
LETTER Communicated by Robert Jacobs

Boosting Regression Estimators

Ran Avnimelech
Nathan Intrator
Department of Computer Science, Sackler Faculty of Exact Sciences, Tel-Aviv Univer-
sity, Tel-Aviv, Israel

There is interest in extending the boosting algorithm (Schapire, 1990) to
fit a wide range of regression problems. The threshold-based boosting al-
gorithm for regression used an analogy between classification errors and
big errors in regression. We focus on the practical aspects of this algo-
rithm and compare it to other attempts to extend boosting to regression.
The practical capabilities of this model are demonstrated on the laser data
from the Santa Fe times-series competition and the Mackey-Glass time
series, where the results surpass those of standard ensemble average.

1 Introduction

Boosting algorithms are ensemble learning algorithms that achieve im-
proved performance by training different learners on different distributions
of the data and combining their output (Schapire, 1990; Freund & Schapire,
1995). Boosting was found to be an effective method to achieve improved
performance in many classification tasks. The success and increasing inter-
est in ensemble methods for regression tasks encourage the application of
boosting to regression tasks. There have been several different suggestions
regarding the way in which this extension should be performed, each one
considering a different analogy between classification errors and regression
errors. We follow the version suggested by Freund (1995) and study the
practical effects of the difference between classification and regression er-
rors and the modifications that may lead to better performance in practice.
We find that this version of boosting for regression can reduce the error
rate when a small number of big errors contribute a significant part of the
mean squared error (MSE). In addition to the theoretical analysis of the al-
gorithm, we present empirical tests, including a case study of the behavior
of the different predictors in one of the tests and how it contributes to error
reduction.

Section 2 reviews the basic boosting algorithm and the AdaBoost al-
gorithm and their applications. Section 3 reviews the usage of ensemble
algorithms for regression tasks. Section 4 presents the algorithm and a the-
oretical analysis of it within an appropriate model. Section 5 reviews other
attempts to extend boosting to regression and highlights the advantages and

Neural Computation 11, 499–520 (1999) c© 1999 Massachusetts Institute of Technology

500 Ran Avnimelech and Nathan Intrator

disadvantages of each suggestion. We also claim that the algorithm may be
effective in many tasks that are not fully compliant with the model, although
it is not analytically shown. Empirical results are shown in section 6.

2 The Boosting Algorithm

2.1 The Original Boosting Algorithm. The original boosting algorithm
(Schapire, 1990) was suggested in the context of the PAC learning model
(Valiant, 1984). Theoretically, it enables achieving an arbitrarily low error
rate, requiring the basic learners only to be able to achieve performance
that is slightly better than random guessing on any input distribution. The
algorithm trains the first learner on the original data set, and new learners are
trained on data sets enriched with difficult patterns—patterns misclassified
by some of the previous classifiers. There have been various improvements
to the original boosting algorithm. Original boosting uses hierarchies of
three-classifier ensembles; boosting by majority uses a simple ensemble that
may consist of more classifiers, thus achieving the same improvement with
less classifiers (Freund, 1995).

The boosting algorithm was successfully used in various real-world clas-
sification tasks, despite the fact that the assumptions of the PAC model do
not hold in this more general context. Ensembles of neural networks, con-
structed by the boosting algorithm, significantly outperformed a single net-
work or a simple ensemble on a digit recognition task (Drucker, Schapire,
& Simard, 1993) and on a phoneme recognition task (Waterhouse & Cook,
1997).

In this article, we extend the boosting algorithm to regression problems
by introducing the notion of weak and strong learning and an appropri-
ate equivalence theorem between them. Practical implications are demon-
strated on the laser data set.

2.2 AdaBoost. AdaBoost is an extension of boosting that applies to a
more general context and takes into consideration the different error levels of
the various classifiers (Freund & Schapire, 1995). The error rate determines
the reweighting applied to the data when they are adaptively resampled for
providing a training set for the next classifier. The error rate also determines
the coefficient of each classifier when computing the ensemble output. This
modification makes boosting effective when performance on the difficult
sets is much worse than on the original set.

The reweighting procedure tries to construct decelerated classifiers by
assigning weights to the new training set s.t. the (weighted) error rate of
the previous learner on it would be 0.5. Initially the weights are uniform
(wµ

i = 1/N) Let c(µ) be the true class of pattern µ (for a two-class task),
ht the hypothesis generated at step t, dt(µ) the boolean that is equal to 1
when ht(µ) 6= c(µ), εt the (weighted) error rate of ht, and βt = εt/(1 − εt).

Boosting Regression Estimators 501

The weight updates used by AdaBoost are wµ

t+1 = wµ
t · βdt(µ)

t · Ct, where
Ct is a normalization factor s.t.

∑
mu wµ

t+1 = 1. The combination model is a
weighted voting of the classifiers, with weights

αt = ln
(

1
βt

)
= ln

(
1− εt

εt

)
.

If the errors of different classifiers were independent (because of the step-
wise deceleration), this would be the optimal Bayes decision.

Recently, several successful applications of AdaBoost have been reported
(Breiman, 1996b; Schwenk & Bengio, 1997). Breiman applied AdaBoost to
decision trees on various data sets and achieved improved performance
(compared to bagging). Schwenk and Bengio applied AdaBoost to multi-
layer perceptrons (MLPs) and autoencoder-based classifiers (“diabolo net-
works”) on character recognition tasks.

There have been several explanations as to why AdaBoost works. Breiman
(1996b) suggested that AdaBoost and other algorithms that adaptively re-
sample the training data and combine the classifiers (arcing) gain by increas-
ing the variance component of the error and reducing the variance, which
enables gaining more from the combination.

Schapire, Freund, Bartlett, and Lee (1997) studied the success of boosting
low-variance algorithms and suggested an alternative explanation. They
present examples in which the error rate on the test set keeps decreasing
when new hypotheses are added to the ensemble, even after the training
error reaches zero. They explain this apparent contradiction with standard
learning curves and the Occam’s razor principle by studying the behavior
of a quantity they term margin. For a convex function (i.e., linear combi-
nation with coefficients summing to 1) of a set of classifiers, the margin is
defined (for any pattern) as a weighted sum of +1 for correct classifications
and −1 for errors. Ensembles gain by increasing the minimal value of the
margin. AdaBoost is specifically designed to concentrate on the patterns
with low margin, and this leads to its improved performance. This article
also includes a statistical bound to the error rate on unseen data based on the
minimal margin and the VC-dimension of the individual learners, which is
lower than the bound when the margin is not considered. This explains why
in some cases the error on test data kept decreasing even after training error
reached 0. A quantity edge, which is an extension of margin, was suggested
in Breiman (1997). AdaBoost and other arcing algorithms are optimization
algorithms for minimizing some function of the edge.

3 Ensemble of Predictors in Regression Setup

Regression learning may exhibit complex behavior such as nonlinearities,
chaotic behavior (especially in time-series prediction), local effects or non-
stationarity, and high levels of noise. Ensemble averaging of predictors can
improve the performance of single predictors and add to its robustness

502 Ran Avnimelech and Nathan Intrator

under these circumstances. This occurs when the errors made by different
predictors are independent, and thus the ensemble average reduces the vari-
ance portion of the error (Geman, Bienenstock, & Doursat, 1992). There are
various ways to increase the independence of the errors. The simplest is to
split the data into independent sets (Meir, 1995); however, such a reduction
in the number of training patterns may degrade the results of each predic-
tor too much. Another approach is to bootstrap several training sets with a
small percentage of nonoverlapping patterns (Efron & Tibshirani, 1993) or
training sets constructed by sampling with repetition (Breiman, 1996a). A
recently proposed method increases independence between the predictors
by adding large amounts of noise to the training patterns (Raviv & Intrator,
1996).

A different approach to ensemble averaging is the adaptive mixture of
experts (Jacobs, Jordan, Nowlan, & Hinton, 1991). This method is a divide-
and-conquer algorithm that cotrains a gating network for (soft) partitioning
the input space and expert networks modeling the underlying function in
each of these partitions.

In this article, we introduce a boosting algorithm for regression as a
method for training an ensemble of predictors so as to optimize their col-
lective performance. The algorithm is based on a fundamental observation
that often the MSE of a predictor is significantly greater than the squared
median of the error due to a small number of large errors. By reducing the
number of large errors, we are able to reduce the MSE.

4 The Regressor-Boosting Algorithm

4.1 Model Definitions. We introduce a regression notion of weak learn-
ing taken from the PAC framework (Schapire, 1990). The essence of the
regression problem is constructing a function f (x) based on a training set
(x1, y1), . . . , (xN, yN), for the purpose of approximating y at future observa-
tions of x. Usually the goal is to approximate just E[y|x] and not the condi-
tional distribution P[y|x], that is, to approximate the underlying function G:
y = G(x) + ε(x) with ε(x) a zero-mean (for any x) noise. It is assumed that
the samples in the training set were drawn from the unknown distribution
P(x, y) = P(x) · P(y|x) and the goal is to approximate E[y|x].

The model we describe includes some simplifying assumptions, and the
more realistic case is discussed at the end of this section. We assume no noise
is present, y = G(x), and this unknown function should be approximated .
Another assumption is the existence of unlimited number of pairs 〈x,G(x)〉
drawn from the joint distribution P(x, y). Therefore, we ignore within this
analysis the different performance on training data and unseen data. In this
context, we regard various input distributions by applying selective filters
to the input: P′(x) ≡ P(‘filter’, x) = P(x) · P(‘filter’|x).

Given an unknown function G and a source of pairs 〈x,G(x)〉, the follow-
ing definitions refer to learners—algorithms that approximate a function G

Boosting Regression Estimators 503

by a function fD that depends on the distribution D ≡ PD(x):

γ -Weak learner. A learner for which exists some α < 1/2, such that it
is capable, for any given distribution D and δ > 0, of finding, with
probability (1−δ),1 a function fD such that PrD[| fD(x)−G(x)| > γ] < α.

γ -Strong learner. A learner capable (for any given D, δ) of finding, with
probability (1−δ), a function FD such that PrD[|FD(x)−G(x)| > γ] < ε

for any ε > 0.

Big error (with reference to γ). An error g.t. γ . The big error rate (BER)
for h on D0 is PrD0 [|h(x) − G(x)| > γ]. When the term big error is
mentioned not in the context of a specific γ , it applies to any γ for
which the learning algorithm estimating the underlying function is a
γ -weak learner.

γ -Weak (γ -Strong) learnability. Whether any γ -weak (γ -strong) learner
for G exists.

Some immediate results are obvious from these definitions:

• Any γ -strong learner is a γ -weak learner.

• For γ1 < γ2 any γ1-weak (strong) learner is a γ2-weak (strong) learner.

• A γ -weak learner can find, for any distribution D, a function fD whose
median error is smaller than γ (i.e., BER < 1

2).

It is not clear from the definitions whether γ -weak learnability is equivalent
to γ -strong learnability. The rest of this section will prove the equivalence
of the two terms and emphasize the significance of this equivalence.

4.2 The Regressor-Boosting Theorem. The following theorem suggests
that in problems for which a γ -weak learner exists, an arbitrarily low rate
of big errors may be achieved. This can reduce the MSE.

Theorem. Given an unknown function G, a source of pairs 〈x,G(x)〉, and γ : If
a γ -weak learner is available, then a γ -strong learner may be constructed too. In
other words, γ -weak learnability is equivalent to γ -strong learnability.

The contribution of the big errors to the general MSE is a function not
only of their percentage but also of their MSE. However, given ε—the BER of
the ensemble—and the error distribution of the individual predictors, this
contribution is bounded. At most they contribute as much as the ε highest
errors of a simple predictor. Each such error is at most the median error of
several functions generated by the weak learning algorithm at this input
point. Similarly, the error distribution on the inputs, which originally were

1 The probability limit is for a misrepresentative data set.

504 Ran Avnimelech and Nathan Intrator

not big errors, is not only bounded by γ , but it also is not likely to get
worse.

This theorem implies that if the MSE is dominated by a small number
of relatively large errors (i.e., the average (RMS) error is much greater than
median error), the RMS error can be reduced to values close to the median
error. This occurs in many cases. (Figure 3 shows such an example of the
error distribution taken from the empirical tests we performed.) Another
example is gaussian error distribution, where 32% errors that are higher
than the RMS error contribute about 80% of the MSE. The choice of γ is
arbitrary (as long as there exists a γ -weak learner), and there is a trade-off
between lower γ and lower ε. Therefore, a γ could be chosen that would
achieve a greater error reduction.

4.3 Proof. The following constructive proof follows the proof for boost-
ing in classification (Schapire, 1990). Instead of the majority vote of an en-
semble used for classification tasks, the median of an ensemble is used in
regression problems. We discuss several variants: Boost1 is the variant sug-
gested in Freund (1995). Boost2 , which is also appropriate for the proof,
is a variant more focused in reducing the MSE by considering the different
kinds of errors. Another variant, BOOST3, which does not fit this proof, is
focused on the MSE.

The essence of the algorithm is the construction of ensembles of three
estimators and combining them to reduce the BER from α to (3α2 − 2α3) or
less. We present two versions of this step (BOOST1, in Figure 1, and BOOST2).
Using hierarchies of such ensembles leads to an arbitrarily low BER.

BOOST1: The first estimator in such an ensemble is trained on the orig-
inal input distribution. Fifty percent of the data set used for training
the second estimator are patterns on which the first estimator has a
big error and 50% are those on which it has not (no change in the
internal distribution of each of the two groups). The training set for
the third estimator consists only of patterns on which exactly one of
the previous estimators had a big error. The ensemble output is the
median of the outputs of the different estimators. Figure 1 shows the
different distributions of the training sets of the three predictors and
how they are combined to achieve a low BER.

BOOST2: Similar to BOOST1, but the training set of the third estimator
contains patterns on which the previous estimators had big errors
of different signs, in addition to those on which exactly one of them
had a big error. This algorithm ensures an error rate even lower than
(3α2 − 2α3).

A summary description of the algorithm is presented below. It includes

Boosting Regression Estimators 505

Figure 1: Main step of the boosting algorithm (BOOST1). Three predictors trained
on different input distributions are combined. Training set of B contains the
patterns on whichA has a big error and a similar amount of patterns on which
it does not have a big error. A and B may be considered an ensemble whose
output pairs are evaluated according to what they imply on the median of them
and another output: whether it would necessarily have a big error (Error) or
it could not have a big error (Correct), or it depends on the value of the third
output (Reject). The training set of C contains only Rejects—patterns on which
A XOR B had a big error. This scheme shows that only on (3α2 − 2α3) of the
patterns 2-3 predictors have a big error. The median may have a big error only
on these patterns. See proof for the mathematical details

BOOST3, a modification of BOOST2 described and justified later:

1. Split the training set to three Sets. The first set should be smaller than the
other two sets, because it is used as a whole for training.

2. Train the first expert on Training Set 1 = Set 1.

3. Assign to Training Set 2 all the patterns from Set 2 on which expert 1 has a
big error and a similar number of patterns from this Set 2 on which it does
not have a big error and train the next expert on it.

506 Ran Avnimelech and Nathan Intrator

4. Assign all patterns from Set 3 on which the third expert may have a critical
influence on the median to Training Set 3 for the third expert and train. The
criterion for this set may differ by version:

Boost1 Any pattern on which exactly one of the first experts has a big error.
Boost2 Set (BOOST1) + Any pattern on which both experts have a big error,

but these errors have different signs.
Boost3 Set (BOOST2) + Any pattern on which both experts have a big error,

but there is a “big” difference (see details in section 4.4) between the
magnitude of the errors.

5. The ensemble output for any test pattern is the median of the outputs of the
three experts.

Proof. Given a test set and three weak learners trained as above, each with
big error rate α on appropriate distribution, we show that in an ensemble
of three such estimators, (3α2− 2α3) of the patterns are those on which two
to three estimators have big errors. Therefore, the median has a big error
rate of (3α2 − 2α3) at most (the median may have a big error only if two to
three estimators have such error, but if two estimators have big errors with
different signs, the median would be the estimator with a small error).

BOOST1: We term the ratio of patterns on which the first two estimators
have big errors as ErrorAB and that of patterns on which one of them has
a big error as RejectAB (see Figure 1). ErrorABC is the number of patterns
on which most of the estimators have big errors. The unknown BER of B
on patterns for which A produces a γ -accurate prediction is marked as β
and the BER of B on patterns on which A has a big error is marked as β2.
(It should be noted that as we randomly choose patterns from an infinite
source, there are no two distinct groups of patterns on whichA produces a
γ -accurate prediction—those used and those not used for training of B.)

The weak learning assumption states that B’s BER on its training set
distribution is at most α. Half of B’s training set is patterns on whichA had
a big error. By applying the weak learning assumption on this distribution,
we get: 1

2 · β + 1
2 · β2 ≤ α. Assuming worse case (equality), B’s BER on A’s

big errors is β2 = 2α − β, leading to:

ErrorAB = α · (2α − β)
RejectAB = β · (1− α)+ (1− (2α − β)) · α

ErrorABC = ErrorAB + α · RejectAB
= α · (2α − β)+ α · [β · (1− α)+ (1+ β − 2α) · α]

= 2α2 − αβ + αβ − α2β + α2 + α2β − 2α3 = 3α2 − 2α3

BOOST2: Error′AB is the percentage of patterns on which the median
would have a big error regardless of the third estimator (i.e., both A and B

Boosting Regression Estimators 507

have big errors with common sign). Reject′AB is the percentage of patterns
for which the median would have a big error iff the third predictor had a
big error. The unknown ratio of patterns on which A and B had big errors
of different signs (relatively to the total number of common big errors) is
marked ζ :

Error′AB = α · (2α − β) · (1− ζ)
Reject′AB = β · (1− α)+ (1− (2α − β)(1− ζ)) · α

Error′ABC = Error′AB + α · Reject′AB
= 3α2 − 2α3 − αζ(2α − β)+ α2ζ(2α − β)
= 3α2 − 2α3 − ζα(1− α)(2α − β)

4.4 Practical Considerations and Limitations. The above model refers
to a threshold γ for big errors. However, in regression problems, the goal is
usually to reduce the MSE, and this presents a dilemma about the desired
value of γ . Theoretically, the choice may be the lowest value for which we
have a γ -weak learner. In practice there are several considerations:

• The size of the data set is finite.

• Only a limited number of estimators are combined.

• Boosting may be effective, although our learner is not a γ -weak learner
(just like in classification).

The optimal γ is one for which the big errors are responsible for a significant
part of the MSE, but the BER is low (usually the sets on which the second
and third estimators are trained are more difficult and have a higher BER).
In most cases, the choice of a good γ may require tuning.

The use of this boosting algorithm may also change the basic learner ap-
propriate for the problem. It encourages the use of learners that are robust to
the presence of outliers (e.g., minimize MSE′ ≡MSE excluding x% greatest
errors). In the training stage, the worse points are less crucial, as they will be
learned by the other estimators. When the ensemble is used for prediction,
the worst of the three estimates (for any sample point) is not relevant, as the
median must be one of the other estimates.

In practical cases, noise will also be present. Its various effects on the
algorithm are mentioned in Section 4.6, but the bottom line is that boosting
may be effective when the errors of its basic estimators are large compared
to the noise level.

One of the limits of boosting in regression is that while its focus on the
real goal (MSE reduction) is limited, the basic learner already focuses on
the harder patterns (e.g., the learning rule in backpropagation practically
assigns a higher weight to patterns on which there is a big error). In iterative
prediction, however, training a predictor optimized for stepwise prediction
and using it iteratively is usually simpler and more effective than designing

508 Ran Avnimelech and Nathan Intrator

a predictor specifically for iterative prediction. Yet it is simple to reweight
the training set according to the performance of the iterative prediction,
while training the individual predictors (using the weighted training sets)
with a single-step prediction goal.

An extension of the principle that guided us to suggest BOOST2 is in-
cluding some of the patterns on which the first two predictors have big
errors (of same sign) in the training set of the third set. This may increase
the BER of the median predictor, but if these are patterns, for which there
is a big difference between the errors of the first two estimators, it is likely
to reduce its MSE. The two extents are using the original BOOST2 or adding
all such patterns to the set. A criterion for choosing some of the patterns
should consider the effect of choosing between the two predictors (i.e., the
difference in their squared errors) and the expected cost to performance on
other patterns of including it in the training set (i.e., the pattern’s difficulty).
A simple criterion we use is including those patterns on which the differ-
ence between the predictions is g.t. the threshold γ by which we defined
big errors.

4.5 Extensions of the Algorithm.

4.5.1 AdaBoost. Applying AdaBoost to regression tasks is done in a sim-
ilar way to the way in which boosting was applied to regression. The de-
scription of the actual algorithm is as follows:

1. Initialize uniform weights to patterns: wµ

1 = 1/N.

2. Train single predictor according to current weights.

3. Compute error ratio εt according to pattern errors εµt : εt =
∑

µ:εµt >γ
wµ

t .

4. If εt > 0.5 update weights: If pattern had a big error: wµ

t+1 = wµ
t · 0.5

εt
,

otherwise: wµ

t+1 = wµ
t · 0.5

1−εt
.

5. If halting condition has not been reached, return to step 2; halting con-
dition is either maximal number of hypotheses (predictors) or maxi-
mal number of consecutive failures (BER > 0.5).

The final prediction is a weighted median of the predictors with coefficients
αt = ln 1−εt

εt
.

In practice, AdaBoost may be less effective due to several reasons. In
many cases, the first regressor is significantly better than other regressors
(because it is evaluated on the original distribution) and α1 >

∑N
t=2 αt.

Therefore, the median is the first estimator. Another practical limit is the
fact that the first estimator is already a compromise between better local
estimations and the fact that in regression, the bigger errors already have a
big effect due to minimizing the squared error (unlike classification).

Boosting Regression Estimators 509

Because we are interested in reducing the MSE rather than the BER, a
nonweighted combination may result in a performance similar to or bet-
ter than that achieved by a weighted combination. The coefficients in the
weighted combination model are determined according to the BER of each
predictor, which is just a partial indicator of the quality of the predictor.
Similarly, combining the predictors through the mean is likely to be as good
as using the median.

4.5.2 Iterative Approach: Several Error Thresholds. A disadvantage of the
algorithm presented here is that it is effective only in reducing the errors to
be below some threshold (which cannot be lower than the median error).
A solution is using an iterative approach. Once the errors of the vast ma-
jority of the patterns are lower than the threshold, a lower threshold can be
chosen, and small ensembles may be trained on the training set reweighted
according to this threshold.

Assuming the error sizes are uniformly distributed beneath the old thresh-
old (a pessimistic assumption), a new threshold that is 0.7 the old one (half
the squared error) will still have a sufficiently small BER.

4.6 Boosting and Noisy Estimation. The description of the model ig-
nored noise. The presence of noise poses the problem of overfitting the
data—learning the noise rather than just the underlying function. There
are cases in which the use of boosting may increase the sensitivity to noise.
Therefore, boosting will be effective when the error level of the basic estima-
tors is higher than the noise level. Noise will not only interrupt the learning
process of each predictor, an effect emphasized by the split and “waste” of
the data, but also mark good estimates as big errors, thus overemphasizing
them.

A complete analysis of the behavior of boosting in the presence of noise
depends on the error distribution of the basic learner, the noise distribu-
tion, the exact effect the reweighting has on the basic estimators, and other
factors. However, if we have some estimate of the noise level, there may be
some rules of thumb that may indicate when noise may disturb boosting.
The reweighting should not emphasize the noise; the noise should be low
compared with the error level of the single estimator. It should also be low
relative to the threshold γ ; noise higher than γ or close to it (which may mark
small errors as big) should be rare. When a series of estimators is used, the
weights of patterns that had big errors by most or all the estimators should
be bounded according to the probability of noise > γ . This limits the num-
ber of estimators constructed and combined by the algorithm. This limit
may also be encountered if the threshold is too high compared to the error
level of a single estimator (because that will cause massive weight updates).
These limits may become relevant not only as a result of noise, but also due
to the capacity of the estimators. Another effect that should be noticed in the
presence of noise is the relation between the BER and the MSE. If γ is much

510 Ran Avnimelech and Nathan Intrator

higher than the average error, estimators trained on the reweighted set may
have an MSE that is higher than or similar to that of previous estimators but
a BER that is much lower. This may lead to giving them unjustified high co-
efficients in the weighted median used by AdaBoost. Such estimators may
overfit a few points with high noise.

The combination model of boosting has better immunity to noise than the
generation of new estimators. One advantage is that the (weighted) median
is at least as smooth as the single estimators. If there exist some metric D
and some function G s.t. for every estimator | fi(x) − fi(y)| < G(Dxy) then
the same smoothness condition is also true for the median. Furthermore,
the estimators that suffer from overfitting usually have a BER closer to 0.5
and will have lower coefficients.

When the noise level varies (or the confidence level of the estimator),
it may be useful to estimate it locally, and let that influence the flexible
threshold γ (x). Using such a threshold may focus more on errors of the
estimator rather than noise.

5 Other Attempts to Extend Boosting to Regression

There have been several other attempts to extend boosting to regression
tasks, one of which was also empirically tested (Freund & Schapire, 1995;
Drucker, 1997).

5.1 Function Estimation as a Set of Boolean Queries. Freund and
Schapire (1995) suggest an approach that considers a function estimation
task as an infinite series of boolean queries: c(xi, y) = (yi > y). A squared
error cost is achieved by the distribution of queries: P(y|xi) ∝ |y − yi| (the
possible values of y are bounded). Applying AdaBoost directly changes the
distribution of pairs; the conditional distribution P(y|x) changes as well as
P(x).

This method has several advantages. It attempts to reduce the MSE di-
rectly, rather than the number of big errors. It attempts to reduce the error
to zero (but stops when the hypothesis error exceeds 0.5). AdaBoost.R also
favors errors whose sign is opposite to the sign of previous errors. The main
disadvantage of this method is related to its implementation: The weak
learner has to perform a task that is more complex than minimizing the
weighted MSE. It may also be inappropriate for learning algorithms that
rely on the gradient of the error function (e.g., backpropagation). The gra-
dient increases only in the range between the target value and the current
prediction. Thus, the patterns that will have a small error at an early stage of
the training of an additional predictor will be emphasized. Another disad-
vantage is the massive weight changes when the errors are small compared
with the y bounds. The initial massive weight changes also cause the coeffi-
cient of the first regressor in the combination model to be much greater than
any other coefficient (even if error distribution is similar). Thus, in small en-

Boosting Regression Estimators 511

sembles, the median is actually the first predictor. This method also contains
a hidden hyperparameter: extending the y bounds would change the per-
centage of errors (by adding many easy queries), thus severely changing
the reweighting factors.

5.2 Boosting for Regression Using a Continuous Loss Function. Druc-
ker (1997) suggests a different approach. A loss function Lµ is assigned to
each pattern (for each estimator) that is a function (e.g., identity, square,
exponent) of the ratio between its error and the maximal error (in the range
[0, 1]). The error rate is the (weighted) average loss, βt = (1 − L̄)/L̄. The
weight updates are wµ

t+1 = wµ
t · βLµ · Ct. The algorithm terminates when

L̄ exceeds 0.5. Drucker reports that the algorithm outperforms bagging on
a set of benchmark synthetic tasks and on the Boston housing data set.
Drucker’s method is characterized by the use of a continuous loss function
for the reweighting of the patterns. The main advantages of this method are
that it concentrates on the big errors with no need to adjust a parameter to the
typical error, and it does not increase the complexity of the task presented
to the basic learner. Its main disadvantage is the dependence of the loss
function on the maximal error. This means that two estimators with the
same error distribution relative to the maximal error—but with the maximal
error of one double that of the other (i.e., ∀x : P(ε2 = x) = P(ε1 = 2x))—are
considered to have similar performance. This also leads to big changes in the
weighting as a single extreme value varies. If the algorithm is used just for
reweighting the patterns, while the combination is through a nonweighted
median/mean (which may be appropriate, as previously suggested), this
disadvantage becomes less significant.

5.3 Strengths and Drawbacks of Threshold-Based Boosting. The main
disadvantages of the method used in this work and in Freund (1995) are the
fact that it is limited to reducing the errors to the chosen threshold and not
down to zero and the need to choose this threshold. The significance of
the first limit varies with the error distribution. If further error reduction is
required, the method may be applied recursively, using a different threshold
at each level. The need to choose the threshold for big errors may actually
be an advantage at nontrivial tasks by providing flexibility and suggesting
a choice of threshold based on the error distribution. (For simple tasks,
a threshold slightly higher than the RMS error should be fine.) Another
advantage of this algorithm is the simplicity of its implementation.

A summary of such a comparison cannot state that one of the variants
is always superior to another. The performance of each method relies on
the specifics of the problem and the basic learner used. The mere fact that
a method can theoretically reduce the error to zero does not imply such
results in practice. AdaBoost.R is most appealing theoretically, but may

512 Ran Avnimelech and Nathan Intrator

Figure 2: Typical segment of laser-intensity time series.

suffer severely from practical drawbacks, such as its massive weight up-
dates and its error gradient. Drucker’s variant may suffer from the fact
that its coefficients for combining the predictors are not directly related to
the performance of each predictor (if a weighted combination is used). The
approach we followed may be limited theoretically and in its maximal con-
tribution but has two advantages for the layman. One advantage is that it is
simple to implement and does not affect the basic learner. The other advan-
tage is that by observing the error distribution and choosing the threshold,
one may be aware in advance of the effect this version of boosting may have
on the overall performance.

6 Results

6.1 Boosting on Laser Data. We demonstrate the capabilities of the
boosting algorithm on laser data from the Santa Fe times-series competition2

(data set A) (Weigend & Gershenfeld, 1993). This time series is the intensity
of a NH3-FIR laser, which exhibits Lorenz-like chaos (see Figure 2). It has a
sampling noise due to the A/D conversion to 256 discrete values. The be-
havior of the time series may be described as having “normal” behavior and
several types of “collapses.” Many models may adequately fit the “normal”
behavior while failing to learn the “catastrophic” behavior (see Figure 3).
The comparison of the performance is followed by a detailed analysis of
the behavior of each of the estimators and the resulting median estimator,
which may provide a greater sense of how this algorithm actually works.

We compared the performance of standard “bagging” ensembles and
boosted ensembles, all consisting of three networks. The basic learners were

2 http://www.cs.colorado.edu/ andreas/Time-Series/SantaFe.html.

Boosting Regression Estimators 513

Figure 3: Error distribution of neural net predictor on test set. Dotted lines mark
the RMS error.

Table 1: Normalized MSE X10−3 of Different Types of Three-Predictor Ensem-
bles on the Laser Data.

Ensemble
Type Bagging (3) Simple Boosting AdaBoost-3

BOOST1 BOOST2 BOOST3 Nonweighted Weighted

Average
Predictor 2.8 (0.3) 2.6 (0.2) 2.5 (0.2) 2.6 (0.2) 2.7 (0.3) 2.7 (0.4)

Median
Predictor 3.1 (0.3) 2.7 (0.1) 2.6 (0.2) 2.7 (0.2) 3.0 (0.3) 3.1 (0.3)

two-layer feedforward neural networks predicting the next value according
to the 16 previous values that were used as the net input. The hidden layer
consisted of six units. The results presented were collected using the first
8000 points (of the combined set of original training and continuation data)
as the training set and the following 2000 points as test data.

Table 1 compares the performance of ensembles implementing bagging,
the different variants of simple boosting, and AdaBoost. For each method
we presented two results: the performance of the ensemble with an average-
based combination model and its performance using a median-based com-
bination model.

The results are presented in normalized mean squared errors (NMSE).
NMSE is the MSE divided by the variance across the data. (When scaled
to the range [−1, 1] the laser data had mean −0.5326 and S.D. 0.3676.) The
performance achieved by our ensembles is significantly better than that re-

514 Ran Avnimelech and Nathan Intrator

ported in Nix and Weigend (1995) and the better-performing participants
in the Santa Fe time-series competition (Weigend & Gershenfeld, 1993): Nix
and Weigend report NMSE = 0.0139 for a single predictor (they used just
1000 points—unsampled them with an FFT method with factor 32—for
training.) The results presented in the competition are mostly of iterated
prediction. According to the partial results presented for single-step predic-
tion, the overall NMSE of the best method is about 0.01. The NMSE of the
other competitors is significantly higher.

6.1.1 Analysis of the Behavior of the Three Estimators. Figure 4 shows how
the different estimators behave on different patterns in one of the tests we
performed. The estimators colored red, green, and blue, respectively, were
analyzed on two groups of patterns: The easy patterns are the 50% of the
data on which both the first and second estimator had an error smaller
than 0.02 (this is lower than the threshold γ used in this test). The difficult
patterns are the 3% patterns on which at least one of the first two patterns
had an error g.t. 0.1 (this is higher than the γ used).3

6.1.2 Errors on Easy Patterns. The first estimator was trained on a data
set that represented the original distribution and has very accurate predic-
tions on these patterns (MSE ' 0.6 · 10−4,NMSE = MSE · 7.4). The second
estimator was trained on a set in which these patterns were underrepre-
sented and had accurate predictions (MSE ' 1.2 ·10−4). The third estimator
was trained only on more difficult patterns, so its error level on these pat-
terns (MSE ' 9 · 10−4) is higher.

The ensemble output is the median, so it is hardly influenced by the
worst result and has an MSE slightly lower than that of the first estimator.
Another effect, which is evident in these graphs, is the lack of correlation in
size and sign between errors of the different estimators on the patterns in
this group.

6.1.3 Errors on Difficult Patterns. The first estimator (MSE ' 0.025 on
these patterns) and the second estimator (MSE ' 0.03) were influenced
mainly from the “normal” patterns and err on these patterns. Because the
errors of both estimators on these patterns are quite decorrelated (compared
to independently trained estimators), a better estimator can influence the
median. The figure also shows that some of the patterns that were estimated
accurately by the first estimator were underrepresented in the train set of
the second estimator, and it had big errors on them.

3 The criteria for the two groups create some of the asymmetry between the estimators
because they filter according to a condition on the error of the first two estimators and not
the third one, but this effect is significantly smaller than the actual asymmetry revealed
in the graphs.

Boosting Regression Estimators 515

Figure 4: Errors of the three estimators on the easy patterns (top) and the difficult
patterns.

516 Ran Avnimelech and Nathan Intrator

The third estimator was trained only on “difficult” patterns where its
output may have a great impact on the ensemble output. Therefore, it has
a better performance on such patterns (MSE ' 0.01). Its error on these
patterns is almost always similar to the better estimator of the previous
two, or better.

The ensemble output—the median—has MSE ' 0.012 on these patterns,
due to the relatively good performance of the third estimator and the rela-
tively weak correlation between errors of the first two estimators.

6.2 Iterative Time-Series Prediction. We performed a further set of tests
on the laser data. In these tests, the goal was to predict the next 16 values. The
error measure was the sum of the squared errors on all 16 predicted values.
The predictors used were the same 16-input, 6-hidden neural networks
used previously. These networks were trained according to the single-step
prediction goal. However, the reweighting used by the boosting algorithm
was based on the performance of the iterative prediction.

We compare the performance of ensembles constructed by the several
variants of the boosting algorithm to those based on bagging and to single
networks. For each ensemble, there are four possible outputs: The combi-
nation may be performed either at each step or on the final predictions, and
it may use mean or median. The NMSE of the individual networks was
0.0112 ± 0.022. (The first networks in the boosting esembles were slightly
better: .0095± 0.0037.)

Table 2 compares bagging ensembles, AdaBoost ensembles, and two vari-
ants of simple Boosting (BOOST2 is meaningless in this context). The thresh-
old used for boosting was NMSE of 0.22; typically 5% to 10% of the patterns
have an error beyond this threshold, and their contribution to the total MSE
is 85% to 90%. There was no significant difference between the performance
of bagging as the size of the ensemble changed from two to six. We present
just these two ensembles. The ensemble mean in both variants of simple
boosting is typically with NMSE of order of 1 and is not presented in Ta-
ble 2. The combination model uses uniform weights unless stated otherwise.
For the five-predictor AdaBoost ensembles, we present two weighted com-
binations: using the weights specified in AdaBoost, or these weights if they
are positive and 0 otherwise.

These results demonstrate the advantage of boosting over standard en-
sembles in scenarios in which its explicit reweighting of the patterns differs
from the implicit one of the individual predictors. Boosting becomes more
effective than bagging, even when only two predictors are combined. Us-
ing five predictors within an ensemble, a 50% error reduction is achieved.
These results also support the MSE-oriented modification we introduced to
simple boosting. (The advantage of BOOST3 is greater than the standard de-
viation in the table implies, as it was rarely inferior to BOOST1 using the same
first two predictors.) The advantage of the overall combination model over
the stepwise combination may be attributed to the reweighting, although

Boosting Regression Estimators 517

Table 2: Normalized MSE X10−2 of Different Types of Ensembles on the Iterated
Prediction Task.

Combination Model Step-wise Step-wise Overall Overall
Combination Model Mean Median Mean Median
Bagging—2 nets 8.2 (1.0) 7.8 (1.2)
Boosting—2 nets 6.9 (1.1) 6.3 (1.3)
Bagging—6 nets 8.5 (0.8) 9.0 (0.5) 7.4 (0.3) 7.9 (0.7)
AdaBoost—3 nets 5.5 (0.8) 5.6 (1.0) 4.8 (0.6) 5.0 (1.2)
BOOST1 — 6.7 (1.4) — 6.4 (0.8)
BOOST3 — 5.8 (1.4) — 5.4 (1.0)
AdaBoost—4 nets 5.3 (1.4) 5.0 (1.4) 4.5 (1.0) 4.3 (1.1)
AdaBoost—5 nets 5.0 (1.1) 4.8 (1.3) 4.2 (0.8) 4.3 (1.0)
AdaBoost—5 nets 6.6 (1.6) 9.3 (3.9) 5.5 (1.6) 9.4 (3.7)
weighted averages
AdaBoost—5 nets 6.5 (1.6) 9.5 (3.7) 5.4 (1.6) 9.5 (3.7)
positive weights

a smaller but similar effect exists in bagging too. Median is the combina-
tion model for simple boosting, but in AdaBoost it has no advantage over
mean (in bagging, mean is better). Our tests also found simple averaging
(mean or median) to outperform the weighted versions. This is due to the
large coefficients of the earlier predictors (especially the first one), while the
performance of the different predictors is similar (actually, for the first few
predictors, there is a gradual improvement). The median was usually the
first predictor. The mean was less affected. It clearly outperforms bagging
but is inferior to the nonweighted mean.

6.3 Mackey-Glass Time Series. The Mackey-Glass differential-delay
equation (Mackey & Glass, 1977),

dx(t)
d(t)

= −bx(t)+ a
x(t− τ

1+ x(t− τ)10
(6.1)

and the time series resulting from its integration have attracted much focus
as a statistical learning benchmark (Moody, 1989; Crowder, 1990). We per-
formed tests on a data set of this time series in the CMU repository.4 This
specific time series was generated with τ = 17, a = 0.2, and b = 0.1. The
input data used are x(t−18), x(t−12), x(t−6), x(t), and the task is to predict
x(t+6). Training data consist of 3000 data points, and the test set consists of
500 data points, starting 1800 time steps after the end of the training data.

We compared the performance of ensembles constructed by the Ad-
aBoost algorithm to those constructed by bagging. The basic learner we

4 http://www.boltz.cs.cmu.edu/benchmarks/mackey-glass.html

518 Ran Avnimelech and Nathan Intrator

Table 3: Normalized RMS X10−2 of different types of ensembles on Mackey-
Glass data

Ensemble-Type Bagging AdaBoost

Combination Median Mean Weighted Weighted Nonweighted Nonweighted
Method Median Mean Median Mean

3 predictors 1.30 (0.07) 1.25 (0.04) 1.28 (0.04) 1.13 (0.03) 1.20 (0.04) 1.13 (0.02)
4 predictors 1.24 (0.03) 1.23 (0.03) 1.22 (0.05) 1.10 (0.01) 1.12 (0.02) 1.10 (0.01)
5 predictors 1.24 (0.04) 1.22 (0.04) 1.21 (0.05) 1.08 (0.02) 1.09 (0.02) 1.07 (0.01)

used was a two-layer neural network with 20 hidden units. Such a learner
achieved normalized RMS of 0.014, which compares favorably with other
results achieved on these data. Table 3 shows the normalized RMS of en-
sembles constructed by bagging and by AdaBoost, using either the aver-
age or the median as the ensemble output. For AdaBoost we present the
performance of both the weighted and nonweighted median/average. The
normalized RMS of simple boosting (three predictors) was 0.0124± 0.0004
using the median as the output and 0.0148 ± 0.0012 using the mean. (This
result is inferior to AdaBoost and similar to Bagging.)

These results show the advantage of AdaBoost over bagging. They also
demonstrate that the nonweighted averages may be at least as good as the
weighted averages and that the mean may be as least as good as the median.
The relatively good performance of the nonweighted versions is due to the
limit of the BER in indicating the quality. The BER provides some measure
of the relative performance of each estimator, but because these coefficients
ignore the finer details of the error distribution, they lack an advantage over
a simple average. The relatively poor performance of the weighted mean
results from the fact that in some cases, it is exactly the first predictor, due
to its higher coefficient. The dichotomy between these cases and the cases
in which all the predictors are used also leads to the higher variance in its
performance.

7 Discussion

This work reviews the extension of the boosting algorithm to fit regression
problems and focuses on a threshold-based application of boosting for re-
gression. This method is designed to fit tasks in which poor performance is
due to the effect of difficult patterns, unfitted by the model. Various tasks,
for which large data sets are available, exhibit this behavior and may gain
from this new procedure. The basic principle of this method is regarding
“big” estimation errors as “classification-like” errors and implementation
of a mechanism to reduce their amount.

Boosting Regression Estimators 519

We focus on the practical aspects of boosting in regression. The model for
extending the algorithm is based on an analogy of regression and classifica-
tion errors. While this leads to a possible algorithm that reduces the number
of errors beyond a given threshold and consequently reduces the MSE, cer-
tain minor modifications may be more appropriate for reducing the MSE.
We also present a comparison between this method and other versions of
boosting in regression (Freund & Schapire, 1995; Drucker, 1997). Although
this comparison does not lead to a conclusive choice of one of these versions
as superior to others, it emphasizes the advantages and drawbacks of each
method. Other methods may be more appealing theoretically, but they seem
to have practical drawbacks.

The results achieved on the laser data and the Mackey-Glass time series
demonstrate the potential of decorrelating the errors of different predictors,
using threshold-based boosting, and combining them in a robust manner.
Nonweighted averages and the mean of the predictors, rather than the me-
dian (in AdaBoost), may in many cases perform as least as good as the
weighted median specified in the theoretical model. This is due to the fact
that the weights are based on the BER rather than the MSE.

The tests performed on an iterative prediction task emphasize the advan-
tage of using boosting when the goal presented to the individual predictors
does not fully represent the real goal. In such cases, the boosting mecha-
nism may contribute to the learning, something that is not handled by the
individual predictor, thus being more effective.

Our analysis of the behavior of different estimators on different kinds of
patterns (for simple boosting) provides insight into the way error reduction
is achieved. The performance of the third estimator on easy patterns is not
as good as of the first two, but it has almost no influence on the median. On
the difficult patterns, however, it has a lower error rate; thus, the median
will usually have either the smaller of the two errors or some intermediate
value when these errors have different signs.

References

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24 (TR-421), 123–140.
Breiman, L. (1996b). Bias, variance and arcing classifiers (Tech. Rep. TR-460). Berke-

ley: Department of Statistics, University of California, Berkeley.
Breiman, L. (1997). Arcing the edge (Tech. Rep. TR-486). Berkeley: Department of

Statistics, University of California, Berkeley.
Crowder, S. (1990). Predicting the Mackey-Glass timeseries with cascade corre-

lation learning. In Connectionist Models: Proceedings of the 1990 Summer School.
Drucker, H. (1997). Improving regressors using boosting techniques. In 14th

International Conference on Machine Learning. San Mateo, CA: Morgan Kauf-
mann.

Drucker, H., Schapire, R., & Simard, P. (1993). Improving performance in neu-
ral networks using a boosting algorithm. In S. J. Hanson, J. D. Cowan, &

520 Ran Avnimelech and Nathan Intrator

C. L. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 42–
49). San Mateo, CA: Morgan Kaufmann.

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York:
Chapman & Hall.

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information
and Computation, 121(2), 256–285.

Freund, Y., & Schapire, R. (1995). A decision-theoretic generalization of on-line
learning and an application to boosting. In 2nd European Conference on Com-
putational Learning Theory.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias-
variance dilemma. Neural Computation, 4, 1–58.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation, 3(1), 79–87.

Mackey, M., & Glass, L. (1977). Oscilations and chaos in physiological control
systems. Science, (197).

Meir, R. (1995). Bias, variance and the combination of least square estimators.
In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information
processing systems, 7 (pp. 295–302). Cambridge, MA: MIT Press.

Moody, J. (1989). Fast learning in multi-resolution hierarchies. In Advances in
neural information processing systems, 1 (pp. 29–39). San Mateo, CA: Morgan
Kaufmann.

Nix, D. A., & Wiegend, A. S. (1995). Learning local error bars for nonlinear
regression. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural
information processing systems, 7 (pp. 489–496). Cambridge, MA: MIT Press.

Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An effective regular-
ization technique. Connection Science, 8(3/4), 355–372.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5(2),
197–227.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1997). Boosting the margin: A
new explanation for the effectiveness of voting methods. In Machines That
Learn—Snowbird.

Schwenk, H., & Bengio, Y. (1997). Adaptive boosting of neural networks for character
recognition (Tech. Rep. TR-1072). Montreal: Department d’Informatique et
Recerche Operationnelle, Université d’Montreal.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27,
1134–1142.

Waterhouse, S. R., & Cook, G. (1997). Ensemble methods for phoneme classifica-
tion. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information
processing systems, 9. Cambridge, MA: MIT Press.

Weigend, A. S., & Gershenfeld, N. A. (Eds.). (1993). Time series prediction: Fore-
casting the future and understanding the past. Reading, MA: Addison-Wesley.

Received June 5, 1997; accepted April 20, 1998.

