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Abstract

We consider the origin of the high dimensional input space as a variable which can
be optimized before or during neuronal learning. This set of variables acts as a
translation on the input space in search for an optimal origin, and can be seen as
an adaptive data preprocessing, included in a more general learning rule. In this
framework, we can give a realistic biological interpretation to the new model. The
proposed modification rule achieves the original objective of the neuronal learning
while keeping the energy consumption that is required for the synaptic modification
at a minimal level. This presynaptic bias can be related to the concept of ”optimal
spontaneous activity”. It extends the properties of familiar models such as Kurtosis,
PCA, ICA and BCM, resulting in new insight and a better solution for problems
such as clustering, feature extraction and data compression.

The new learning rule competes with the fundamental approach of distinguishing
between two clusters: unlike Fisher discriminant analysis where two (symmetric)
clusters are being separated by a line that goes through their centers, our separation
is achieved by a shift in the coordinate system to a location where one cluster is
orthogonal to the separating vector and the other is not.
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1 Extended possibilities for unsupervised methods

Some features of real neurons, related to development and learning [11,7],
have been reproduced with simplified models of synaptic plasticity [2,3,12].
The setup consists of a set of inputs d, the weights m, an internal ”signal
integration” o = m - d and a transfer function ¢ = o(0), usually a sigmoid®.
These models can be described by a ”cost function” that depends on the
input distribution characteristics, usually statistical moments of the output c.
Learning is achieved by a modification of the weights, that takes the energy
function to a minimum (or a maximum):
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In analyzing this framework, we have been guided by the following analogy
with biological neurons: weights could be interpreted as variables describing
the state of postsynaptic neuron, in that their modification depends on the
knowledge of neuron global activity (the output ¢) that could be available at
a postsynaptic level, for example by backpropagating action potentials (BPAP
[15]). But there is large experimental evidence that some presynaptic mecha-
nisms exist, which can modify neuronal activity (e.g. inhibition or facilitation,
[6]). To model a presynaptic modification, we extended this framework by in-
troducing a new set of variables, the presynaptic bias, indicated by a vector b,
that performs a new transformation on the input space, namely a translation
of the origin. The new output function thus becomes:

c=m-(d—b)=m-d’ (2)

A minimization of E with respect to both m and b is not possible as it is
underconstrained. We have thus proposed a minimization of a new energy
function depending only on the local variables of the neuron, the weights
m; and the biased inputs d}, called Epgp, with additional constraint on the
norm of the weights. This is differnt than the norm constraints imposed by
several researchers, e.g. [12], as the learning rule is on the set of bias weights d
while minimizing the synaptic weights m, and the solution for m is obtained
by minimizing the original cost function. Denoting with Mgo; the array of
vectors such that F has a minimum for these values, we define a new energy

6 From now on, if not specified differently, we will consider linear transfer functions,
i.e. ¢ = 0 =m - d, since the calculations will result simpler and the main features
of the model will not be affected by this simplification.



function with a different set of time evolution equations:
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2 Presynaptic bias: two examples

We show the application of this methodology to BCM and PCA learning rules:
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where angular brackets () denote an average over the input distribution. The
BCM model is compatible with experimental observations [7,11], and is useful
for data analysis, e.g. for feature extraction [3,1]. PCA model is a common
example of the links between physiological mechanisms of plasticity (”Hebb
rule” [13]) and statistical analysis performed on signals [4].

The energy function for the bias has the following form:

Epne = (Jml?) +a(ld|?) , (5)

where (),, is an average over the inputs, (), is an average over the set of mgo,,
(given the inputs d;), and « is a constant depending on the specific learning
rule.

In the linear BCM case, a solution can not be found when the distribution is
symmetric [17,18] or the clusters are linearly dependent. In the past, we have
resolved that by using a non-symmetric sigmoidal which goes from zero to 1
or sometimes from values slightly below zero to one [3]. The introduction of
the bias provides a more elegant and general solution, as it shifts the origin
of the coordinates to an optimal position where the solution m has a minimal
norm and the inputs become mutually orthogonal (Fig. 1). This situation can
be seen as optimal in terms of separation of the response to different patterns,
also when noise is added to the signal [19].

For PCA, the covariance matrix from which the principal components are
obtained, is independent of the mean of the inputs, thus, in neural network
implementations, the mean of the data is set to zero. The bias, in the PCA
case, reaches its minimum for b = (d). Mean removal is thus obtained as
an adaptive preprocessing (depending on input distribution), included in the
extended PCA algorithm.

Finally, we remark that the same results are obtained by substituting Epgrg



by a set of local energy functions Epgrp(i) containing only m; and d!:
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In this way, the bias could account for a local mechanism acting at the level of
single synapse, requiring only the information available at that site (pre and
postsynaptic activity).

3 Biological hypothesis

A biological interpretation to the extended model may be related to a mod-
ification of cellular activity, like phosphorilation of protein kinases [8], modi-
fication of ion channels activity [14], and also morphological changes [16]. All
these changes require methabolic energy consumption, and this energy may
be necessary for the duration of memory storage. The existence of a mecha-
nism which seeks among the possible memory states, those that perform the
same tasks with minimal energy consumption is likely, since a non optimal
use of the energy sources in a system composed of about 10'° neurons could
be catastrophic for the life of the organism. The algorithm presented here
demonstrates a possible way for a neuron to pursue this task of energy con-
servation, involving a mechanism acting at the level of the synaptic junction
that requires only a limited knowledge of neural activity (in the cases of local
Epgre). In order to be biologically plausible, the model requires:

e the existence of retrograde signaling uphill through the synaptic junction;
e the possibility of bidirectional modifications guided by this signaling;
e heterosynaptic propagation of such modifications to presynaptic neurons.

Such phenomena have been observed experimentally [9,10], suggesting that
biological neurons have a very complex exchange of information fluxes, not
only ”feedforward” or backpropagating inside each cell. These results are not
in disagreement with our proposed mechanism, but they are not sufficient to
justify it as an existent plasticity mechanism: more investigation is needed for
understanding the plasticity phenomena which involves communication down
and uphill through the synaptic junctions.
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Fig. 1. Examples of origin translations for BCM: (left) linearly dependent inputs,
(center) symmetrical inputs, (right) unlucky distribution. Solid vectors: original
inputs; dashed vectors: biased vectors; dotted vectors: bias.
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