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Abstract. We introduce a new method for obtaining the fixed points for neurons that follow the

BCM learning rule. The new formalism, which is based on the objective function formulation,

permits analysis of a laterally connected network of nonlinear neurons and allows explicit

calculation of the fixed points under various network conditions. We show that the stable fixed

points, in terms of the postsynaptic activity, are not altered by the lateral connectivity or nonlinearity.

We show that the lateral connectivity alters the probability of attaining different states in a network

of interacting neurons. We further show the exact alteration in presynaptic weights as a result of

the neuronal nonlinearity.

1. Introduction

The BCM theory of cortical plasticity has been introduced by Bienenstock, Cooper and Munro

(BCM) (Bienenstock et al 1982) to account for the changes observed in cell response of visual

cortex due to changes in visual environment.

The BCM synaptic modification rule has the form

ṁ(t) = d φ(c, θ)

where m is the synaptic weight vector, φ is a nonlinear function of the postsynaptic activity c

which has two zero crossings, one at c = 0 and the other at c = θ , and d is the presynaptic

activity vector. The variable θ , also called the moving threshold, is a super-linear function of

the history of cell activity.

It was shown that a variant of this theory performs exploratory projection pursuit using

a projection index that measures multi-modality (Intrator and Cooper 1992). This learning

model allows modelling and theoretical analysis of various visual deprivation experiments

such as monocular deprivation (MD), binocular deprivation (BD) and reversed suture (RS)

(Intrator and Cooper 1992) and is in agreement with the many experimental results on visual

cortical plasticity (Clothiaux et al 1991, Law and Cooper 1994, Shouval et al 1996, 1997).

Recently, it was shown that the consequences of this theory are consistent with experimental

results on long term potentation (LTP) and long term depression (LTD) (Dudek and Bear 1992,

Kirkwood et al 1993, 1996). A network implementation which can find several projections in
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parallel while retaining its computational efficiency, was found to be applicable for extracting

features from very high-dimensional vector spaces (Intrator et al 1991, 1996, Huynh et al

1996).

Up to now, we have analysed the properties of the BCM rule using two different methods.

In the initial BCM paper (Bienenstock et al 1982) a general form of the φ function was

assumed. A fixed-point method with linear stability analysis was used to analytically find

the stable fixed points in two simple cases: (a) when the inputs are two linearly independent

vectors, in the positive quadrant of two-dimensional space; (b) for N orthogonal vectors in the

positive quadrant of an N -dimensional space. In both cases the stable fixed point was shown to

be the maximally selective one, i.e the weight vector (m) becomes orthogonal to all the inputs

but one. Later an objective function formulation was used in the case of the quadratic form of

φ (Intrator and Cooper 1992). This method has made it possible to extend these results to the

case of N linearly independent vectors that are not restricted to lie in the positive quadrant.

In this paper we extend our earlier analysis (Intrator and Cooper 1992) to a laterally

connected network of nonlinear neurons. We characterize the space of solutions, their stability

properties and their temporal evolution with different configurations of the cortico-cortical

synapses (lateral interactions).

The method we use here is a novel direct method in which we study a matrix form of

the dynamics using DT, the matrix spanned by the individual input vectors (d). We solve

a deterministic matrix equation (e.g., equation (3)) rather than an equation averaged over

the inputs. This method enables analysis of different more realistic cases such as nonlinear

(sigmoidal) neurons and networks with various forms of lateral interactions.

The results are surprising; we find that the same fixed points exist for the activity c in all

these different cases. Neither lateral interactions nor the nonlinearity change the nature of the

stable fixed points in terms of the postsynaptic activity. However, the fixed points in terms of the

synaptic weight vectors (m) are altered (exact solution is given). A network of N interacting

BCM neurons has solutions that are combinations of all possible single cell solutions. There

are two basic types of solutions; The first is that different cells become selective to different

input patterns, this is termed network selective states. The other possibility is that different

cells become selective to the same input patterns, this is termed network associative states.

In both cases the solutions are exactly the same as those of a network with non-interacting

neurons. Thus, surprisingly, the lateral connectivity does not change the fixed points (in terms

of c) or their stability. Instead, it was found that the lateral connectivity affects the probability

of attaining selective and associative states. As expected, inhibition favours selective states

while excitation favours associative states. This analysis is supported by simulations of a BCM

network in averaged (batch learning mode) or stochastic form.

2. A single neuron

The mathematical technique and notation used throughout are introduced in this section using

a simple example of a single linear neuron in a two-dimensional (2D) space receiving two

inputs. Intrator and Cooper (1992) presented an objective function formulation for the theory

which indicates what the neuronal goal is and enables simple analysis of the dynamics. Their

objective function is given by

R(m) = − 1
3
E

[

m · d
]3

+ 1
4
E2

[

m · d
]2

(1)

where E denotes the expectation with respect to the input environment, m is the presynaptic

weight vector and d is a stochastic input vector taken from the distribution of the environment.

This function is bounded from below, and it thus has (local) minima which can be attained
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by gradient descent ṁ = −∇R. This leads to an approximate solution via the stochastic

differential equation

ṁ = d φ(c, θ) (2)

where c = m·d is the neuronal activity, m and d are the synaptic strength and incoming signal

vectors, respectively. The function φ(c, θ) = c(c − θ) is a quadratic function that changes

sign at a dynamic threshold that is a nonlinear function of some time-averaged measure of

cellular activity, which is replaced (under the slow-learning assumption) by the expectation

over the environment θ = E[c2] =
∑n

i=0 pi(m · di)
2 (Intrator and Cooper 1992), where pi is

the probability of choosing vector di from the data set. The averaged version of this equation

can be written as

ṁ(t) = PDTφφφ(c, θ) (3)

where the matrix of inputs D is composed of the different input vectors, and P is a diagonal

matrix of the probabilities. In the simple, 2D case, D =
(

d11

d21

d12

d22

)

and P =
(

p1

0
0
p2

)

, where pi

is the probability of choosing the ith vector from the data set. The neuronal activity due to

input environment is given by c =
(

c1

c2

)

whose elements are the neuron’s outputs in response to

the two input and φφφ =
(

φ(c1,θ)

φ(c2,θ)

)

is the vector of the corresponding neuronal activation function.

Using this notation, the averaged form of the BCM rule is given by

ṁ1 = (m1d11 + m2d12)((m1d11 + m2d12) − (p1(m1d11 + m2d12)
2

+ p2(m1d21 + m2d22)
2))d11p1 + (m1d21 + m2d22)((m1d21 + m2d22)

− (p1(m1d11 + m2d12)
2 + p2(m1d21 + m2d22)

2))d21p2

(4)
ṁ2 = (m1d11 + m2d12)((m1d11 + m2d12) − (p1(m1d11 + m2d12)

2

+ p2(m1d21 + m2d22)
2))d12p1 + (m1d21 + m2d22)((m1d21 + m2d22)

− (p1(m1d11 + m2d12)
2 + p2(m1d21 + m2d22)

2))d22p2.

We are interested in finding the stationary states of (2) or equivalently of (3). From (3) we note

that the condition ṁ(t) = 0 implies that PDTφφφ must be zero, and this is possible if and only

if φφφ = 0, because we require that the input vectors are linearly independent (i.e. |D| 6= 0).

The condition φφφ = 0 gives

(m1d11 + m2d12)((m1d11 + m2d12) − (p1(m1d11 + m2d12)
2 + p2(m1d21 + m2d22)

2)) = 0

(m1d21 + m2d22)((m1d21 + m2d22) − (p1(m1d11 + m2d12)
2 + p2(m1d21 + m2d22)

2)) = 0
(5)

namely

c1(c1 − (p1c
2
1 + p2c

2
2)) = 0

c2(c2 − (p1c
2
1 + p2c

2
2)) = 0.

(6)

The fixed points are given by

(c1, c2) =

{

(0, 0),

(

1

p1

, 0

)

,

(

0,
1

p2

)

,

(

1

p2 + p1

,
1

p2 + p1

)}

.

The m solutions can be obtained through the inverse transformation m = D−1c. Stability

analysis (see the appendix as well as Bienenstock et al (1982) and Intrator and Cooper (1992))

shows that the stable solutions are the selective fixed points
(

1
p1

, 0
)

and
(

0, 1
p2

)

.
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2.1. A single neuron with n inputs

The extension to a single neuron with n inputs is quite simple. We can consider the input

matrix

D =













d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

...

dn1 dn2 · · · dnn













whose rows di represent n-input vectors. The determinant of D is non-zero since the inputs

are linearly independent. Using previous notation we have

c = (c1, c2, . . . , cn) = (m · d1, m · d2, . . . , m · dn)

φφφ = (φ1, φ2, . . . , φn) = (φ(c1, θ), φ(c2, θ), . . . , φ(cn, θ)).

The threshold θ is given by

θ ≡ E[c2] =

n
∑

j=1

pj (m · dj )
2 =

n
∑

j=1

pjc
2
j . (7)

The dynamics is given by













ṁ1

ṁ2

...

ṁn













=













p1 0 0 · · · 0

0 p2 0 · · · 0

...
...

...
...

0 0 0 · · · pn

























d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

...

dn1 dn2 · · · dnn













T 











φ1

φ2

...

φn













or simply

ṁ(t) = PDTφφφ. (8)

As in the two-dimensional case, stationary points are characterized by φφφ = 0, to give

c1

(

c1 −

( n
∑

j=1

pjc
2
j

))

= 0

c2

(

c2 −

( n
∑

j=1

pjc
2
j

))

= 0

...

cn

(

cn −

( n
∑

j=1

pjc
2
j

))

= 0

or in a more compact form

ci

(

ci −

( n
∑

j=0

pjc
2
j

))

= 0 i = 1, . . . , n (9)
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The solutions of (9) are (we report only the equivalence classes)

S =











































































(0, 0, 0, . . . , 0)
(

0, 0, . . . ,
1

pi

, . . . , 0

)

(

0, . . . , 0,
1

(pi + pj )
, 0, . . . , 0,

1

(pi + pj )
, 0, . . . , 0

)

(

0, . . . , 0,
1

(pi + pj + pk)
, 0, . . . , 0,

1

(pi + pj + pk)
, 0, . . . , 0,

1

(pi + pj + pk)
, . . . , 0

)

...

(1, 1, 1, . . . , 1).

The corresponding m solutions are m = D−1c. Stability analysis (see the appendix as well as

Intrator and Cooper 1992) shows that the only stable states (in the Lyapunov sense) are those

with maximum selectivity given by
(

0, 0, . . . , 1/pi, . . . , 0
)

, i = 1, . . . , n.

It turns out that a well known immunological network model (Weisbuch et al 1990) has

the same set of solutions S (Castellani et al 1998).

3. A network with lateral interactions

When a neuron is in a network, the incoming inputs can arise from the thalamus, for instance the

LGN if these neurons are in V1. Another set of inputs can arise from other cortical neurons. In

a network setup, the vector of synaptic weights m for a single neuron now becomes a matrix M

for all the network neurons. The vector of neuronal activities c (due to the matrix of inputs D)

now becomes a matrix of neuronal activities, however we shall treat it as a super-vector. We

start with the formulation as given in Cooper and Scofield (1988) for a network with a single

input d, the network activity is therefore given by

c = Md + Lc (10)

where L is the cortico–cortical connectivity matrix in which lij is the interaction between

neuron i (the target) and neuron j (the source); d is a single input vector and M is the matrix

of the feedforward (thalamocortical) synapses; mij represents the feedforward connections to

cell i arising from input channel j .

For a two-neuron network we can write the cortico–cortical matrix as

L =

(

0 l12

l21 0

)

.

From equation (10) we obtain

c = (I − L)−1Md (11)

namely
(

c1

c2

)

=
1

1 − l12l21

(

1 l12

l21 1

) (

m11 m12

m21 m22

) (

d11

d12

)

. (12)

From these equations, which represent network activity due to a single input vector, we switch

notation as to characterize a solution that represents network activity resulting from the full input

environment. For this, we define a super-vector with components which represent the activity

of neuron i due to input dj , c = (c11, c12, c21, c22). m also becomes a super-vector which
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now represents the synaptic weight of all the neurons in the network (mij is the j th synapse

of neuron i), so that the dynamics is given by

ṁ11 = φ(c11, θ1)d11p1 + φ(c12, θ1)d21p2

ṁ12 = φ(c12, θ1)d12p1 + φ(c12, θ1)d22p2

ṁ21 = φ(c21, θ2)d11p1 + φ(c22, θ1)d21p2

ṁ22 = φ(c21, θ2)d11p1 + φ(c22, θ2)d22p2

(13)

or

ṁ(t) = P2D
T
2φφφ (14)

where DT
2 is the direct product of the input matrices: DT

2 = DT ⊗ DT, P2 is the direct product

of probability matrices P2 = P ⊗ P and φφφ is the vector of the neuronal activation function:

φφφ = (φ11, φ12, φ21, φ22). For the fixed-point equation we require again that φφφ = 0. Using the

definition of c the neuronal activity takes the form

c = L2D2m

where the two matrices L2 and D2 are

L2 =
1

1 − l12l21











1 0 l12 0

0 1 0 l12

l21 0 1 0

0 l21 0 1











D2 =











d11 d12 0 0

d21 d22 0 0

0 0 d11 d12

0 0 d21 d22











The fixed-point equation associated with the system (13) becomes

c11(c12 − (p1c
2
11 + p2c

2
12)) = 0

c12(c12 − (p1c
2
11 + p2c

2
12)) = 0

c21(c21 − (p1c
2
21 + p2c

2
22)) = 0

c22(c22 − (p1c
2
21 + p2c

2
22)) = 0

(15)

As the system is now decoupled, the solutions are the direct product of the solutions of the

two-dimensional system, namely,

(c11, c12, c21, c22) =

{

(0, 0),

(

1

p1

, 0

)

,

(

0,
1

p2

)

,

(

1

p2 + p1

,
1

p2 + p1

)}

⊗

{

(0, 0),

(

1

p1

, 0

)

,

(

0,
1

p2

)

,

(

1

p1 + p2

,
1

p1 + p2

)}

.

As before, the m solutions can be obtained by the inverse transformation m = D−1
2 L−1

2 c.

Stability analysis (see the appendix) shows that the previously characterized set of

solutions is stable as long as ‖ L ‖< 1.

Similar analysis holds for a network of n neurons with lateral connections that receive

n input vectors. It is easy see that for n neurons the matrix Ln takes the following form:

Ln ≡













Ln11
Ln12

· · · Ln1n

Ln21
Ln22

· · · Ln2n

...
...

Lnn1
Lnn2

· · · Lnnn













where Lnij
is a diagonal n × n matrix with diagonal elements from (I − L)−1

ij ; or equivalently

Lnij
= (I − L)−1

ij I with I the identity n×n matrix. For the input matrix we have the same form
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of the two-neurons network, based on an iterated direct product: Dn = D ⊗ D ⊗ D ⊗ · · · D;

and the linear substitution that permits the exact solution of the network is c = LnDnm with

obvious inverse if |D| 6= 0 and |Ln| 6= 0†.

4. Basins of attraction

As can be seen above and in the appendix, all the stable solutions in the single-neuron case are

also stable in the network case. For example, one possible stable solution is when all neurons

become selective to the same input. In the two-dimensional case, the stable solutions (in terms

of c) are (see the appendix)
(

0,
1

p2

, 0,
1

p2

) (

0,
1

p2

,
1

p1

, 0

) (

1

p1

, 0,
1

p1

, 0

) (

1

p1

, 0, 0,
1

p2

)

.

While network interactions do not change the stability of the possible solutions, they do

change the basins of attraction associated with different solutions. Numerical integration of the

system (13), both in averaged and stochastic form, shows that the size of the basin of attraction

is changed. When all the interaction terms lij are set to zero, the probability of reaching one

of the four stable states is the same (equal attracting power). This symmetric situation can be

broken by setting the cortico–cortical connections lij to non-zero values; When lij are negative,

there is an increase in the probability of reaching the states
(

0, 1
p2

, 1
p1

, 0
)

or
(

1
p1

, 0, 0, 1
p2

)

that

correspond to different states of selectivity for neurons 1 and 2 (we call them network selective

states). When the connections lij are positive, there is an increase in the probability to reach

the states
(

0, 1
p2

, 0, 1
p2

)

or
(

1
p1

, 0, 1
p1

, 0
)

which correspond to equal selectivity states (we call

them network associative states).

Table 1. Simulation results for a two-neuron network. The system (14) is integrated over initial

conditions spanning a hypercube of size 0.1 for different values of the lateral connections L. The

table gives the distribution of the different solutions.

% of % of

l values selective states associative states

−0.2 98.1 1.9

−0.1 88.87 11.13

−0.05 76.9 23.1

0 50.45 49.45

0.05 42 58

0.1 15 85

0.2 6 94

The numerical simulations on system (13) are summarized in table 1. They show that

the probability of selectivity or association monotonically varies with the magnitude of the

L connections. There is an apparent asymmetry in the effect of positive or negative values of

the interactions on the probabilities. We think that this results from using only positive values

as inputs, so that negative interactions which tend to reduce cell activity have a more coherent

effect than positive interactions. This is currently being further investigated (Castellani et al

in preparation).

The extension to a network with n neurons is shown first on an n = 3 network with

a subsequent generalization to n > 3. In a three-neuron network, the number of stable

† If we derive the BCM from the objective function we obtain a slightly different equation from (14), namely

ṁ(t) = L2P2D2φφφ. The study of the fixed points of this equation is the same as in the previous case because the

matrix Ln is non-singular.
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solutions is given by the product of the single-neuron stable solutions, namely, 33. The

number of completely selective solutions is 3!, which corresponds to the number of bijective

functions between the set of three-input vectors and the three-output neurons. The associative

solutions can be divided into completely associative and partially associative, where completely

associative refers to those solutions that associate all the neurons to a single input pattern. It

is clear that the number of such solutions coincides with the number of neurons. The other

solutions exhibit an incomplete associativity; for example a typical solution in this class has

two neurons which are selective to the same input and the third neuron is selective to another.

The number of such solutions is found as the difference between the total number of solutions,

the completely selective and associative: 33 −3!−3. For a general n-size network the number

of stable solutions is nn, the number of completely selective solutions is n! and the number

of completely associative solutions is n. Thus, the number of solutions with incomplete

associativity is nn − n! − n.

If all the lateral connections are negative, different neurons reach different stable states

(selective state) with higher probability, while if the elements li,j are positive, different neurons

are more likely to reach a similar stable state (associative state). The situation of intermixed

lateral interaction where some are positive and some are negative (as in the Mexican hat lateral

profile) are still being worked out. Simulations show that a combination of associative and

selective states emerge.

5. Nonlinear neurons

5.1. A single neuron

The BCM rules can be extended to nonlinear neurons in which the neuron’s activity is defined

to be c = σ(m·d) where σ is a smooth sigmoidal function. The exact derivation of the learning

procedure by using the the minimization of the objective function (Intrator and Cooper 1992)

gives

ṁ(t) = µE
[

φ(σ(m · d), θ)σ ′(m · d)d
]

(16)

From this we can write the analogue to equation (3) as

ṁ(t) = 6PDφφφ (17)

where D is the input matrix, φφφ is the vector of φ calculated at the points (σ (m · d1), σ (m ·

d2), . . . , σ (m · dn)), and 6 is a matrix containing the derivatives of σ at the points

(m · d1, m · d2, . . . , m · dn):

6 =













σ ′
1 0 0 · · · 0

0 σ ′
2 0 · · · 0

...
...

0 0 0 · · · σ ′
n













(18)

The matrix 6 is positive definite as σ is smooth and monotonic, thus, the search for the

stationary states of (17) leads to φφφ = 0. For convenience we define the variable ζ such that

ζ = σ(m · d) and ζ = (σ1, σ2, . . . , σn). Thus the fixed-point solutions in terms of ζ are

equivalent to the solutions of (9). It follows that the solutions for m result from solving an

equation of the form m = D−1σ−1(ζ); with ζ ∈ S (see section 2.1). The case of n nonlinear

neurons without interaction, follows from the combination of the linear case and the nonlinear

case.
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5.2. A nonlinear neuron with lateral interactions

The case of nonlinear neurons with lateral interactions is also tractable, but requires the

complete derivation from the objective function (Intrator and Cooper 1992). This function

in the case of a nonlinear neuron takes the form (compare with equation (1))

R(m) = − 1
3
E

[

σ 3(ξ)
]

+ 1
4
E2

[

σ 2(ξ)
]

(19)

where the variable ξ is the inhibited activity of the neurons prior to applying the nonlinearity

σ . Using the type of network described in section 3 we would define ξ as ξ = (I − L)−1Md.

This leads to the following gradient descent dynamics:

E[−∇mRm] =
{

E
[

σ 2(ξ)σ ′∇mξ
]

− E
[

σ 2(ξ)
]

E
[

σ(ξ)σ ′∇mξ
]}

= E
[

φ(σ(ξ), θm)σ ′∇mξ
]

= 6PLDφ(σ(ξ), θm). (20)

From equation (20) we can see that the stationary solutions arise from the equation φφφ(σ(ξ)) =

0, because the matrices 6, L, D are positive definite; hence the solutions are

m = D−1L−16−1(ζ )

with ζ ∈ S.

6. Discussion

Full characterization of a laterally connected network of nonlinear BCM neurons has been

given for linearly separable input environments. As in the previous linear, single-cell cases

analysed, the fixed points are such that each neuron responds to only one of the input patterns.

The solution generates neuronal activity distribution with a large mass at zero in a similar

manner to the single-neuron case. A network with similar neuronal distribution, the rectified-

Gaussian belief network has recently been shown to be useful for generative models that

discover sparse distributed representations of objects (Hinton and Ghahramani 1997).

For a network of interacting neurons all different combinations of stable single cell

solutions are also stable. We performed simulations of the system (14) by integrating over

initial conditions for different values of the lateral connections. This allows us to characterize

the probability of finding the system in either an associative or selective solution. The lateral

connections alter the size of the basin of attraction, so that inhibition increases the probability

of obtaining selective states and excitation increases the probability of obtaining associative

states. This behaviour holds for different values of the lateral connections L, with the property

that increased values (of inhibitory or excitatory) connections increase the probability of falling

into the selective or associative regime, respectively.

This analysis is the first step in analysing a network of nonlinear BCM neurons under

a realistic visual environment. The next step is to move from the linearly independent

environment that we have been using so far in our analysis to a realistic environment, where

inputs are dependent as we have been recently using in our simulation (Blais et al 1998).
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Appendix. Stability analysis

To analyse the stability of the solutions, we examine the Jacobian matrix, which in a two-

dimensional case is

(

d11 d12

d21 d22

)T







∂φ1

∂c1

∂φ1

∂c2

∂φ2

∂c1

∂φ2

∂c2













∂c1

∂m1

∂c1

∂m2

∂c2

∂m1

∂c2

∂m2







or

(

d11 d12

d21 d22

)T (

2c1 − θ − 2p1c
2
1 −2p2c2c1

−2p1c1c2 2c2 − θ − 2p2c
2
2

)







∂c1

∂m1

∂c1

∂m2

∂c2

∂m1

∂c2

∂m2






.

Note that the third matrix is the input matrix D since c is defined as c = Dm. At the

critical point
(

1
p1

, 0
)

or
(

0, 1
p2

)

, the central matrix becomes diagonal with respectively − 1
p1

or − 1
p2

as diagonal elements, thus, the Jacobian is negative definite†. For the other critical

points; (0, 0) is unstable in a Lyapunov sense (it is neutrally stable); the point
(

1
p1+p2

, 1
p1+p2

)

is unstable because the Jacobian DT ∂φ

∂c
D is a quadratic form non-negative definite in the case

of linearly independent vectors and p1 + p2 = 1:

J2

∣

∣
(

1
p1+p2

, 1
p1+p2

) = DTD − 2DT

(

p1 p2

p1 p2

)

D.

The generalization to the n-dimensional case lead to the n-dimensional Jacobian

Jn = DT













2c1 − θ − 2p1c
2
1 −2p2c2c1 · · · −2pncnc1

−2p1c1c2 2c2 − θ − 2p2c
2
2 · · · −2pncnc2

...
...

...

−2p1c1cn −2p2c2cn · · · 2cn − θ − 2pnc
2
n













D.

It is clear that the points with one non-zero coordinate set all the off-diagonal terms to zero,

and in this way we obtain a diagonal matrix with diagonal elements
(

− 1
pi

, − 1
pi

, . . . , − 1
pi

)

for i = 1, . . . , n. Therefore, the stability is guaranteed from the above considerations. The

instability of all the other points follows from considerations as in the two-dimensional case.

This analysis, performed for the case of one neuron with n inputs, is also applicable in all the

other cases; the n neurons with n inputs, the network with lateral connections and the network

of nonlinear neurons with lateral connections. The corresponding Jacobian matrices in each

case become

DT
n

(

∂φ

∂c

)(

∂c

∂m

)

= DT
n

(

∂φ

∂c

)

Dn. (A1)

DT
n

(

∂φ

∂c

)(

∂c

∂m

)

= DT
n

(

∂φ

∂c

)

LnDn. (A2)

DT
n

(

∂φ

∂c

)(

∂c

∂m

)

= DT
n

(

∂φ

∂m

)

6LnDn. (A3)

In the first case (A1), the argument used in the the case of a single neuron with n inputs still

holds because the matrix Dn is a direct product of D matrices. For the second case (A2) we

† The eigenvalues of the matrix DTD are all positive and real because this matrix is symmetric and positive definite,

and the product of diagonal matrices is commutative.
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observe that the matrix Ln is a direct product of L matrices, and for each of these matrices,

Li,j < 1. Thus we can use a series expansion for the inverse matrix:

1

1 − L
≈ 1 + L + L2 + · · · .

For the critical points with one non-zero component, we obtain the following approximation:

DT
n

(

∂φ

∂c

)

LnDn ≈

(

∂φ

∂c

)

(

DTD + DTLD + DTL2D + · · ·
)

.

From the power expansion (note that also ‖L‖ < 1) it is clear that the positive nature of the

matrix DTD does not change by introducing the matrix L; in other words, all the critical

points with one non-zero component are asymptotically stable. These considerations are also

valid for the case of a network of nonlinear neurons (A3) because the matrix 6 is diagonal and

positive definite, thus, one can obtain the same expansion. The demonstration of the instability

of the points with more than one non-zero component is obtained using the same method as in

the two-dimensional case. The stability results were also confirmed using a direct integration

of the system (14).
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