When the training set is partitioned
between different experts, the effect of overfit may cause a decline in the
performance as the number of experts increases and the training set size for
each expert becomes too small. We suggest two ways of combining ensem-
ble averaging and expert selection to improve performance.

The first approach is training several sets of BMEs and using them in a
multilevel ensemble: The output of this ensemble is the simple average of
the outputs of the various BMEs, each extracted as previously described.
Some of the gain here is due to overcoming the “stitch” effect: patterns in the
boundaries between regions covered by different experts may yield poor
performance. Using different sets of BMEs with different partitions might
help overcome this.

The ability to gain from such a multilevel approach relies on the lower-



Boosted Mixture of Experts 491

level ensemble’s being a selection ensemble. For ensembles based on aver-
aging learners trained with similar data, this would just be a larger ensem-
ble. At the other extent, decision trees may be considered as selection-style
ensembles of simpler tree predictors. Ensembles, combining the output of
trees trained on bootstrapped copies of the same data (bagging), effectively
improve performance (Breiman, 1996a). Ensemble methods that encourage
diverse training sets may gain from such a method if the data partitions
vary. Using a dynamic combination models makes the ensemble even more
a selection-style ensemble. Therefore, this approach is most appropriate for
use with the BME algorithm.

Another approach follows ideas from the query-by-committee frame-
work (Seung, Opper, Sompolinsky, 1992; Freund, Seung, Shamir, & Tishby,
1993). According to this approach, a disagreement in an ensemble marks
interesting patterns that are located in information gaps. Committees may
be used as the basic experts, with the average as the expert’s output and the
disagreement between the committee members as a measure to the expert’s
confidence. It is likely that the agreement between the different members
of a committee is higher because the presented patterns are more similar to
those in the committee’s training set. This also follows the principle used
in Perrone and Cooper (1993). They suggest that in order to achieve an en-
semble with minimum variance, the coefficient for each member should be
inversely proportional to its variance (versus the ground truth). We assume
that because of the different training sets, the members of each committee
have different variances that vary in different regions of the input space. This
follows the use of the internal variance in each committee as an estimate to
its error rate (Shimshoni & Intrator, 1996).

7 Results

7.1 Synthetic Example. We first demonstrate the capabilities of the al-
gorithm on a synthetic two-class two-dimensional problem (see Figure 1),
to provide more intuition about the way it works. Each class is a mixture
of gaussians. Patterns of the first class are drawn with a probability of 80%
from the leftmost gaussian (x ∼ N(−6, 1), y ∼ N(0, 1.5)) and with probabil-
ity of 20% from the lower central gaussian (x ∼ N(1, 1), y ∼ N(−0.4, 0.1)).
Patterns of the second class are similarly drawn from the gaussians centered
at (6,0) and (−1, 0.4).

We performed tests with 2000 points drawn with equal probability from
both classes. We used a simple perceptron as our basic learner. A single
learner achieved a 16% error rate (all induced by the small gaussians). An
ensemble composed of two to four independent learners combined by a
weighted average achieved similar performance. A multilayer perceptron
with two hidden units also had 16% error.

The BME ensemble used the absolute value of the perceptron output
(which was in [−1, 1]) as its confidence score and a gating function, com-



492 Ran Avnimelech and Nathan Intrator

Figure 1: Input distribution of the synthetic task.

bining the confidence function and a constant coefficient for each of the
two basic learners (a hard partition was used for training). The BME en-
semble achieved a 3% error rate on this task. The “first” learner performs a
horizontal separation: the main gaussians are classified correctly, with high
confidence, and patterns in the small gaussians get a low confidence score.
The second learner performs a vertical separation, but it tends to overesti-
mate its confidence. However, the first learner is assigned a higher reliability
coefficient; thus, the output of the second learner has influence only when
the first one is not confident.

In the initialization of the second learner (step 2 in the algorithm draw-
ing), it was presented with a subset consisting of the 15 to 20% of the pat-
terns whose confidence was lower than 0.3. This subset included most of
the patterns belonging to the small clusters. It also had a small number of
patterns from the main clusters. As the learner took into account all of the
patterns, its decision boundary was a diagonal line from upper left to lower
right. Thus, the difficult subset included data points at one vertical edge of
each main cluster (and data points horizontally far from the centers of their
gaussians). In the refining stage (step 3 in the algorithm drawing), the basic
reliability coefficients for each learner were recalculated at each refining cy-
cle, and then the data were split in a deterministic manner: each data point
was assigned to the learner whose product of the confidence score on it and
the reliability coefficient was higher. The refining stage had effect mostly
on the first learner, which was able to produce a better estimation of the
classification for the main gaussians.

In this example, the refining stage did not contribute much. We also



Boosted Mixture of Experts 493

Figure 2: (A) Examples of digits from the NIST database. (B) Their representa-
tion by the first 32 principal components.

performed a slightly different variant of this problem in which the BME
ensemble had a 6% error rate before refining, and after a few refining cycles
it dropped to 4%. The first learner initially performed a compromise of
the two separations, and when it had to perform only one separation, its
performance improved.

7.2 Digit Recognition Results. The BME algorithm was empirically
evaluated on digits from the NIST database (see Figure 2A). Preprocessing
operations, similar to those described in Bottou et al. (1994), were applied to
the digits. Digits were size normalized to fit a 20× 20 pixel box (gray scale)
centered within a 28× 28 image. We then performed principal component
analysis and used the first 32 components as input to our classifiers (see
Figure 2B).

The basic classifier used was a feedforward neural network, trained via
the backpropagation algorithm (with momentum). The network’s input
layer had 32 units, and its single hidden layer consisted of 16 units. The
10-dimensional output vector was used to extract the output digit and its
confidence level.

In order to evaluate the unique contribution of the new algorithm, we
compared it to a standard ensemble (parallel machine). This ensemble con-
sisted of several learners trained independently, each with different starting
conditions. The combination model used to extract the ensemble output was
averaging of the output vectors of the different classifiers and decision ac-
cording to the highest output. Increasing the number of networks improved
the ensemble’s performance.

We tested the performance ensembles trained with the BME algorithm.
The initial training set for new learners added to the ensemble was con-
structed by choosing from the training set of each of the other learners
those patterns on which it was less confident (we took 1/(a+ b∗n) of its set,
where n is the current size of the ensemble and a, b are arbitrary constants).
The confidence score of each pattern and a specific classifier was (P1−P2)

4,
where P1 is the highest output of the classifier on the pattern and P2 is its



494 Ran Avnimelech and Nathan Intrator

Table 1: Performance of Various Ensembles on a Digit Recognition Task.

Number Parallel Machine Boosted Mixture Multilevel Ensemble
of Nets of Experts (2∗N nets)

Mean SD Mean SD Mean SD

2 93.75% 0.35% 94.65% 0.3% 95.15% 0.3%
3 94.35 0.45 95.15 0.3 95.5 0.35
4 94.6 0.45 95.3 0.35 95.7 0.35
5 94.65 0.3 95.4 0.3 95.8 0.25
8 94.65 0.4 95.6 0.3 96 0.25
10 94.65 0.4 95.7 0.3 96.1 0.25

second highest output (probabilities were normalized to sum to 1 for any
pattern). The gating function used at the refining step of the training, to get
the probability of assigning a pattern to the training set of a specific clas-
sifier, was this confidence score (no global reliability coefficient was used).
This gating function was also used in the combination model, as the weight
given to each classifier in the weighted average of the output vectors.

We also performed a test of the multilevel ensemble. A simple average
was applied to the output of two independently trained BME ensembles
of N classifiers. Such an ensemble combines the advantages of an ensem-
ble choosing the appropriate classifier for each pattern and an averaging
ensemble.

Table 1 presents the performance of the three ensemble methods over
a wide range of ensemble sizes. These results were collected using five
different partitions of the data into a 49,000-digit training set and a 10,000-
digit test set.

The basic MLP used had 32 inputs, 10 outputs, and 16 hidden units. By
a naive counting, this gives N = (32 + 1) ∗ 16 + (16 + 1) ∗ 10, which is
almost 700 free parameters. The effective number N is of the same order
of magnitude. The naive number of parameters for both a parallel machine
and a BME ensemble of k nets is kN, and for the multilevel ensemble it is
2kN. Effectively, it isN parameters in the parallel machine, and for both the
BME and the multilevel ensemble it is betweenN and kN .

We tried to check whether the reported effect was due to only the in-
creased number of parameters in the BME ensemble. The BME’s number of
parameters may be similar to that of a parallel machine, similar to that of
a single classifier with a k-times larger hidden layer, or some intermediate
case. For k = 3, the success rate of a parallel machine was 94.35%, the success
rate for a larger net was 94.2%, and for a BME it was 95.15%. An average of
two large nets had a success rate of 94.9%, while the multilevel ensemble
had 95.5% success.

The results indicate that the performance of an ensemble machine trained



Boosted Mixture of Experts 495

with the BME algorithm (and combined appropriately) is significantly bet-
ter than a standard ensemble (parallel machine). The improvement rate is
similar to that achieved using boosting (Drucker, Cortes, Jackel, Lecun, &
Vapnik, 1994). It is encouraging that this improvement rate is kept even for
a high number of classifiers (20% error reduction for 10 classifiers). The im-
proved performance for a large ensemble was achieved despite the fact that
the classifiers in this scheme were trained on a small portion of the data set.
The improvement due to the BME algorithm beyond ensemble performance
may be even larger when greater training sets are used (e.g., by multiplying
samples using invariant transformations, as in Bottou et al., 1994).

The results further demonstrate the potential of combining the two basic
schemes for ensemble machines in a multilevel approach. Our ensemble
used a weighted average of classifiers, which tended to select the locally
best classifier rather than average classifiers. Averaging the outputs of two
such ensembles yielded further improvement in the results. These results
are not fully contrasted with other ensembles of similar size, but when they
are (two ensembles of 4 to 5 classifiers versus 8 to 10 classifiers) they have a
slight advantage. Furthermore, because most studies claim that adding clas-
sifiers beyond a certain number is not expected to improve the performance
further, the constant incremental improvement is encouraging.

8 Conclusions

This study analyzed two of the more advanced frameworks for ensembles
of learning machines: boosting and the mixture of experts. We discussed the
advantages and weaknesses of each algorithm and reviewed several ways
in which the principles of these algorithms may be combined to achieve
improved performance, including variants of each algorithm incorporating
elements of the other.

We suggested a flexible procedure for constructing an ensemble machine
based on principles of these two algorithms. The essential components are:

• Training several classifiers on subsets of the data with a significantly
different distribution and using them in an ensemble.

• Dynamic classifier selection, which is common to the training and the
test stages.

• Usage of a confidence measure for each of the classifiers as the gating
function (in mixture-of-experts terminology), which determines their
contribution to the ensemble output.

These principles lead to outperforming conventional ensemble machines.
The flexibility of the procedure is due mostly to the use of a confidence

measure, which may be adjusted specifically for any classification or regres-
sion problem. This makes boostwise algorithms appropriate for regression
problems as well. We further suggest an all-purpose confidence measure



496 Ran Avnimelech and Nathan Intrator

by using a committee of simple learners as the basic learner in our algo-
rithm. The disagreement among a committee for a given pattern becomes
a confidence measure. We have made a distinction between two groups of
ensemble machines: classifier selectors and classifier averagers. These two
mechanisms provide different advantages for ensembles: using local ex-
perts may reduce bias, while averaging tends to reduce variance. We claim
that a multilevel approach combining selection and averaging is capable of
improving the performance of ensembles and that it may be better than a
compromise between selection and averaging.

A digit recognition task from the NIST database was used to demon-
strate the advantages of the BME and multilevel ensemble and achieve a
significant reduction of the error rate over standard ensembles.

Acknowledgments

We thank NIST and H. Drucker for the handwritten digits database we used.

References

Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, I., Jackel, L., LeCun, Y.,
Sackinger, U. M. E., Simard, P., & Vapnik, V. (1994). Comparison of classifier
methods: A case study in handwritten digit recognition. In Proceedings Int.
Conf. on Pattern Recognition (Vol. 12, pp. 77–82).

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24, 123–140.
Breiman, L. (1996b). Bias, variance and arcing classifiers (Tech. Rep. TR-460). Berke-

ley: Department of Statistics, University of California, Berkeley.
Breiman, L. (1996c). Stacked regressions. Machine Learning, 24, 49–64.
Drucker, H., Cortes, C., Jackel, L., LeCun, Y., & Vapnik, V. (1994). Boosting and

other ensemble methods. Neural Computation, 6(6), 1289–1301.
Drucker, H., Schapire, R., & Simard, P. (1993). Improving performance in neural

networks using a boosting algorithm. In S. J. Hanson, J. D. Cowan, & C. L.
Giles (Eds.), Advances in neural information processing systems, 5 (pp. 42–49).
San Mateo, CA: Morgan Kaufmann.

Freund, Y. (1990). Boosting a weak learning algorithm by majority. In 3rd Annual
Workshop on Computational Learning Theory (pp. 202–216).

Freund, Y., & Schapire, R. (1995). A decision-theoretic generalization of on-line
learning and an application to boosting. In 2nd European Conference on Com-
putational Learning Theory.

Freund, Y., Seung, H., Shamir, E., & Tishby, N. (1993). Information, prediction
and query by committee. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.),
Advances in neural information processing systems, 5 (pp. 483–490). San Mateo,
CA: Morgan Kaufmann.

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.



Boosted Mixture of Experts 497

Ho, T., Hull, J., & Srihari, S. (1994). Decision combination in multiple classifier
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1),
66–75.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation, 3(1), 79–87.

Jordan, M. I., & Jacobs, R. A. (1992). Hierarchies of adaptive experts. In J. E.
Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information
processing systems, 4 (pp. 985–992). San Mateo, CA: Morgan Kaufmann.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the
EM algorithm. Neural Computation, 6(2), 181–214.

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation,
and active learning. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances
in neural information processing systems, 7 (pp. 231–238). Cambridge, MA: MIT
Press.

Meir, R. (1995). Bias, variance and the combination of least square estimators.
In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information
processing systems, 7 (pp. 295–302). Cambridge, MA: MIT Press.

Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble
method for neural networks. In R. J. Mammone (Ed.), Neural networks for
speech and image processing. London: Chapman-Hall.

Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An effective regular-
ization technique. Connection Science (Special Issue), 8, 356–372.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5(2),
197–227.

Schwenk, H., & Bengio, Y. (1997). Adaptive boosting of neural networks for character
recognition (Tech. Rep. TR-1072). Montreal: Department d’Informatique et
Recerche Operationnelle, Université d’Montreal.

Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by committee. In
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
(pp. 287–294).

Shimshoni, Y., & Intrator, N. (1996). Classifying seismic signals by integrating
ensembles of neural networks. In S. Amari, L. Xu, L. W. Chan, I. King, & K. S.
Leung (Eds.), Proceedings of ICONIP Hong Kong. Progress in Neural Information
Processing (Vol. 1, pp. 84–90). New York: Springer-Verlag.

Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant
weighting function. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances
in neural information processing systems, 7. Cambridge, MA: MIT Press.

Waterhouse, S. R., & Cook, G. (1997). Ensemble methods for phoneme classifica-
tion. In M. Mozer, J. Jordan, & T. Petsche (Eds.), Advances in neural information
processing systems, 9. Cambridge, MA: MIT Press.

Waterhouse, S. R., & Robinson, A. J. (1996). Constructive algorithms for hierar-
chical mixtures of experts. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo
(Eds.), Advances in neural information processing systems, 8. Cambridge, MA:
MIT Press.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241–259.

Received January 10, 1997; accepted December 10, 1997.


