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Intrator and Cooper Objective Function Formulation of the BCM Theory 21 IntroductionIn the past decade, much work has been done on a theory of synaptic plasticity in visual cortex(Bienenstock, Cooper and Munro, 1982; BCM). This theory accounts in a precise and quantitativefashion for the modi�cation of response properties of neurons in striate cortex obtained by manip-ulating the visual experience of the animal during a critical period of postnatal development. Itallows a precise speci�cation of theoretical equivalents of experimental situations and makes pos-sible detailed and quantitative comparison of theory with experiment in what are called classicalrearing conditions. These include normal rearing, monocular deprivation, reverse suture, strabis-mus, binocular deprivation, as well as the restoration of normal binocular vision after various formsof deprivation. In detailed simulations, Clothiaux et. al. (1991) �nd quantitative agreement oftheory and experiment both for equilibrium states and the kinetics by which they are reached.In this paper, we present an objective function formulation of the BCM theory of visual corticalplasticity. This permits us to demonstrate the connection between the unsupervised BCM learningprocedure and various statistical methods, in particular, that of Projection Pursuit. This analysishas led us to modify slightly our learning rule resulting in improved stability and statistical prop-erties. It also provides a general method for stability analysis of the �xed points of the theory andenables us to analyze the behavior and the evolution of the network under various visual rearingconditions. This new model has some advantages over the original exploratory projection pursuitmodel (Friedman, 1987). Due to its computational e�ciency, it can extract several features inparallel, taking into account the interaction between the di�erent extracted features via a lateralinhibition network. Feature extraction based on this model have been applied to various real-worldproblems such as phoneme recognition of a small-speaker database (Intrator, 1992), multi-speakerphoneme recognition from the TIMIT database (Intrator and Tajchman, 1991) using the Lyon'scochlear model (Slaney, 1988), and 3D object recognition (Intrator and Gold, 1993; Intrator et al.,1991). We thus have the striking and possibly highly signi�cant result that a biological neuron isperforming a sophisticated statistical procedure.Section 2 reviews the evolution of the BCM theory, and its relevance to modeling of the primaryvisual cortex, area 17. Section 3 describes the statistical motivation behind unsupervised learning.This is used to motivate the objective function formulation of the modi�ed BCM model given inSection 4. Based on statistical considerations, this formulation is further extended to a nonlinearneuron in a lateral inhibition network. In Section 5 we analyze the limiting behavior of the synapticmodi�cation equations, using the formulation described in Section 4 and a connection establishedbetween the solution of the averaged deterministic di�erential equations and the solution of therandom version of the equations (Appendix A). Analysis of this model in several situations relatedto visual experiments is given in Section 6.2 Review of BCM TheoryIn this section, we briey review relevant experimental observations and the BCM theory. Thiswill serve to introduce relevant notation and biological terms.2.1 Visual Cortical Plasticity: Experimental ResultsNeurons in the primary visual cortex, area 17, of normal adult cats are sharply tuned to theorientation of an elongated slit of light and most are activated by stimulation of either eye (Hubel



Intrator and Cooper Objective Function Formulation of the BCM Theory 3and Wiesel, 1959). Both of these properties { orientation selectivity and binocularity { depend onthe type of visual environment experienced during a critical period of early postnatal development.Monocular deprivation (MD) has profound and reproducible e�ects on the functional connectiv-ity of striate cortex during the critical period, extending from approximately 3 weeks to 3 monthsof age in the cat (Fr�egnac and Imbert, 1984; Sherman and Spear, 1982). Brief periods of MD willresult in a dramatic shift in the OD of cortical neurons so that most will be responsive exclusivelyto the open eye. The OD shift after MD is the best known, and most intensively studied type ofvisual cortex plasticity.When MD is initiated late in the critical period (Presson and Gordon, 1982), or after a periodof rearing in the dark (Mower et al., 1985), it will induce clear changes in cortical OD withouta corresponding anatomic change in the geniculocortical projections. Long-term recordings fromawake animals also indicate that OD changes can be detected within a few hours of monocularexperience; this seems too rapid to be explained by the formation or elimination of axon terminals.Moreover, deprived-eye responses in visual cortex may be restored within minutes to hours undersome conditions (Du�y et al., 1976), which suggests that synapses deemed functionally discon-nected are nonetheless physically present. Therefore, it is reasonable to assume that changes in thefunctional binocularity may be explained by changes in the e�cacy of individual cortical synapses.The consequences of binocular deprivation (BD) on visual cortex stand in striking contrast tothose observed after MD. First, MD leads to a loss of orientation selectivity in the deprived eyemuch faster than in BD. Second, although 7 days of MD during the second postnatal month leavefew neurons in the striate cortex responsive to stimulation of the deprived eye, most cells remainresponsive to stimulation through either eye after a comparable period of BD (Wiesel and Hubel,1965). Thus it is not merely the absence of patterned activity in the deprived geniculate projectionthat causes the decrease in synaptic e�cacy after MD.The result of a reversed suture (RS) experiment is even more striking. In this experiment, thekitten is �rst exposed to normal visual environment, then one eye is sutured closed, for a few daysuntil the sutured eye becomes functionally disconnected. At that time the sutured eye is openedand exposed to normal visual environment again, and the previously opened eye is closed. Theresult from this experiment is that the newly opened eye does not recover before the previouslyopened eye becomes disconnected.2.2 Single Neuron TheoryA theoretical solution to the problem of visual cortical plasticity, was presented by Cooper, Liber-man, and Oja (1979). According to this theory, the synaptic e�cacy of active inputs increases whenthe postsynaptic target is concurrently depolarized beyond a modi�cation threshold, �M . However,when the level of postsynaptic activity falls below �M , then the strength of active synapses de-creases.An important feature was added to this theory in 1982 by Bienenstock Cooper and Munro(BCM). They proposed that the value of the modi�cation threshold is not �xed, but instead variesas a nonlinear function of the average output of the postsynaptic neuron. This provided stabilityproperties and explained, for example, why the low level of postsynaptic activity during binoculardeprivation does not drive the strengths of all cortical synapses to zero. Their form of synapticmodi�cation can be written as: _mj = �(c;�M)dj (1)



Intrator and Cooper Objective Function Formulation of the BCM Theory 4where mj is the e�cacy of the jth Lateral Geniculate Nucleus (LGN) synapse onto a corticalneuron, dj is the level of presynaptic activity of the jth LGN a�erent, c is the level of activation ofthe postsynaptic activity of the postsynaptic neuron, which is given (in the linear region), by m �d,and �M is a nonlinear function of some time averaged measure of cell activity that in the originalBCM formulation was proposed as �M = (��c)2: (2)(In BCM, this time average is replaced, for simplicity, by a spatial average over the environmentalinputs (��c! m � �d). The shape of the function � is given in Figure 1 for two di�erent values of thethreshold �M .
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Figure 1: The � function for two di�erent �M 'sFurther discussion of the biological relevance of the theory can be found in (Saul and Daniels,1986; Bear et al., 1987; Bear and Cooper, 1990; Clothiaux et al., 1991).2.3 Lateral Inhibition Network: Mean Field TheoryAn extension of the single cell BCM neuron to a lateral inhibition network was presented by (Sco�eldand Cooper, 1985) and a mean �eld approximation of this network by (Cooper and Sco�eld, 1988).The activity of neuron j in such a network is a�ected by its input vector d and by the adjacentneurons in the network and can be writtenci = mi � d+Xj Lijcj : (3)In the context of visual cortex, the �rst term is due to the input from LGN and the second due toinput from other cortical cells. De�ne �c as the spatially averaged activity of all the cortical cellsin the network: �c = 1N Pi ci: The mean �eld approximation is obtained by replacing the inhibitorycontribution of cell j, cj by its average value so that ci becomes:ci =mi � d+ �cXj Lij : (4)



Intrator and Cooper Objective Function Formulation of the BCM Theory 5From a consistency condition it follows that �c = �m �d+�cL0 = (1�L0)�1 �m �d; where �m = 1N Pimi;and L0 = 1N Pij Lij ; so that ci = (mi + (1� L0)�1 �mPj Lij)d:If we assume that the lateral connection strengths are function only of the relative distancei� j, then Lij becomes circular matrix so that PiLij =Pj Lij = L0, andci = (mi + L0(1� L0)�1 �m)d: (5)In the mean �eld approximation, one can therefore write ci(�) = (mi � �)d; with � = jL0j(1 +jL0j)�1 �m.When analyzing the position and stability of the �xed points using this approximation, itfollows under some mild assumption on the evolution of the average synaptic weights, that there isa mapping m0i $ mi(�)� �such that for every neuron in such a network with synaptic weight vectormi there is a correspondingneuron with weight vector m0i that undergoes the same evolution (around the �xed points) subjectto a translation �.3 Extraction of Optimal Unsupervised FeaturesWhen a classi�cation of high dimensional vectors is sought, the curse of dimensionality (Bellman,1961) becomes the main factor a�ecting the classi�cation performance. The curse of dimensionalityis due to the inherent sparsity of high dimensional spaces; thus the amount of training data neededto get reasonably low variance estimators becomes ridiculously high. This has led many researchersin recent years to construct methods that speci�cally avoid this problem. In those cases in whichimportant structure in the data actually lies in a much smaller dimensional space, it becomes rea-sonable to try to reduce the dimensionality before attempting the classi�cation. This approach canbe successful if the dimensionality reduction/feature extraction method loses as little informationas possible in the transformation from the high dimensional space to the low dimensional one.At a �rst glance, it seems that a supervised feature extraction method, such as multiple dis-criminant analysis (see review in Bryan, 1951; Sebestyen, 1962) will always be superior to anunsupervised one, because if one has more information about the problem, it is natural to expectthat �nding the solution is easier. However, due to the global constraint imposed by the supervi-sion, when the number of parameters (i.e. the dimensionality and number of nodes) is large, thenetwork often will get stuck in a local minimum which is far from an optimal solution. Unsupervisedmethods however, use local objective functions which may lead to less sensitivity to the number ofparameters in the estimation, and therefore have the potential to avoid the curse of dimensionality(Barron and Barron, 1988).For the purpose of pattern classi�cation, it is important to devote our attention to those di-mensionality reduction methods that allow discrimination between classes and not faithful repre-sentations of the data. This leaves out the class of methods such as factor analysis (see review inHarman, 1967) which tend to combine features that seem to have high correlation.A general class of unsupervised dimensionality reduction methods, called exploratory projec-tion pursuit is based on seeking interesting projections of high dimensional data points (Kruskal,1969; Switzer, 1970; Kruskal, 1972; Friedman and Tukey, 1974; Friedman, 1987; Huber, 1985, forreview). The notion of interesting projections is motivated by an observation made by Diaconis



Intrator and Cooper Objective Function Formulation of the BCM Theory 6and Freedman (1984), that for most high-dimensional clouds, most low-dimensional projectionsare approximately normal. This �nding suggests that the important information in the data isconveyed in those directions whose single dimensional projected distribution is far from Gaussian.Various projection indices di�er on the assumptions about the nature of deviation from normal-ity, and in their computational e�ciency. Friedman (1987) argues that the most computationallye�cient measures are based on polynomial moments. However although many synaptic plasticitymodels are based on second order statistics and lead to extraction of the principal components (Se-jnowski, 1977; von der Malsburg, 1973; Oja, 1982; Miller et al., 1989; Linsker, 1988), second orderpolynomials are not su�cient to characterize the important features of a distribution (see examplesin Duda and Hart (1973) p. 212, and the example in Figure 2). This suggests that in order to usepolynomials for measuring deviation from normality, higher order polynomials are required, andcare should be taken in order to avoid their over-sensitivity to outliers. From our earlier discussionit follows that these polynomial moments should be of higher order than two. In some special caseswhere the data is known in advance to be bi-modal, it is relatively straightforward to de�ne a goodprojection index (Hinton and Nowlan, 1990), however, when the structure is not known in advance,it is still valid to seek multi-modality in the projected data.
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Figure 2: Two data clusters which can be separated by projecting to the x axis, can not be separatedby projecting to the y axis, although the variance in the y axis is larger.Despite the computational attractiveness, projection indices based on polynomial moments arenot directly applicable, since they very heavily emphasize departure from normality in the tails ofthe distribution (Huber, 1985). Friedman (1987) addresses this issue by introducing a nonlineartransformation that compresses the projected data from R to [�1; 1] using a normal distributionfunction. We address the problem by applying a sigmoidal function to the projections, and thenapplying an objective function based on polynomial moments.4 Formulation of the BCM Theory Using an Objective FunctionWith the intuitive idea discussed above, we now present an objective function formulation of thesynaptic modi�cation theory of Bienenstock, Cooper and Munro (BCM). This yields a statisticallyplausible objective function whose minimization �nds those projections having a single dimensionalprojected distribution that is far from Gaussian.This formulation allows us to interpret the biological neuron's behavior from a statistical pointof view. In addition, it provides a more powerful means of investigating the kinetics of synapticdevelopment as well as the location and stability of the �xed points under various environmental



Intrator and Cooper Objective Function Formulation of the BCM Theory 7conditions.4.1 Single NeuronWe �rst informally describe the statistical formulation that leads to this objective function. Usinga metaphor motivated by statistical decision theory, a neuron is considered as capable of decidingwhether to �re or not for a given input and vector of synaptic weights. A loss function is attachedto each decision. The neuron's task is then to choose the decision that minimizes the loss. Since theloss function depends on the synaptic weight vector in addition to the input vector, it is naturalto seek a synaptic weight vector that will minimize the sum of the losses associated with everyinput, or more precisely, the average loss (also called the risk). The search for such a vector,which yields an optimal synaptic weight vector under this formulation, can be viewed as learningor parameter estimation. In those cases where the risk is a smooth function, its minimization canbe accomplished by gradient descent.The ideas presented so far make no speci�c assumptions regarding the loss function, and it isclear that di�erent loss functions will yield di�erent learning procedures. For example, if the lossfunction is related to the inverse of the projection variance (including some normalization) thenminimizing the risk will yield directions that maximize the variance of the projections, i.e. will �ndthe principal components.Before presenting a loss function, let us more precisely de�ne the neuronal input, and twouseful functions: We consider a neuron with input vector x = (x1; : : : ; xn), synaptic weight vectorm = (m1; : : : ; mn), both in Rn, and activity (in the linear region) c = x �m. The input x is assumedto be a bounded, and piecewise constant stochastic process. We allow some time dependencyin the presentation of the training patterns, by requiring that x is of Type II mixing1. Theseassumptions are plausible, since they represent the closest continuous approximation to the usualtraining algorithms, in which training patterns are presented at random. They are needed for theapproximation of the resulting deterministic gradient descent by a stochastic one (Intrator, 1990).For this reason we use a learning rate � that has to decay in time so that this approximationis valid. De�ne the threshold �M = E[(x � m)2], and the functions �̂(c;�M) = c2 � 12c�M ,�(c;�M) = c2 � c�M .Our projection index is aimed at �nding directions for which the projected distribution is farfrom Gaussian; more speci�cally, since high dimensional clusters have a multimodal projecteddistribution, our aim is to �nd a projection index (loss function) that emphasizes multimodality.For computational e�ciency, we would like to base the projection index on polynomial momentsof low degree. Using second degree polynomials, one can get measures of the mean and variance ofthe distribution; these, however, do not give information on multimodality; therefore, higher orderpolynomials are necessary. Further, the projection index should exhibit the fact that bimodaldistribution is already interesting, and any additional mode should make the distribution evenmore interesting.With this in mind, consider the following family of loss functions that depend on the synapticweight vector and on the input xLm(x) = �� Z (x�m)0 �̂(s;�M)ds1The mixing property speci�es the dependency of the future of the process on its past.



Intrator and Cooper Objective Function Formulation of the BCM Theory 8= ��f13(x �m)3 � 14E[(x �m)2](x �m)2g (1)The motivation for this loss function can be seen in Figure 3, which represents the � function andthe associated loss function Lm(x). For simplicity the loss for a �xed threshold �M and synapticvector m can be written as Lm(c) = ��c2( c3 � �M4 ), where c represents the linear projection of xonto m.
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...............................................................................................................................................................................................................Figure 3: The function � and the loss functions for a �xed m and �M .The graph of the loss function shows that for any �xed m and �m, the loss is small for a giveninput x, when either c = x �m is close to zero, or when x �m is larger than �m. Moreover, the lossfunction remains negative for (x �m) > �M , therefore any kind of distribution at the right handside of �M is possible, and the preferred ones are those which are concentrated further from �M .It remains to show why it is not possible that a minimizer of the average loss will be such thatall the mass of the distribution will be concentrated on one side of �M . This can not happenbecause the threshold �M is dynamic and depends on the projections in a nonlinear way, namely,�M = E(x � m)2. This implies that �M will always move itself to a position such that thedistribution will never be concentrated at only one of its sides.The risk (expected value of the loss) is given by:Rm = ��Ef13(x �m)3 � 14E[(x �m)2](x �m)2g= ��f13E[(x �m)3]� 14E2[(x �m)2]g: (2)Since the risk is continuously di�erentiable, its minimization can be achieved via a gradientdescent method with respect to m, namely:dmidt = � @@miRm = � fE[(x �m)2xi]� E[(x �m)2]E[(x �m)xi]g= � E[�(x �m;�M)xi]: (3)The resulting di�erential equations give a somewhat di�erent version of the law governing synap-tic weight modi�cation of the BCM theory. The di�erence lies in the way the threshold �M isdetermined. In the original form this threshold was �M = Ep(c) for p > 1, while in the currentform �M = E(cp) for p > 1. The latter takes into account the variance of the activity (for p = 2)and therefore is always positive, this ensures stability even when the average of the inputs is zero.



Intrator and Cooper Objective Function Formulation of the BCM Theory 9It should be noted here, that the original theory (1982) assumed that the inputs were positive,whereas the present threshold relaxes this assumption and yields stability for a larger class ofbounded inputs.Either form seems consistent with presently available experimental results (Clothiaux et al.,1991) but imply quite di�erent underlying physiological mechanisms. The original BCM formrequires that a history of activity (likely cell depolarization) be stored and then via a non-linearprocess produce the modi�cation threshold. The present form of �M requires that the non-linearprocess occur �rst. When the existence of the moving threshold is established by observation2, thenext question of great interest will be its precise dependence on cell parameters.4.2 Extension to a Nonlinear NeuronThe fact that the distribution has part of its mass on both sides of �M makes it a plausibleprojection index that seeks multi- modalities. However, this projection index will be more generalif, in addition, the loss is insensitive to outliers and if we allow any projected distribution to beshifted so that the part of the distribution that satis�es c < �M will have its mode at zero. The over-sensitivity to outliers is addressed by considering a nonlinear neuron in which the neuron's activityis de�ned to be c = �(x �m), where � usually represents a smooth sigmoidal function. The abilityto shift the projected distribution so that one of its modes is at zero is achieved by introducing athreshold � so that the projection is de�ned to be c = �(x �m+ �). From the biological viewpoint,� can be considered as spontaneous activity. The modi�cation equations for �nding the optimalthreshold � are easily obtained by observing that this threshold e�ectively adds one dimension tothe input vector and vector of synaptic weights so that x = (x1 : : : ; xn; 1); m = (m1; : : : ; mn; �);and therefore, � can be found by using the same synaptic modi�cation equations. For the restof the paper we shall assume that this threshold is added to the projection, without speci�callywriting it.For the nonlinear neuron, �M is de�ned to be �M = E[�2(x �m)]. The loss function is givenby: Lm(x) = �� Z �(x�m)0 �̂(s;�M)ds= �� f13�3(x �m)� 14E[�2(x �m)]�2(x �m)g (4)The gradient of the risk becomes:�rmRm = � fE[�2(x �m)�0x]�E[�2(x �m)]E[�(x �m)�0x]g= � E[���(x �m);�M��0x]; (5)where �0 represents the derivative of � at the point (x �m). Note that the multiplication by �0reduces sensitivity to outliers of the di�erential equation since for outliers �0 is close to zero. Thegradient decent procedure is valid, provided that the risk is bounded from below (see Section 5).2Some indications of a moving threshold has been already found (Yang and Faber, 1991)



Intrator and Cooper Objective Function Formulation of the BCM Theory 104.3 Extension to a Network with Feed-Forward InhibitionWe now de�ne a network with feed-forward inhibition. The activity of neuron k in the networkis ck = x �mk, where mk is the synaptic weight vector of neuron k. The inhibited activity andthreshold of the k'th neuron is given by~ck = ck � �Xj 6=k cj ; ~�kM = E[~c2k]: (6)This feed-forward network should be contrasted with a lateral inhibition network (used for exampleby Cooper and Sco�eld, 1988) in which the inhibited activity is given by ck = ck(0)+PLijcj . Therelation between these two networks will be discussed in the next section.For the feed-forward network the loss function is similar to the one de�ned in a single featureextraction with the exception that the activity c = x �m is replaced by ~c. Therefore the risk fornode k is given by: Rk = ��f13E[~c3k]� 14E2[~c2k]g; (7)and the total risk is given by R = NXk=1Rk: (8)To �nd the gradient of R we write:@~ck@mj = ��x; @~ck@mk = x;@Rk@mk = @Rk@~ck @~ck@mk = ��fE[~c2kx]�E[~c2k]E[~ckx]g;@Rj@mk = @Rj@~cj @~cj@mk = �� @Rj@mj ;) @R@mk = @Rk@mk � �Xj 6=k @Rj@mj= � [E[�(~ck; ~�kM)x]� �Xj 6=kE[�(~cj; ~�jm)x]]: (9)The equation performs a constraint minimization in which the derivative with regard to oneneuron can become orthogonal (when � ! 1) to the sum over the derivatives of all other synapticweights. Nevertheless, the coupling is very simple to calculate, and does not require any matrixinversion. The equation therefore, demonstrates the ability of the network to perform exploratoryprojection pursuit in parallel, since the minimization of the risk involves minimization of nodes1; : : : ; N , which are loosely coupled.When the nonlinearity of the neuron is included, the inhibited activity is de�ned (as in thesingle neuron case) as ~ck = �(ck � �Pl6=k cl). ~�kM , and Rk are de�ned as before. However, in thiscase @~ck@mj = ���0(~ck)x; @~ck@mk = �0(~ck)x: (10)



Intrator and Cooper Objective Function Formulation of the BCM Theory 11Therefore the total gradient becomes:_mk = @R@mk = �fE[�(~ck; ~�kM)�0(~ck)x]� �Xj 6=kE[�(~cj; ~�jm)�0(~cj)x]g: (11)The lateral inhibition network performs a search of k-dimensional projections together; thusmay �nd a richer structure that a stepwise approach might miss (e.g. see example 14.1, Huber,1985).4.4 Some Related Statistical and Computational IssuesThe proposed method uses low order polynomial moments which are computational e�cient, yetit does not su�er from the main draw back of polynomial moments { sensitivity to outliers. Itnaturally extends to multi-dimensional projection pursuit using the feed-forward inhibition network.The number of calculations of the gradient grows linearly with the dimensionality and linearly withthe number of projections sought. The projection index contains a single dimensional scaling (seethe contribution of Hastie and Tibshirani to the discussion in Jones and Sibson, 1987), therefore,removing the need for a sphering transformation to the data, however, a sphering transformationwill result in a type III projection index (see Huber, 1985). The projection index has a naturalstochastic gradient descent version which further accelerates the calculation by eliminating theneed to calculate the empirical expected value of the gradient. All the above lead to a fully parallelalgorithm that may be implemented on a multi-processor machine, and produce a practical featureextractor for very high dimensional problems.Although, the projection index is motivated by the desire to search for clusters in the highdimensional data, the resulting feature extraction method is quite di�erent from other patternrecognition methods that search for clusters. Since the class labels are not used in the search, theprojection pursuit is not biased to the class labels. This is in contrast with classical methods suchas discriminant analysis (Fisher, 1936; Sebestyen, 1962, and numerous recent publications). Theissue of using an unsupervised method vs. supervised for revealing structure in the data has beendiscussed extensively elsewhere. We would only like to add that it is striking that in various low-dimensional examples (Friedman and Tukey, 1974; Jones, 1983; Friedman, 1987) the exploratorycapabilities of PP were not worse than those of supervised method such as discriminant analysis andfactor analysis in discovering structure, thus suggesting that in high dimensions where supervisedmethods may fail, still PP can �nd useful structure.The resulting method concentrates on projections that allow discrimination between clustersand not faithful representation of the data, which is in contrast to principal components analysis,or factor analysis which tend to combine features that have high correlation (see review in Harman,1967).The method di�ers from cluster analysis by the fact that it searches for clusters in the lowdimensional projection space, thus avoiding the inherent sparsity of the high dimensional space.The search for multi-modality is further constrained by the desire to seek those projections thatare orthogonal to all but one of the clusters (or have a mode at zero). This constraint simpli�es thesearch, since it implies that a set of K linearly independent clusters may have at most K optimalprojections as opposed to at most �K2 � separating hyperplanes.



Intrator and Cooper Objective Function Formulation of the BCM Theory 124.5 Comparison of Linear Feed-Forward with Lateral Inhibition Network: MeanField ApproximationFor the linear case, using the notation of Cooper and Sco�eld, (1988), neuron activity in the lateralinhibition network is given by c = Md+ Lc: (12)In the mean �eld approximation this becomesc = Md+ L�c; (13)where M is the synaptic matrix for N neurons, c = (c1; : : : ; cN)T ; L is the inhibitory connectionmatrix with norm less than 1 and �c is the averaged activity over all neurons in the network. Inthe context of visual cortex, the �rst term is due to the input from LGN and the second due toinput from other cortical cells. If we de�ne c(0) = Md, then the averaged inhibited activity can bewritten as �c = �c(0) + L�c; (14)or �c = (I � L)�1�c(0) = (I + L + L2 + L3 + : : : ) �c(0): (15)Using this notation, the activity of a neuron in the feed-forward network as de�ned in section 4.3can be written ~c = c(1) = c(0)+ Lc(0); (16)which leads to an averaged activity of the form�c(1) = (I + L)�c(0); (17)which is a a �rst order approximation of (14); it is useful primarily because it removes the need toinvert a matrix, which becomes impossible in the nonlinear neuronal case. In addition, successiveapproximations �c(1) = �c(0) + L�c(0) = (I + L)�c(0);�c(2) = �c(0) + L�c(1) = (I + L+ L2)�c(0); (18)...can be thought of as including mono-synaptic, bi-synaptic, tri-synaptic etc. events and thus followthe time course of the post-synaptic potentiation. It follows that �c(k) ! �c, as k ! 1, thusrecapturing the lateral inhibition network. Within a scaling factor, the �rst order feed-forwardnetwork, as will be shown below, generates the same synaptic modi�cation equations as the lateralinhibition network in the Cooper and Sco�eld mean �eld approximation.For a feed-forward network with neuron activity given by ~ci = mi �d+Pj Lijcj ; as in section 4,_mk = � @R@mk = �[ @Rk@mk +Xj Lkj @Rj@mj ]



Intrator and Cooper Objective Function Formulation of the BCM Theory 13= �[E[�(~ck; ~�kM)x] +Xj LkjE[�(~cj; ~�jm)x]]: (19)Let �m = 1N Pjmj (mj 2 Rn). We assume that the inhibitory contributions are a function only ofthe i� j (not dependent on the absolute position of a cell in the network), so that PiLij = L0 =Pj Lij ; and that Pi LijE[�(~ci; ~�im)x] =Pj LijE[�(~cj; ~�jm)x]: Then we get:N _�m =Xj _mj = �[Xk E[�(~ck; ~�kM)x] +Xj L0E[�(~cj; ~�jm)x]]= (1 + L0)L0 �Xk Xj LkjE[�(~ck; ~�kM)x]: (20)This implies that L01 + L0 _�m = �Xk LjkE[�(~ck; ~�kM)x; (21)and hence, _mk = �[E[�(~ck; ~�kM)x] + L01 + L0 _�m]: (22)Compare this with Cooper and Sco�eld, (1988) (eq. A3):_mk = �[E[�(ck;�km)x] + L0 _�m]; (23)equations 22 and 23 di�er only in the constant of inhibition. Thus the mean �eld approximationof the feed-forward network yields the lateral inhibition mean �eld result merely by scaling theaverage inhibition.One result of the mean �eld approximation (Cooper and Sco�eld, 1988) is that there is atransformation such that m(�) = m0 � � (24)and so the gradient with respect to the weights yields two terms _m and _�. In the adiabatic case,we assume that � varies slowly with respect to each individual m, so that _� = 0 is a reasonableapproximation. In this situation the analysis of section 5 applies form(�) (the mean �eld network)as well as form(0). In addition, the argument given in the appendix of (Cooper and Sco�eld, 1988)regarding the non adiabatic case holds here as well.From the system 9 we can get:_�m = �NE[Xk [�(~ck; ~�kM)x]� �( NN � 1)Xj E[�(~cj; ~�jm)x]]; (25)which implies _� = _�m = �N [1� �( NN � 1)]E[Xk [�(~ck; ~�kM)x]]: (26)Therefore, at a �xed point, when all of the cells of the network have reached their respective �xedpoints, _m0i = 0 implies that _�m = 0, meaning _� = 0. Thus the position and stability of the �xedpoints (as given in section 5 ) apply for the mean �eld network with no additional approximations.



Intrator and Cooper Objective Function Formulation of the BCM Theory 145 Analysis of the Fixed Points in High Dimensional SpaceIn appendix A we show using a general result on random di�erential equations (Intrator, 1990) thatthe solution of the random di�erential equations remains as close as we like, in the L2 sense, to thesolution of the deterministic equations. We have shown in section 4 that the deterministic equationconverges to a local minimum of the risk. This implies that the solution of the random di�erentialequation converges to a local minimum of the risk in L2. Based on the statistical formulation, wecan say that the local minima of the risk are interesting features extracted from the data, whichcorrespond to directions in which the single dimensional distribution of the projections is far froma Gaussian distribution, by means of penalized skewness measure.In the following, we attempt to analyze the shape of the high dimensional risk function, underspeci�c inputs, namely, we look for the location of the critical points of the risk, and locate thosewhich have a local minima given a speci�c training set. This completely characterizes the solution ofthe synaptic modi�cation equations, and sheds some more light on the power of the risk functionalin �nding interesting directions in the data. In doing so we gain some detailed information onthe behavior of the solution of the random di�erential equations, as a model for learning in visualcortex, under various rearing conditions.We consider linear neurons under the mean �eld assumptions. Furthermore, since the introduc-tion of the threshold � does not pose any mathematical di�culty as was described before, we omitit in the analysis.First, we analyze the limiting behavior of the solution in the case where we have n linearlyindependent inputs (not necessarily orthogonal). The introduction of noise into the system will bedone in the next sections.5.1 n linearly independent inputsThe random di�erential equation is given by_m� = � �(t)�(x �m;�m)x; m�(0) = m0; (1)the averaged (batch) version of the gradient descent is given by:_�m� = � �(t)E[�(x � �m;� �m)x] �m�(0) = m0: (2)The main tool in establishing the following results is the connection between the solution to thedeterministic di�erential equation 2 and the solution of the random di�erential equation 1. Ageneral result which yields this connection is given in (Intrator, 1990) and will be discussed in theappendix. When applied to this speci�c di�erential equation, the result says thatsupt>T Ejm� � �m�j2�!�!0 0: (3)Proposition 5.1 Let x(1); : : : ; x(n) be n linearly independent bounded vectors in Rn. Let D be therandom process so that P [D = x(i)] = pi; pi > 0; i = 1; : : : ; n; P pi = 1.Then the critical points of equation 1 are the 2n weight vectors m(i) 2 Rn, each a solution toone of the equations: Am(i) = v(i), i = 0; : : : ; 2n � 1, where A is the matrix whose i'th row is the



Intrator and Cooper Objective Function Formulation of the BCM Theory 15input vector x(i), and fv(i); i = 0; : : : ; 2n � 1g, is the n dimensional set of vectors of the form:v(0) = (0; : : : ; 0);v(1) = ( 1p1 ; 0; : : : ; 0);v(2) = (0; 1p2 ; 0; : : : ; 0);v(3) = ( 1p1 + p2 ; 1p1 + p2 ; 0; : : : ; 0);v(4) = (0; 0; 1p3 ; 0; : : : ; 0);; : : : ;v(2n�1) = (1; : : : ; 1):Proof Rewrite equation 1 in the form_m� = ��(t)(x �m�)[x �m� � �M ]x; (4)where �M = E[(x �m�)2]. Since ��(t) > 0, then m� is a critical point if either x(i) �m� = 0; orx(i) �m� = �M 6= 0, i = 1; : : : ; n.There are exactly 2n possibilities for the set of n numbers x(i) �m� to be either 0, or nonzero.Therefore there are only 2n possible solutions.Let m(1)� be such that m(1)� � x(1) 6= 0, and m(1)� � x(i) = 0; i > 1. Then for m(1)� ,�M = E[(x �m�)2] = NXi=1 pi(x(i) �m(1)� )2 = p1(x(1) �m(1)� )2: (5)When we combine the condition �M = x(1) �m(1)� , we get x(1) �m(1)� = 1p1 .Now suppose m = m(3)� , is such that x(1) �m(3)� = x2 �m(3)� = �M , and x(i) �m(3)� = 0; i > 2.In this case �M = p1(x(1) �m(3)� )2 + p2(x2 �m(3)� )2, which yields, xj �m(3)� = 1p1+p2 ; j = 1; 2:The other cases are treated similarly. }5.1.1 Stability of the solutionLet m(t) be a solution of a random di�erential equation, then m0 is said to be a stable point if forany � > 0 there is a �(�) such that for any K > 0, t � �Pfjm(t)�m0j2 > Kg � �K : (6)This roughly says that the if m0 is a stable point, then the probability of �nding the solution farfrom this point is small.Lemma 5.1 Let m be a critical point for the random di�erential equation. Then m is a stable(unstable) critical point, if it is a stable (unstable) critical point for the averaged deterministicversion. The stability of the stochastic equation is in the L2 sense.



Intrator and Cooper Objective Function Formulation of the BCM Theory 16Proof From equation 3 follows that if m� is a critical point of the random version, then it is acritical point of the averaged deterministic equation. If this point is a stable (unstable) point of thedeterministic equation, then perturbing both equations (i.e. starting from an initial condition thatis close to m�), will yield that the deterministic equation will converge back to (diverge from) theoriginal critical point. This is independent of � and with probability one since it is a deterministicequation. Consequently, the random solution must stay close to the deterministic solution whichin this case, implies the stability (instability) of the random solution. }Theorem 5.1 Under the conditions of proposition 5.1, the critical points m(i)� that are stable areonly those in which the corresponding vector vi, has one and only one nonzero element in it.Proof From the above two lemmas it follows that it is enough to check the stability on thedeterministic version of the equations, at the critical points of the random version.The gradient is then given by:�rmRm = E[(x �m)2x]�E[(x �m)2]E[(x �m)x]; (7)and the second order derivative is given by:�r2mRm = 2E[(x �m)x� x]�E[(x �m)2]E[x� x]� 2E[(x �m)x]�E[(x �m)x]: (8)The critical point m = 0 is clearly unstable, since the second derivative matrix is zero, andchanges sign around m = 0. For selective solution, we can choose without loss of generality, m(1)which is the solution for v(1). Putting m(1) into the gradient equation gives:�rmRjm=m(1) = p1(x(1) �m(1))2x(1) � p1(x(1) �m(1))2p1(x(1) �m(1))x(1)= p1(x(1) �m(1))2[1� p1](x(1) �m(1))x(1): (9)Since m(1) is a critical point and x(1) is the preferred input, we get from the fact that the gradientis equal to zero at m(1): (x(1) �m(1)) = 1p1 ; E(x �m)2 = 1p1 .De�ne the matrix B to be B = E[x� x] = NXi=1 pix(i) � x(i); (10)since the inputs are independent and span the whole space, it follows that B is positive de�nite.Putting (x(1) �m(1)) into 8 gives:�r2mRjm=m(1) = p1(x(1) �m(1))�2x(1) � x(1) � 1p1B � 2x(1) � x(1)�; (11)which is negative de�nite, thus leading to a stable critical point.Now, assume, without loss of generality, that m = m(3), then�rmRjm=m(3) = [p1(x(1) �m(3))2x(1) + p2(x(2) �m(3))2x(2)]�[p1(x(1) �m(3))2 + p2(x(2) �m(3))2][p1(x(1) �m(3))x(1) + p2(x(2) �m(3))x(2)]: (12)



Intrator and Cooper Objective Function Formulation of the BCM Theory 17Since m(3) is a critical point, we have from proposition 5.1 that (x(1) �m(3)) = (x(2) �m(3)) = 1p1+p2 ,and E(x �m)2 = 1p1+p2 .Putting this into equation 8 gives:�r(3)m Rjm=m(3) = 2p1(x(1) �m(3))x(1) � x(1) + 2p2(x(2) �m(3))x(2) � x(2)� 1p1 + p2B�2�[p1(x(1) �m(3))x(1) + p2(x(2) �m(3))x(2)]�[p1(x(1) �m(3))x(1) + p2(x(2) �m(3))x(2)]�= � 2p1p1 + p2 � 2p21(p1 + p2)2�x(1) � x(1)+� 2p2p1 + p2 � 2p22(p1 + p2)2�x(2) � x(2)� 1p1 + p2B� 2p1p2(p1 + p2)2 (x(1) � x(2) + x(2) � x(1)): (13)Denote the above gradient matrix by G. Without loss of generality we may assume that p1 � p2.Then consider a vector, y which is orthogonal to all but x(2). ThenyTGy = yTx(2) � x(2)y p2p1 + p2�6� 6p2p1 + p2 � 3� � 0; (14)since p2p1+p2 � 12 . It is easy to see, by replacing m(3) with �m(3), that the second derivative alongm(3) changes sign at � = 1, which implies instability.The proof for the other critical points follows in the exactly same way. }5.2 Noise with no Patterned InputThis is a special case, which is related to the binocular deprivation environment discussed in 2.1, andhence is analyzed separately. In general, we consider input as being composed of pattern and noise.The patterned input represents a highly correlated set of patterns that appear at random, and aresupposed to mimic key features in visual environment such as edges with di�erent orientation etc.The noise in an uncorrelated type of input, which is assumed to exist in large network of neuronsreceiving inputs from several parts of cortex. Patterned input is associated with open eyes, purenoise with closed eyes.When the input contains only noise, the averaged deterministic solution has a stable criticalpoint, and the random solution stays close to the deterministic one as is shown in the appendix.When the input is composed of noise with zero mean only, we �nd that the averaged version has astable zero solution (as opposed to the case with patterned input). This implies that the solutionof the random version wanders about the origin but stays close to zero in L2 norm.



Intrator and Cooper Objective Function Formulation of the BCM Theory 185.2.1 Noise with Zero MeanThe crucial property of white noise x is the fact that it is symmetric around zero, this implies thatE(x �m)3 = 0, and the risk,Rm = �fE[(x �m)3]� E2[(x �m)2]g = E2[(x �m)2] � 0: (15)It is easy to see that only for m = 0, Rm = 0, and this is the only critical point in this case. Sincethis result is related to binocular deprivation experiments, it should be emphasized again that thesolution to the stochastic version of the di�erential equations will wander around zero in a randommanner but with a small magnitude that is controlled by the learning rate �.In view of the properties of the risk, we can say that when the distribution of x has zero skewnessin every direction, the only stable minima of the risk is m = 0. This is not true when the noise hasa positive or a negative average as analyzed in the next section.5.2.2 Noise with Positive MeanWe assume that x is now bounded random noise, with �x > 0, and x has the same single dimensionaldistribution in all directions, which implies that �xi = �x1 > 0; i � 0. Let x = �x + y, where yis random noise with zero average. Denote Var(y1) = �. The following identities can easily beveri�ed: E(x �m)2 = (�x �m)2 +Var(y �m);E(y �m)y = �m;E(y �m)2y = 0: (16)Putting these identities in the �rst and second gradient (eq. 7,8) we get:�rmRm = [(�x �m)2 + Var(y �m)]�x� [(�x �m)2 + Var(y �m)][(�x �m)�x+ �m]: (17)We are looking for critical points of the gradient,rmRm = 0) mi = [1� � (�x �m)� ]�xi: (18)Equation 18 suggests a consistency condition that has to be �lled, namely, if we multiply both sidesof this equation by �xi and sum over all i0s we get:(�x �m) = [ 1� � (�x �m)� ] k �x k2; (19)therefore, (�x �m) = k �x k2�+ k �x k2 : (20)When substituting 20 into 18 we get the explicit ratio between mi and �xi, namely,mi = [ 1�+ k �x k2 ]�xi: (21)



Intrator and Cooper Objective Function Formulation of the BCM Theory 19The second derivative is given by:�r2mRm = [2(�x �m)2(�x �m)2 � Var(y �m)](�x� �x)+ E[f2(y �m)� 2(y �m)(�x �m)g(y � �x)]� 2�(�x �m)(�x�m) (22)� 2�(y �m)(y �m)� �[(�x �m)2 + Var(y �m)]I:Using relations 16 and 20 of the critical points, we get to a gradient in terms of �x� �x, and � { thevariance of the noise. Let � = 1�+k�xk2 , then�r2mRm = �2(�x� �x)[(2� 4)�� k �x k2 + 2�2��2�2 k �x k2 �2�2]: (23)It follows that the gradient is positive de�nite for any noise with variance � > 0. This impliesstability of the averaged version, and stability in the L2 sense of the random version.5.3 Patterned Input with NoiseWe now explore the change in the position of critical points under small noise. The result relieson the smoothness of the projection index, and on the fact that noise can be presented as a smallperturbation.Let the input x = d + h, where d is the patterned input and h is a small random noise withzero mean. If the mean of the noise is non-zero it can always be obsorbed in the patterned inputand the resulting noise will have a zero mean. Let � = Var(h �m) which is small as well. Considerthe projection index Rm = ��f13E[(x �m)3]� 14E2[(x �m)2]g= ��f13E[(d �m)3]� 14E2[(d �m)2]+�fE(d �m)� �4 [1 + E(d �m)2]gg: (24)Thus Rm(d+ h) = Rm(d) + O(�), yielding robustness to small noise.6 Application to Various Rearing ConditionsIn the following section, we relate the analysis described above to some visual cortical plasticityexperiments. Extensive simulation, using the complete set of known experimental results on visualcortical plasticity, have shown that the the modi�ed version of �M is consistent with the currentexperimental results.6.1 Normal Rearing(NR)This case has been covered by the theorem 5.1 from which it follows that a neuron will becomeselective to one of the inputs. Note that it also follows that the synaptic weights of both eyesbecome selective to the same orientation.



Intrator and Cooper Objective Function Formulation of the BCM Theory 206.2 Monocular Deprivation (MD)From theorem 5.1 we can get an explicit expression to �M in the case of n linearly independentinputs. Recall that the only stable points in such case are those in which the synaptic weightm is orthogonal to all but one of the inputs. Assuming that all the K inputs have the sameprobability 1K , we get: �M = E(x � m)2 = 1K PKi=1(xi � m)2 = 1K (xi0 � m)2 where xi0 is theinput which is not orthogonal to m. Putting that into the deterministic version of the gradientdescent it follows immediately that xi0 �m = K, which implies that �M = 1K (xi0 �m)2 = K, andE(x �m) = 1K (xi0 �m) = 1. This result will be used in the following MD analysis.The assumptions in the monocular deprivation case are that the input to the left (right) eyeis composed of noise only, namely dr represents patterned input plus noise, and dl = n. We alsoassume that the noise has zero average and has a symmetric distribution uniform in all directions.We relax the assumption that dr has zero mean, and instead assume that E(dr �mr) < 12E(dr �mr)2;this is easily achieved when the dimensionality is larger than 2 (following from the calculation atthe begining of this section). We have:R = �f13E(x �m)3 � 14E2(x �m)2g= �f13E[(dr �mr + n �ml)3]� 14E2[(dr �mr + n �ml)2]g= �f13E[(dr �mr)3] + 13E[(n �ml)3] +E[(dr �mr)2(n �ml)] +E[(dr �mr)(n �ml)2]�14[E2[(dr �mr)2] +E2[(n �ml)2] + 2E[(dr �mr)2]E[(n �ml)2]+4E[dr �mr]E[n �ml] �E[(dr �mr)2] +E[(n �ml)2] +E[dr �mr]E[n �ml]�]g= �f13E[(dr �mr)3]� 14E2[(dr �mr)2]g+14Var(n �ml) �Var(n �ml) + 2E[(dr �mr)2]� 4E[dr �mr]� : (1)The �rst term of the risk is due to the open eye and is therefore minimized when the neuronbecomes selective as in the regular normal rearing case. The second term is non negative due tothe previous assumption, and therefore can be minimized only if ml = 0. Note that in a mean �eld,this means that ml ! �. It can also be seen that when the right eye becomes selective (implyingthat the term 2E[(dr �mr)2] � 4E[dr �mr] becomes larger), then the driving force for Var(n �ml)to go to zero becomes larger. This is consistent with the experimental observation which suggeststhat the synapses of the closed eye do not go down until the open eye becomes selective.6.3 Binocular Deprivation (BD)This case has been analysed in section 5.2. During BD we assume that the input is noise; theconclusion was that either synaptic weights perform a random walk around zero, or in case ofpositive average noise, a random walk about a positive weight that is a function of the average ofthe noise and its variance.6.4 Reversed Suture (RS)The limiting behavior of RS is similar to that of MD, described above. Computer simulations showthat it is possible to achieve a disconnection of the newly closed eye before the newly open eye



Intrator and Cooper Objective Function Formulation of the BCM Theory 21becomes selective (Clothiaux et al., 1991).6.5 StrabismusFrom theorem 5.1 we infer that a stable �xed point is such that its projection to one of the inputs ispositive, and it is orthogonal to all the other inputs. Under strabismus we assume that the input toboth eyes is uncorrelated, therefore this situation is possible only if the vector of synaptic weightsof one eye is orthogonal to all but one of the inputs; thus the vector of synaptic weights of the othereye is orthogonal to all the inputs. Since the inputs span the whole space this vector must be zero.7 DiscussionWe have presented an objective function formulation of the BCM theory of visual cortical plasticity.This permits us to demonstrate the connection between the unsupervised BCM learning procedureand the statistical method of projection pursuit and provides a general method for stability analysisof the �xed points. Relating this unsupervised learning to statistical theory enables comparisonwith various other statistical and unsupervised methods for feature extraction.Analysis of the behavior and the evolution of the network under various visual rearing conditionsis in agreement with experimental results. We thus have the result that a biological neuron maybe performing a sophisticated statistical procedure. An experimental question of great interest isposed: how does the modi�cation threshold depend on the average activity of the cell �M ' �c2 asin the original BCM versus �M ' �c2 as presented here.AcknowledgementsWe wish to thank Geo� Hinton for improving the clarity of the statistical part. Charles Bachmann,Eugene Clothiaux and Mike Perrone provided many helpful comments.Research was supported by the National Science Foundation, the Army Research O�ce, andthe O�ce of Naval Research.ReferencesBarron, A. R. and Barron, R. L. (1988). Statistical learning networks: A unifying view. InWegman, E., editor, Computing Science and Statistics: Proc. 20th Symp. Interface, pages192{203. American Statistical Association, Washington, DC.Bear, M. F. and Cooper, L. N. (1990). Molecular mechanisms for synaptic modi�cation in thevisual cortex: Interaction between theory and experiment. In Gluck, M. and Rumelhart, D.,editors, Neuroscience and Connectionist Theory, pages 65{94. Lawrence Erlbaum, Hillsdale,New Jersey.Bear, M. F., Cooper, L. N., and Ebner, F. F. (1987). A physiological basis for a theory of synapsemodi�cation. Science, 237:42{48.Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press, Princeton, NJ.
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Intrator and Cooper Objective Function Formulation of the BCM Theory 25A.1 Convergence of the Deterministic EquationThe deterministic di�erential equations represent a negative gradient of the risk. Therefore, inorder to show convergence of the solution, we only need to show that the risk is bounded frombelow. This will assure that the solution converges to a local minimum of the risk.We can assume that m the synaptic weight vector lies in the space spanned by the randomvariable x. When we replace the random variable x with a training set x1; : : : ; xn, this assumptionsays that m 2 Spanfx1; : : : ; xng. This implies that there is a � > 0, so that 8m Var(x � m) ��km k2 > 0.To show that the vector �m� is bounded we assume that none of its components is zero (sincezero is de�nitely bounded), and multiply both sides of the above equation by �m�, this implies:12 ddt k �m� k2l2 = E[(x � �m�)3]� E2[(x � �m�)2]� k �m� k3 �Var2(x � �m�)� k �m� k3 ��2 k �m� k4= k �m� k3 f1� �2 k �m� kg; (3)which implies that k �m� k� 1�2 .Using this fact we can now show the convergence of �m�. We observe that _�m� = �rR, whereR( �m�) = ��f13E[(x � �m�)3]� 14E2[(x � �m�)2]g is the risk. R is bounded from below since k �m� k isbounded, therefore �m� converges to a local minimum of R as a solution to the gradient descent.A.2 Convergence of the Random EquationUsing the fact that the averaged deterministic version convergence we shall now show the conver-gence of the random version. For this we need a general result on random di�erential equations(Intrator, 1990) which is cited below. This result is an extension of a result by Geman (1977) androughly says that under some smoothness conditions on the second order derivatives of the di�er-ential equations, the solution of the random di�erential equation remains close (in the L2 sense) tothe deterministic solution for all times.We start with some preliminary notation. let H(x; !; t) be a continuous and mixing Rm valuedrandom process for any �xed x and t, where ! is a sample point in a probability space. De�neG(x; t) = E[H(x; !; t)], the expected value with respect to !. Let �(t) be a continous monotonefunction decreasing to zero, and let � > 0 be arbitrary. Consider the following random di�erentialequation together with its associated averaged version,_x�(t; !) = � �(t)H(x�(t; !); !; t); x�(0; !) = x0 2 Rn:_y�(t) = � �(t)G(y�(t); t); y�(0) = x0 2 Rn: (4)� generates a family of solutions x�, and y�.Theorem A.1 Given the above system of random di�erential equations, assume:1. H 2 Rn is jointly measurable with respect to its three arguments, and is of Type II ' mixing.2. G(x; t) = E[H(x(s; !); t)]; and for all i and j@@xjGi(x; t) exists; and is continuous in (x; t):



Intrator and Cooper Objective Function Formulation of the BCM Theory 263. (a) There exists a unique solution, x(t; !), on [0;1) for almost all !; and(b) A solution to @@tg(t; s; x) = G(g(t; s; x); t); g(s; s; x) = x;exists on [0;1)� [0;1)� Rn:4. There exist continuous functions B1(r); B2(r), and B3(r), such that for all i; j; k; � � 0; and!:(a) j Hi(x; !; t) j� B1(j x j);(b) j (@=@xj)Hi(x; !; t) j� B2(j x j);(c) j (@2=@xj@xk)Hi(x; !; t) j� B3(j x j):5. sup�>0;t j y�(t) j� B4 for some B4.6. 9  > 0; c > 0, such that '(�) � �� , and �(t) � t�( 1+1+c), for a monotone decreasing �.Then under conditions 1-6: lim�!0 supt�0 E j x� � y� j2= 0; (5)To use this result, we need only to show that the deterministic and the random solutions arebounded, which will ensure conditions 2-5. Then under the mixing conditions 1 and 6 on the inputx, we get the desired result.Verifying that the random solution is bounded for every ! can be done by multiplying both sidesof the random di�erential equations by m�, assuming its components are not zero, and applyingthe assumptions made above on Var(x �m�), we get12 ddtk m� k2 = (x �m�)3 � (x �m�)2E[(x �m�)2]= (x �m�)2f(x �m�)�E[(x �m�)2]g� (x �m�)2f(x �m�)�Var(x �m�)g� (x �m�)2f(x �m�)� �km� k2g� (x �m�)2fkm� k � �km� k2g; (6)which implies that the derivative of the norm will become negative whenever k m� k > �, thereforek m� k � 1� .Finally, since the random solution remains close to a converging deterministic solution, it re-mains close (in the L2 sense) to its limit for large enough t.� is arbitrary, which implies thatEjm�(t)� ~m j2 �!�!0 0 (7)}


