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Abstract

In this paper, we present an objective function formulation of the BCM theory of visual
cortical plasticity that permits us to demonstrate the connection between the unsupervised BCM
learning procedure and various statistical methods, in particular, that of Projection Pursuit.
This formulation provides a general method for stability analysis of the fixed points of the
theory and enables us to analyze the behavior and the evolution of the network under various
visual rearing conditions. It also allows comparison with many existing unsupervised methods.
This model has been shown successful in various applications such as phoneme and 3D object
recognition. We thus have the striking and possibly highly significant result that a biological
neuron is performing a sophisticated statistical procedure.
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1 Introduction

In the past decade, much work has been done on a theory of synaptic plasticity in visual cortex
(Bienenstock, Cooper and Munro, 1982; BCM). This theory accounts in a precise and quantitative
fashion for the modification of response properties of neurons in striate cortex obtained by manip-
ulating the visual experience of the animal during a critical period of postnatal development. It
allows a precise specification of theoretical equivalents of experimental situations and makes pos-
sible detailed and quantitative comparison of theory with experiment in what are called classical
rearing conditions. These include normal rearing, monocular deprivation, reverse suture, strabis-
mus, binocular deprivation, as well as the restoration of normal binocular vision after various forms
of deprivation. In detailed simulations, Clothiaux et. al. (1991) find quantitative agreement of
theory and experiment both for equilibrium states and the kinetics by which they are reached.

In this paper, we present an objective function formulation of the BCM theory of visual cortical
plasticity. This permits us to demonstrate the connection between the unsupervised BCM learning
procedure and various statistical methods, in particular, that of Projection Pursuit. This analysis
has led us to modify slightly our learning rule resulting in improved stability and statistical prop-
erties. It also provides a general method for stability analysis of the fixed points of the theory and
enables us to analyze the behavior and the evolution of the network under various visual rearing
conditions. This new model has some advantages over the original exploratory projection pursuit
model (Friedman, 1987). Due to its computational efficiency, it can extract several features in
parallel, taking into account the interaction between the different extracted features via a lateral
inhibition network. Feature extraction based on this model have been applied to various real-world
problems such as phoneme recognition of a small-speaker database (Intrator, 1992), multi-speaker
phoneme recognition from the TIMIT database (Intrator and Tajchman, 1991) using the Lyon’s
cochlear model (Slaney, 1988), and 3D object recognition (Intrator and Gold, 1993; Intrator et al.,
1991). We thus have the striking and possibly highly significant result that a biological neuron is
performing a sophisticated statistical procedure.

Section 2 reviews the evolution of the BCM theory, and its relevance to modeling of the primary
visual cortex, area 17. Section 3 describes the statistical motivation behind unsupervised learning.
This is used to motivate the objective function formulation of the modified BCM model given in
Section 4. Based on statistical considerations, this formulation is further extended to a nonlinear
neuron in a lateral inhibition network. In Section 5 we analyze the limiting behavior of the synaptic
modification equations, using the formulation described in Section 4 and a connection established
between the solution of the averaged deterministic differential equations and the solution of the
random version of the equations (Appendix A). Analysis of this model in several situations related
to visual experiments is given in Section 6.

2 Review of BCM Theory

In this section, we briefly review relevant experimental observations and the BCM theory. This
will serve to introduce relevant notation and biological terms.
2.1 Visual Cortical Plasticity: Experimental Results

Neurons in the primary visual cortex, area 17, of normal adult cats are sharply tuned to the
orientation of an elongated slit of light and most are activated by stimulation of either eye (Hubel
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and Wiesel, 1959). Both of these properties — orientation selectivity and binocularity — depend on
the type of visual environment experienced during a critical period of early postnatal development.

Monocular deprivation (MD) has profound and reproducible effects on the functional connectiv-
ity of striate cortex during the critical period, extending from approximately 3 weeks to 3 months
of age in the cat (Frégnac and Imbert, 1984; Sherman and Spear, 1982). Brief periods of MD will
result in a dramatic shift in the OD of cortical neurons so that most will be responsive exclusively
to the open eye. The OD shift after MD is the best known, and most intensively studied type of
visual cortex plasticity.

When MD is initiated late in the critical period (Presson and Gordon, 1982), or after a period
of rearing in the dark (Mower et al., 1985), it will induce clear changes in cortical OD without
a corresponding anatomic change in the geniculocortical projections. Long-term recordings from
awake animals also indicate that OD changes can be detected within a few hours of monocular
experience; this seems too rapid to be explained by the formation or elimination of axon terminals.
Moreover, deprived-eye responses in visual cortex may be restored within minutes to hours under
some conditions (Duffy et al., 1976), which suggests that synapses deemed functionally discon-
nected are nonetheless physically present. Therefore, it is reasonable to assume that changes in the
functional binocularity may be explained by changes in the efficacy of individual cortical synapses.

The consequences of binocular deprivation (BD) on visual cortex stand in striking contrast to
those observed after MD. First, MD leads to a loss of orientation selectivity in the deprived eye
much faster than in BD. Second, although 7 days of MD during the second postnatal month leave
few neurons in the striate cortex responsive to stimulation of the deprived eye, most cells remain
responsive to stimulation through either eye after a comparable period of BD (Wiesel and Hubel,
1965). Thus it is not merely the absence of patterned activity in the deprived geniculate projection
that causes the decrease in synaptic efficacy after MD.

The result of a reversed suture (RS) experiment is even more striking. In this experiment, the
kitten is first exposed to normal visual environment, then one eye is sutured closed, for a few days
until the sutured eye becomes functionally disconnected. At that time the sutured eye is opened
and exposed to normal visual environment again, and the previously opened eye is closed. The
result from this experiment is that the newly opened eye does not recover before the previously
opened eye becomes disconnected.

2.2 Single Neuron Theory

A theoretical solution to the problem of visual cortical plasticity, was presented by Cooper, Liber-
man, and Oja (1979). According to this theory, the synaptic efficacy of active inputs increases when
the postsynaptic target is concurrently depolarized beyond a modification threshold, @3s. However,
when the level of postsynaptic activity falls below ©ps, then the strength of active synapses de-
creases.

An important feature was added to this theory in 1982 by Bienenstock Cooper and Munro
(BCM). They proposed that the value of the modification threshold is not fixed, but instead varies
as a nonlinear function of the average output of the postsynaptic neuron. This provided stability
properties and explained, for example, why the low level of postsynaptic activity during binocular
deprivation does not drive the strengths of all cortical synapses to zero. Their form of synaptic
modification can be written as:

;= ¢(c, Onm)d; (1)
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where m; is the efficacy of the jt* Lateral Geniculate Nucleus (LGN) synapse onto a cortical
neuron, d; is the level of presynaptic activity of the j** LGN afferent, c is the level of activation of
the postsynaptic activity of the postsynaptic neuron, which is given (in the linear region), by m - d,
and Ops is a nonlinear function of some time averaged measure of cell activity that in the original
BCM formulation was proposed as

Oun = (2. (2)

(In BCM, this time average is replaced, for simplicity, by a spatial average over the environmental

inputs (¢ — m - d). The shape of the function ¢ is given in Figure 1 for two different values of the

threshold ©;;.
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Figure 1: The ¢ function for two different ®ps’s

Further discussion of the biological relevance of the theory can be found in (Saul and Daniels,
1986; Bear et al., 1987; Bear and Cooper, 1990; Clothiaux et al., 1991).

2.3 Lateral Inhibition Network: Mean Field Theory

An extension of the single cell BCM neuron to a lateral inhibition network was presented by (Scofield
and Cooper, 1985) and a mean field approximation of this network by (Cooper and Scofield, 1988).

The activity of neuron 7 in such a network is affected by its input vector d and by the adjacent
neurons in the network and can be written

c;, =m; - d+ Z Lijcj-. (3)
7

In the context of visual cortex, the first term is due to the input from LGN and the second due to
input from other cortical cells. Define ¢ as the spatially averaged activity of all the cortical cells
in the network: ¢ = % >, ¢;. The mean field approximation is obtained by replacing the inhibitory
contribution of cell j, c; by its average value so that ¢; becomes:

ci:mi'd‘l‘EZLij- (4)

7
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From a consistency condition it follows that & = m-d+&Lo = (1 — Lo)~'m-d, where in = & ; m;,
and Lo = % >i; Lij, so that ¢; = (m; + (1 — Lo)_lﬁzzj L;;)d.

If we assume that the lateral connection strengths are function only of the relative distance
i — J, then L;; becomes circular matrix so that }_, L;; = >°; Li; = Lo, and

¢; = (m; + Lo(1 — Lo)~*m)d. (5)

In the mean field approximation, one can therefore write ¢;(a) = (m; — a)d, with a = |Lo|(1 +
| Lo|)~*m.

When analyzing the position and stability of the fixed points using this approximation, it
follows under some mild assumption on the evolution of the average synaptic weights, that there is
a mapping

m, « mi(a) — a

such that for every neuron in such a network with synaptic weight vector m,; there is a corresponding
neuron with weight vector m; that undergoes the same evolution (around the fixed points) subject
to a translation a.

3 Extraction of Optimal Unsupervised Features

When a classification of high dimensional vectors is sought, the curse of dimensionality (Bellman,
1961) becomes the main factor affecting the classification performance. The curse of dimensionality
is due to the inherent sparsity of high dimensional spaces; thus the amount of training data needed
to get reasonably low variance estimators becomes ridiculously high. This has led many researchers
in recent years to construct methods that specifically avoid this problem. In those cases in which
important structure in the data actually lies in a much smaller dimensional space, it becomes rea-
sonable to try to reduce the dimensionality before attempting the classification. This approach can
be successful if the dimensionality reduction/feature extraction method loses as little information
as possible in the transformation from the high dimensional space to the low dimensional one.

At a first glance, it seems that a supervised feature extraction method, such as multiple dis-
criminant analysis (see review in Bryan, 1951; Sebestyen, 1962) will always be superior to an
unsupervised one, because if one has more information about the problem, it is natural to expect
that finding the solution is easier. However, due to the global constraint imposed by the supervi-
sion, when the number of parameters (i.e. the dimensionality and number of nodes) is large, the
network often will get stuck in a local minimum which is far from an optimal solution. Unsupervised
methods however, use local objective functions which may lead to less sensitivity to the number of
parameters in the estimation, and therefore have the potential to avoid the curse of dimensionality
(Barron and Barron, 1988).

For the purpose of pattern classification, it is important to devote our attention to those di-
mensionality reduction methods that allow discrimination between classes and not faithful repre-
sentations of the data. This leaves out the class of methods such as factor analysis (see review in
Harman, 1967) which tend to combine features that seem to have high correlation.

A general class of unsupervised dimensionality reduction methods, called exploratory projec-
tion pursuit is based on seeking interesting projections of high dimensional data points (Kruskal,
1969; Switzer, 1970; Kruskal, 1972; Friedman and Tukey, 1974; Friedman, 1987; Huber, 1985, for
review). The notion of interesting projections is motivated by an observation made by Diaconis
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and Freedman (1984), that for most high-dimensional clouds, most low-dimensional projections
are approximately normal. This finding suggests that the important information in the data is
conveyed in those directions whose single dimensional projected distribution is far from Gaussian.
Various projection indices differ on the assumptions about the nature of deviation from normal-
ity, and in their computational efficiency. Friedman (1987) argues that the most computationally
efficient measures are based on polynomial moments. However although many synaptic plasticity
models are based on second order statistics and lead to extraction of the principal components (Se-
jnowski, 1977; von der Malsburg, 1973; Oja, 1982; Miller et al., 1989; Linsker, 1988), second order
polynomials are not sufficient to characterize the important features of a distribution (see examples
in Duda and Hart (1973) p. 212, and the example in Figure 2). This suggests that in order to use
polynomials for measuring deviation from normality, higher order polynomials are required, and
care should be taken in order to avoid their over-sensitivity to outliers. From our earlier discussion
it follows that these polynomial moments should be of higher order than two. In some special cases
where the data is known in advance to be bi-modal, it is relatively straightforward to define a good
projection index (Hinton and Nowlan, 1990), however, when the structure is not known in advance,
it is still valid to seek multi-modality in the projected data.

Y 4

Figure 2: Two data clusters which can be separated by projecting to the z axis, can not be separated
by projecting to the y axis, although the variance in the y axis is larger.

Despite the computational attractiveness, projection indices based on polynomial moments are
not directly applicable, since they very heavily emphasize departure from normality in the tails of
the distribution (Huber, 1985). Friedman (1987) addresses this issue by introducing a nonlinear
transformation that compresses the projected data from R to [—1,1] using a normal distribution
function. We address the problem by applying a sigmoidal function to the projections, and then
applying an objective function based on polynomial moments.

4 Formulation of the BCM Theory Using an Objective Function

With the intuitive idea discussed above, we now present an objective function formulation of the
synaptic modification theory of Bienenstock, Cooper and Munro (BCM). This yields a statistically
plausible objective function whose minimization finds those projections having a single dimensional
projected distribution that is far from Gaussian.

This formulation allows us to interpret the biological neuron’s behavior from a statistical point
of view. In addition, it provides a more powerful means of investigating the kinetics of synaptic
development as well as the location and stability of the fixed points under various environmental
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conditions.

4.1 Single Neuron

We first informally describe the statistical formulation that leads to this objective function. Using
a metaphor motivated by statistical decision theory, a neuron is considered as capable of deciding
whether to fire or not for a given input and vector of synaptic weights. A loss function is attached
to each decision. The neuron’s task is then to choose the decision that minimizes the loss. Since the
loss function depends on the synaptic weight vector in addition to the input vector, it is natural
to seek a synaptic weight vector that will minimize the sum of the losses associated with every
input, or more precisely, the average loss (also called the risk). The search for such a vector,
which yields an optimal synaptic weight vector under this formulation, can be viewed as learning
or parameter estimation. In those cases where the risk is a smooth function, its minimization can
be accomplished by gradient descent.

The ideas presented so far make no specific assumptions regarding the loss function, and it is
clear that different loss functions will yield different learning procedures. For example, if the loss
function is related to the inverse of the projection variance (including some normalization) then
minimizing the risk will yield directions that maximize the variance of the projections, i.e. will find
the principal components.

Before presenting a loss function, let us more precisely define the neuronal input, and two
useful functions: We consider a neuron with input vector z = (z1,...,,), synaptic weight vector
m = (mq,...,My), bothin R™, and activity (in the linear region) ¢ = z-m. The input  is assumed
to be a bounded, and piecewise constant stochastic process. We allow some time dependency
in the presentation of the training patterns, by requiring that z is of Type II mixing®'. These
assumptions are plausible, since they represent the closest continuous approximation to the usual
training algorithms, in which training patterns are presented at random. They are needed for the
approximation of the resulting deterministic gradient descent by a stochastic one (Intrator, 1990).
For this reason we use a learning rate y that has to decay in time so that this approximation
is valid. Define the threshold @y = E[(z - m)?], and the functions ¢(c,Op) = ¢ — 2¢Oy,
B(c,Opr) = 2 — cOpy.

Our projection index is aimed at finding directions for which the projected distribution is far
from Gaussian; more specifically, since high dimensional clusters have a multimodal projected
distribution, our aim is to find a projection index (loss function) that emphasizes multimodality.
For computational efficiency, we would like to base the projection index on polynomial moments
of low degree. Using second degree polynomials, one can get measures of the mean and variance of
the distribution; these, however, do not give information on multimodality; therefore, higher order
polynomials are necessary. Further, the projection index should exhibit the fact that bimodal
distribution is already interesting, and any additional mode should make the distribution even
more interesting.

With this in mind, consider the following family of loss functions that depend on the synaptic
weight vector and on the input z

(zm)
Im(@) = —u [ d(s,0u)ds

!The mixing property specifies the dependency of the future of the process on its past.
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= —al5(e m) - Blem))(z - m)?) (1)

The motivation for this loss function can be seen in Figure 3, which represents the ¢ function and
the associated loss function L,,(z). For simplicity the loss for a fixed threshold ®s and synaptic
vector m can be written as L (c) = —pc?(§ — GTM), where ¢ represents the linear projection of z
onto m.

¢ A Lm(C) A

Figure 3: The function ¢ and the loss functions for a fixed m and .

The graph of the loss function shows that for any fixed m and ©,,, the loss is small for a given
input z, when either ¢ = = - m is close to zero, or when z - m is larger than ©,,. Moreover, the loss
function remains negative for (z - m) > ©ps, therefore any kind of distribution at the right hand
side of Oy is possible, and the preferred ones are those which are concentrated further from ©p;.

It remains to show why it is not possible that a minimizer of the average loss will be such that
all the mass of the distribution will be concentrated on one side of ®p;. This can not happen
because the threshold @7 is dynamic and depends on the projections in a nonlinear way, namely,
Oy = E(z -m)?% This implies that @y will always move itself to a position such that the
distribution will never be concentrated at only one of its sides.

The risk (expected value of the loss) is given by:

Rm = —pB{3(e-m)* = 1Bl mPI(o -m)?)

~u{3 El(e - m)?] - 3 B(e - m)I} 2)

Since the risk is continuously differentiable, its minimization can be achieved via a gradient
descent method with respect to m, namely:

dm; _ _iRm = pA{E[(z-m)®z;] — E[(z-m)*|E[(z - m)z;]}

At T Omy
= u E[¢(z-m,0On)z;]. (3)

The resulting differential equations give a somewhat different version of the law governing synap-
tic weight modification of the BCM theory. The difference lies in the way the threshold Qs is
determined. In the original form this threshold was @as = EP(c) for p > 1, while in the current
form @pr = E(cP) for p > 1. The latter takes into account the variance of the activity (for p = 2)
and therefore is always positive, this ensures stability even when the average of the inputs is zero.
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It should be noted here, that the original theory (1982) assumed that the inputs were positive,
whereas the present threshold relaxes this assumption and yields stability for a larger class of
bounded inputs.

Either form seems consistent with presently available experimental results (Clothiaux et al.,
1991) but imply quite different underlying physiological mechanisms. The original BCM form
requires that a history of activity (likely cell depolarization) be stored and then via a non-linear
process produce the modification threshold. The present form of @37 requires that the non-linear
process occur first. When the existence of the moving threshold is established by observation?, the
next question of great interest will be its precise dependence on cell parameters.

4.2 Extension to a Nonlinear Neuron

The fact that the distribution has part of its mass on both sides of ®ps makes it a plausible
projection index that seeks multi- modalities. However, this projection index will be more general
if, in addition, the loss is insensitive to outliers and if we allow any projected distribution to be
shifted so that the part of the distribution that satisfies ¢ < @7 will have its mode at zero. The over-
sensitivity to outliers is addressed by considering a nonlinear neuron in which the neuron’s activity
is defined to be ¢ = o(z - m), where ¢ usually represents a smooth sigmoidal function. The ability
to shift the projected distribution so that one of its modes is at zero is achieved by introducing a
threshold g so that the projection is defined to be ¢ = o(z - m + ). From the biological viewpoint,
[ can be considered as spontaneous activity. The modification equations for finding the optimal
threshold (8 are easily obtained by observing that this threshold effectively adds one dimension to
the input vector and vector of synaptic weights so that z = (z1...,2,,1), m = (mq,...,my, 5),
and therefore, § can be found by using the same synaptic modification equations. For the rest
of the paper we shall assume that this threshold is added to the projection, without specifically
writing it.

For the nonlinear neuron, @7 is defined to be ©@3 = E[o?(z - m)]. The loss function is given

by:

o(zm)
Lpy(z) = —,u,/o &(s,Onr)ds
= {50%@ m) - Bz m)o*(z m)} (4)
The gradient of the risk becomes:

~VmBm = p{E[c*(z -m)o'z]
—E[o*(z - m)|E[o(z - m)a'z]}
= p Elp(o(z-m),0n)0's], (5)
where o' represents the derivative of o at the point (z - m). Note that the multiplication by o’

reduces sensitivity to outliers of the differential equation since for outliers o’ is close to zero. The
gradient decent procedure is valid, provided that the risk is bounded from below (see Section 5).

2Some indications of a moving threshold has been already found (Yang and Faber, 1991)
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4.3 Extension to a Network with Feed-Forward Inhibition

We now define a network with feed-forward inhibition. The activity of neuron k& in the network
is ¢ = ¢ - my, where my is the synaptic weight vector of neuron k. The inhibited activity and
threshold of the £’th neuron is given by

Ek:ck—anJ-, ok, = E[&). (6)
i#k
This feed-forward network should be contrasted with a lateral inhibition network (used for example
by Cooper and Scofield, 1988) in which the inhibited activity is given by ¢t = cx(0) + Y L;;c;. The
relation between these two networks will be discussed in the next section.
For the feed-forward network the loss function is similar to the one defined in a single feature
extraction with the exception that the activity ¢ = z - m is replaced by é. Therefore the risk for
node k is given by:

1. 1 5.
Re = —pl5 BIE - L B, (7)
and the total risk is given by
N
R=Y R (8)
k=1

To find the gradient of R we write:

a¢cy, o a¢cy, .
8mj N e, 8mk -
8Ry  ORy 88, 2 P
8—mk = 8—Ekamk = —u{E[éz] — E[¢]Eléxz]},
OR; _ OR,; 05; _ OR,
8mk N 8Ej 8mk N namj’
OR dRy, OR,;
= = = — —
8mk 8mk njé;c 8mj
= [El¢(é, O%)z] — n ) E[¢(é, 67,)e]). (9)

The equation performs a constraint minimization in which the derivative with regard to one
neuron can become orthogonal (when 7 — 1) to the sum over the derivatives of all other synaptic
weights. Nevertheless, the coupling is very simple to calculate, and does not require any matrix
inversion. The equation therefore, demonstrates the ability of the network to perform exploratory
projection pursuit in parallel, since the minimization of the risk involves minimization of nodes
1,..., N, which are loosely coupled.

When the nonlinearity of the neuron is included, the inhibited activity is defined (as in the
single neuron case) as ¢, = o(ck — "IZl;ek cr). G)IIC\/I’ and Ry are defined as before. However, in this
case

Oéx,

om;

0 4.
ome (Ck)z. (10)

= —7701(516)33:
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Therefore the total gradient becomes:

OR
= Gy = PG, O30)0 (E)e] —n 3 Blp(Es 6)0(35)e]) (1)

The lateral inhibition network performs a search of k-dimensional projections together; thus
may find a richer structure that a stepwise approach might miss (e.g. see example 14.1, Huber,

1985).

4.4 Some Related Statistical and Computational Issues

The proposed method uses low order polynomial moments which are computational efficient, yet
it does not suffer from the main draw back of polynomial moments — sensitivity to outliers. It
naturally extends to multi-dimensional projection pursuit using the feed-forward inhibition network.
The number of calculations of the gradient grows linearly with the dimensionality and linearly with
the number of projections sought. The projection index contains a single dimensional scaling (see
the contribution of Hastie and Tibshirani to the discussion in Jones and Sibson, 1987), therefore,
removing the need for a sphering transformation to the data, however, a sphering transformation
will result in a type III projection index (see Huber, 1985). The projection index has a natural
stochastic gradient descent version which further accelerates the calculation by eliminating the
need to calculate the empirical expected value of the gradient. All the above lead to a fully parallel
algorithm that may be implemented on a multi-processor machine, and produce a practical feature
extractor for very high dimensional problems.

Although, the projection index is motivated by the desire to search for clusters in the high
dimensional data, the resulting feature extraction method is quite different from other pattern
recognition methods that search for clusters. Since the class labels are not used in the search, the
projection pursuit is not biased to the class labels. This is in contrast with classical methods such
as discriminant analysis (Fisher, 1936; Sebestyen, 1962, and numerous recent publications). The
issue of using an unsupervised method vs. supervised for revealing structure in the data has been
discussed extensively elsewhere. We would only like to add that it is striking that in various low-
dimensional examples (Friedman and Tukey, 1974; Jones, 1983; Friedman, 1987) the exploratory
capabilities of PP were not worse than those of supervised method such as discriminant analysis and
factor analysis in discovering structure, thus suggesting that in high dimensions where supervised
methods may fail, still PP can find useful structure.

The resulting method concentrates on projections that allow discrimination between clusters
and not faithful representation of the data, which is in contrast to principal components analysis,
or factor analysis which tend to combine features that have high correlation (see review in Harman,
1967).

The method differs from cluster analysis by the fact that it searches for clusters in the low
dimensional projection space, thus avoiding the inherent sparsity of the high dimensional space.
The search for multi-modality is further constrained by the desire to seek those projections that
are orthogonal to all but one of the clusters (or have a mode at zero). This constraint simplifies the
search, since it implies that a set of K linearly independent clusters may have at most K optimal
projections as opposed to at most (12<) separating hyperplanes.



Intrator and Cooper Objective Function Formulation of the BCM Theory 12

4.5 Comparison of Linear Feed-Forward with Lateral Inhibition Network: Mean
Field Approximation

For the linear case, using the notation of Cooper and Scofield, (1988), neuron activity in the lateral
inhibition network is given by

c=Md+ Le. (12)
In the mean field approximation this becomes
¢c= Md+ Le, (13)

where M is the synaptic matrix for N neurons, ¢ = (cy,...,cn)T, L is the inhibitory connection
matrix with norm less than 1 and c is the averaged activity over all neurons in the network. In
the context of visual cortex, the first term is due to the input from LGN and the second due to
input from other cortical cells. If we define ¢(0) = Md, then the averaged inhibited activity can be
written as

¢ =1¢(0)+ Le, (14)
e=(I-L)'e(0)=I+L+L*+L*+...)¢0). (15)

Using this notation, the activity of a neuron in the feed-forward network as defined in section 4.3
can be written

¢ =c(1) =¢(0)+ Lc(0), (16)
which leads to an averaged activity of the form
5(1) = (I + L)e(0), (17)

which is a a first order approximation of (14); it is useful primarily because it removes the need to
invert a matrix, which becomes impossible in the nonlinear neuronal case. In addition, successive
approximations

e(1) = 2(0) + Le(0) = (I+ L)e(0),
e(2)=¢(0)+ Le(1) = (I+ L+ L*&0), (18)

can be thought of as including mono-synaptic, bi-synaptic, tri-synaptic etc. events and thus follow
the time course of the post-synaptic potentiation. It follows that ¢(k) — ¢, as & — oo, thus
recapturing the lateral inhibition network. Within a scaling factor, the first order feed-forward
network, as will be shown below, generates the same synaptic modification equations as the lateral
inhibition network in the Cooper and Scofield mean field approximation.

For a feed-forward network with neuron activity given by & = m;-d+3_; Lijc;, as in section 4,

. OR  ORy OR;
mk__amk N _[8mk+zj:Lk18mj]
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= plB(¢(ér, OFp)z +2Lk1 [$(;, ©3,)z]]. (19)

Let m = > jm; (m; € R™). We assume that the inhibitory contributions are a function only of
the ¢ — j (not dependent on the absolute position of a cell in the network), so that Y, L;; = Lo =
> Lij, and that 35, Li; E[#(&;, 03,)z] = 32, Li; E[¢(E5, 0, )z]. Then we get:

=Y = M[ZE[qs(ek,(?)’jJ)m]+ZL0E[¢(EJ',©3;)$]]

(1 —|— Ly) ~
_ (L) 505 s Bl Ol (20)
This implies that
LO B ~ Ak
= L FE 21
T = B LakBl9(E, 6, 1)
and hence,
tig = WlE[Q(ex, Ohp)e] + — %] (22)
k= [ ks VM 1+ Lo
Compare this with Cooper and Scofield, (1988) (eq. A3):
g = plE[@(cx, OF,)2] + Lo], (23)

equations 22 and 23 differ only in the constant of inhibition. Thus the mean field approximation
of the feed-forward network yields the lateral inhibition mean field result merely by scaling the
average inhibition.

One result of the mean field approximation (Cooper and Scofield, 1988) is that there is a
transformation such that

m(a)=m' —«a (24)

and so the gradient with respect to the weights yields two terms 7 and &. In the adiabatic case,
we assume that a varies slowly with respect to each individual m, so that & = 0 is a reasonable
approximation. In this situation the analysis of section 5 applies for m(a) (the mean field network)
as well as for m(0). In addition, the argument given in the appendix of (Cooper and Scofield, 1988)
regarding the non adiabatic case holds here as well.

From the system 9 we can get:

- . N .
m= %E[Xk:[qs(ék, O%r)e] - 5 —7) XJ: E[¢(&;, 0%,)z]], (25)

which implies
== Gl1 = 0l B (606 O30l (26)

Therefore, at a fixed point, when all of the cells of the network have reached their respective fixed
points, ! = 0 implies that m = 0, meaning & = 0. Thus the position and stability of the fixed
points (as given in section 5 ) apply for the mean field network with no additional approximations.
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5 Analysis of the Fixed Points in High Dimensional Space

In appendix A we show using a general result on random differential equations (Intrator, 1990) that
the solution of the random differential equations remains as close as we like, in the L? sense, to the
solution of the deterministic equations. We have shown in section 4 that the deterministic equation
converges to a local minimum of the risk. This implies that the solution of the random differential
equation converges to a local minimum of the risk in L?. Based on the statistical formulation, we
can say that the local minima of the risk are interesting features extracted from the data, which
correspond to directions in which the single dimensional distribution of the projections is far from
a Gaussian distribution, by means of penalized skewness measure.

In the following, we attempt to analyze the shape of the high dimensional risk function, under
specific inputs, namely, we look for the location of the critical points of the risk, and locate those
which have a local minima given a specific training set. This completely characterizes the solution of
the synaptic modification equations, and sheds some more light on the power of the risk functional
in finding interesting directions in the data. In doing so we gain some detailed information on
the behavior of the solution of the random differential equations, as a model for learning in visual
cortex, under various rearing conditions.

We consider linear neurons under the mean field assumptions. Furthermore, since the introduc-
tion of the threshold 8 does not pose any mathematical difficulty as was described before, we omit
it in the analysis.

First, we analyze the limiting behavior of the solution in the case where we have n linearly
independent inputs (not necessarily orthogonal). The introduction of noise into the system will be
done in the next sections.

5.1 n linearly independent inputs

The random differential equation is given by

e = € () - m, Om)a, m(0) = mo, (1)
the averaged (batch) version of the gradient descent is given by:

e = € W(t)E[§(a - 7, Om)a] 11e(0) = mo. (2)

The main tool in establishing the following results is the connection between the solution to the
deterministic differential equation 2 and the solution of the random differential equation 1. A
general result which yields this connection is given in (Intrator, 1990) and will be discussed in the
appendix. When applied to this specific differential equation, the result says that

sup E|m, — m|> — 0. (3)
t>T e—0

Proposition 5.1 Let z(1), ..., z(™ be n linearly independent bounded vectors in R™. Let D be the
random process so that P[D = :c(i)] =p;, »>0,1=1,...,n, >p;=1.

Then the critical points of equation 1 are the 2™ weight vectors m(Y) € R™, each a solution to
one of the equations: Am() = v(0), § =0,...,2" — 1, where A is the matriz whose i’th row is the
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input vector (), and {v(i), 1=0,...,2" — 1}, is the n dimensional set of vectors of the form:
v© = (0,...,0),
W = (=0,...,0
v ,0,...,0),
(2-10,...,0)
o2 = (o0, i,o, ...,0),
P2
S ( SR ,0,...,0),
P1+ P2 P1+ P2
1
o) = (0,0,—,0,...,0),
p3
o277 = (1,0,

Proof Rewrite equation 1 in the form

me = eu(t)(z - me)[z - me — Oprlz, (4)

where @7 = E[(z - m¢)?]. Since eu(t) > 0, then m, is a critical point if either z(*) - m, = 0, or
) . me = Oy #£0, 1=1,...,n

There are exactly 2" possibilities for the set of n numbers z(*) - m. to be either 0, or nonzero.
Therefore there are only 2™ possible solutions.

Let mg ) be such that mgl) (1) # 0, and mgl) Lz = 0, 2> 1. Then for mgl),
On = E[(z - me)? Zp m{)? = py (M) . m{))2, (5)

(1) M _ 1
b1

When we combine the condition O3 = () - m¢”, we get (1) . m,

(3)

Now suppose m = m¢ >, is such that z(1) mg ) = g2 mg ) = = O, and z() - m( ) = 0, 2> 2.

In this case Oy = pl(:c(l) m( )) po(z? -m£3))2, which yields, =7 - m£3) = plipz’ j=1,2.
The other cases are treated 51m11ar1y. O

5.1.1 Stability of the solution

Let m(t) be a solution of a random differential equation, then myg is said to be a stable point if for
any 6 > 0 there is a 7(6) such that for any K > 0,¢t> 7

P{|m(t) — mo|®* > K} < % (6)

This roughly says that the if mg is a stable point, then the probability of finding the solution far
from this point is small.

Lemma 5.1 Let m be a critical point for the random differential equation. Then m is a stable
(unstable) critical point, if it is a stable (unstable) critical point for the averaged deterministic
version. The stability of the stochastic equation is in the L? sense.
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Proof From equation 3 follows that if m. is a critical point of the random version, then it is a
critical point of the averaged deterministic equation. If this point is a stable (unstable) point of the
deterministic equation, then perturbing both equations (i.e. starting from an initial condition that
is close to me), will yield that the deterministic equation will converge back to (diverge from) the
original critical point. This is independent of € and with probability one since it is a deterministic
equation. Consequently, the random solution must stay close to the deterministic solution which
in this case, implies the stability (instability) of the random solution. O
Theorem 5.1 Under the conditions of proposition 5.1, the critical points mg) that are stable are
only those in which the corresponding vector v*, has one and only one nonzero element in it.

Proof From the above two lemmas it follows that it is enough to check the stability on the
deterministic version of the equations, at the critical points of the random version.
The gradient is then given by:

VR = El( - m)?] - El(z - m)?]E[(s - m)al, (7)
and the second order derivative is given by:
~V2 R, =2E[(z-m)z x z] — E[(z-m)?|E[z x z] — 2E[(z - m)z] x E[(z - m)z]. (8)

The critical point m = 0 is clearly unstable, since the second derivative matrix is zero, and
changes sign around m = 0. For selective solution, we can choose without loss of generality, m(!)
which is the solution for »(1). Putting m(!) into the gradient equation gives:

~VmR| o = p1(:c(1) .m(l))%(l) _ p1(:c(1) . m(l))zpl(:c(l) . m(l))m(l)
B = pi(e® mM)2[1 = ] (2 - MmO, (9)
Since m(1) is a critical point and z(1) is the preferred input, we get from the fact that the gradient

is equal to zero at m(): (z(1) . m(1)) = le’ E(z-m)? = le‘
Define the matrix B to be

N
B=E[zxz]= Zpi:c(i) x 29, (10)
1=1

since the inputs are independent and span the whole space, it follows that B is positive definite.
Putting (") - m()) into 8 gives:

V2R, W = pi(z®) - m(l))(gm(l) x (1) — iB —92z(1) x :c(l)), (11)
m=ml Y41

which is negative definite, thus leading to a stable critical point.
Now, assume, without loss of generality, that m = m) then

—va|m:m(3) = [pl(g;(l) . m(3))2m(1) + pz(m(z) X m(3))2m(2)]
—[p1(:v(1) .m(3))2 + pz(m(z) ] m(s))z
[p1(z) - MmNz 4 py(2®) . MG, (12)
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1

Since m(®) is a critical point, we have from proposition 5.1 that (z(1) . m(®)) = (2(2). m(3)) =

p1+p2’?
and E(z-m)? = —1—.
p1+Dp2
Putting this into equation 8 gives:
_vgg)R|m:m(3) = 2p1(:c(1) . m(3)):c(1) x z(1) + 2p2(m(2) ) m(3)):c(2) % 2(2)
1
_Pl + p2
_2([7’1(3’(1) : m(s))m(1) + Pz(:c(z) -m(3))m(2)]
x[p1(z() - mB)z() 4 py(2(@) . m(s))m(z)])
2
- 2 2¢; )2 x otV
pr+p2 (P + p22)2
2p2 2P\ ,(2) y 4@
+ - X
(P11-|- p2 (p1+ pz)z)m e
— B
P12-|- D2
__ehibr (1) o o(2) o 4(2) () 13
(p1_|_p2)2(“’ vt z) (13)

Denote the above gradient matrix by G. Without loss of generality we may assume that p; > ps.
Then consider a vector, y which is orthogonal to all but z(2). Then

Th, T (2) . (2), P2 __b6py
y Gy =y 2\ X z\y 6 3) >0, 14
p1+ P2 ( p1+ P2 ) (14)
since pll_’lfm < % It is easy to see, by replacing m(3) with Am(3), that the second derivative along
m(3) changes sign at A = 1, which implies instability.
The proof for the other critical points follows in the exactly same way. O

5.2 Noise with no Patterned Input

This is a special case, which is related to the binocular deprivation environment discussed in 2.1, and
hence is analyzed separately. In general, we consider input as being composed of pattern and noise.
The patterned input represents a highly correlated set of patterns that appear at random, and are
supposed to mimic key features in visual environment such as edges with different orientation etc.
The noise in an uncorrelated type of input, which is assumed to exist in large network of neurons
receiving inputs from several parts of cortex. Patterned input is associated with open eyes, pure
noise with closed eyes.

When the input contains only noise, the averaged deterministic solution has a stable critical
point, and the random solution stays close to the deterministic one as is shown in the appendix.
When the input is composed of noise with zero mean only, we find that the averaged version has a
stable zero solution (as opposed to the case with patterned input). This implies that the solution
of the random version wanders about the origin but stays close to zero in L? norm.
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5.2.1 Noise with Zero Mean

The crucial property of white noise z is the fact that it is symmetric around zero, this implies that
E(z-m)® =0, and the risk,

R = ~{E[(z-m)’] - E*[(z - m)’]} = E*[(z - m)*] > 0. (15)

It is easy to see that only for m = 0, R,, = 0, and this is the only critical point in this case. Since
this result is related to binocular deprivation experiments, it should be emphasized again that the
solution to the stochastic version of the differential equations will wander around zero in a random
manner but with a small magnitude that is controlled by the learning rate u.

In view of the properties of the risk, we can say that when the distribution of z has zero skewness
in every direction, the only stable minima of the risk is = 0. This is not true when the noise has
a positive or a negative average as analyzed in the next section.

5.2.2 Noise with Positive Mean

We assume that z is now bounded random noise, with Z > 0, and z has the same single dimensional
distribution in all directions, which implies that z; = z; > 0, % > 0. Let z = £ + y, where y
is random noise with zero average. Denote Var(y;) = A. The following identities can easily be
verified:

E(z-m)? (z -m)* 4 Var(y - m),
E(y-m)y = Am,
E(y-m)’y = o. (16)

Putting these identities in the first and second gradient (eq. 7,8) we get:
~VmBRm = [(Z-m)? + Var(y - m)]z — [(Z - m)? + Var(y - m)][(Z - m)Z + Im]. (17)
We are looking for critical points of the gradient,

1 (z-m)

VinRym =0=> m; = [X — Y ]:EZ (18)

Equation 18 suggests a consistency condition that has to be filled, namely, if we multiply both sides
of this equation by Z; and sum over all #'s we get:

1 (z-m)

LA (19)

therefore,

N ET
= S e 20

When substituting 20 into 18 we get the explicit ratio between m; and Z;, namely,

1

T )

m; = [
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The second derivative is given by:

~VZRn, = [2(z-m)*(z-m)® - Var(y - m)|(z x Z)
+ B{2(y-m) - 2(y-m)(z-m)}y x z)]
— 2X(Z-m)(Z x m) (22)
— 2X(y-m)(y X m)
— (& -m)? + Var(y - m)|I

Using relations 16 and 20 of the critical points, we get to a gradient in terms of Z X Z, and X — the

variance of the noise. Let 7 = then

1

A+lZ([%
~V2 R, = THZxZ)(2-4)
A z]|* +2)%r

—2X2 || z || —2)7]. (23)

It follows that the gradient is positive definite for any noise with variance A > 0. This implies
stability of the averaged version, and stability in the L? sense of the random version.

5.3 Patterned Input with Noise

We now explore the change in the position of critical points under small noise. The result relies
on the smoothness of the projection index, and on the fact that noise can be presented as a small
perturbation.

Let the input ¢z = d + h, where d is the patterned input and h is a small random noise with
zero mean. If the mean of the noise is non-zero it can always be obsorbed in the patterned input
and the resulting noise will have a zero mean. Let A = Var(h - m) which is small as well. Consider
the projection index

—

R

{5 Ele - m)?] - Bz m)]}

4
= (5Bl m)] - B m)?
FME(d-m) — 21+ B(d-m))}). (24)

Thus Rp(d + h) = Rpn(d) + O()), yielding robustness to small noise.

6 Application to Various Rearing Conditions

In the following section, we relate the analysis described above to some visual cortical plasticity
experiments. Extensive simulation, using the complete set of known experimental results on visual
cortical plasticity, have shown that the the modified version of ®ps is consistent with the current
experimental results.

6.1 Normal Rearing(INR)

This case has been covered by the theorem 5.1 from which it follows that a neuron will become
selective to one of the inputs. Note that it also follows that the synaptic weights of both eyes
become selective to the same orientation.
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6.2 Monocular Deprivation (MD)

From theorem 5.1 we can get an explicit expression to ®ps in the case of n linearly independent
inputs. Recall that the only stable points in such case are those in which the synaptic weight
m is orthogonal to all but one of the inputs. Assuming that all the K inputs have the same
probability %, we get: Oy = E(z -m)? = %Eﬁl(mz - m)? = Z(zi, - m)? where z;, is the
input which is not orthogonal to m. Putting that into the deterministic version of the gradient
descent it follows immediately that z;, - m = K, which implies that @y = %(z;, - m)? = K, and
E(z -m) = 4(z;, - m) = 1. This result will be used in the following MD analysis.

The assumptions in the monocular deprivation case are that the input to the left (right) eye
is composed of noise only, namely d" represents patterned input plus noise, and d* = n. We also
assume that the noise has zero average and has a symmetric distribution uniform in all directions.
We relax the assumption that d” has zero mean, and instead assume that E(d"-m") < S E(d"-m")?,
this is easily achieved when the dimensionality is larger than 2 (following from the calculation at
the begining of this section). We have:

R = (3B m~ {Fe-m))
_ _{%E[(dr m’ 4 ml)B] _ %Ez[(dT m’ +n- ml)2]}
_ —{%E[(dr -m")%] + %E[(n -m')| + B(d" - m7)2(n - ml)] + E[(d" - m")(n - m')?]

LB V) 4 B {(n - ml ) 4+ 2B((d B )
+4E[d - m")E[n - m'] (B[(d" - m")2] + E[(n-m")?) + E[d" - m] E[n - m']) ]}
= BT )] - (B )
%var(n ml) (Var(n - m!) + 2B[(d" - m")?] - 4B[d" - m]). (1)

The first term of the risk is due to the open eye and is therefore minimized when the neuron
becomes selective as in the regular normal rearing case. The second term is non negative due to
the previous assumption, and therefore can be minimized only if m! = 0. Note that in a mean field,
this means that m! — a. It can also be seen that when the right eye becomes selective (implying
that the term 2E[(d" - m")?] — 4E[d" - m"] becomes larger), then the driving force for Var(n - m!)
to go to zero becomes larger. This is consistent with the experimental observation which suggests
that the synapses of the closed eye do not go down until the open eye becomes selective.

6.3 Binocular Deprivation (BD)

This case has been analysed in section 5.2. During BD we assume that the input is noise; the
conclusion was that either synaptic weights perform a random walk around zero, or in case of
positive average noise, a random walk about a positive weight that is a function of the average of
the noise and its variance.

6.4 Reversed Suture (RS)

The limiting behavior of RS is similar to that of MD, described above. Computer simulations show
that it is possible to achieve a disconnection of the newly closed eye before the newly open eye
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becomes selective (Clothiaux et al., 1991).

6.5 Strabismus

From theorem 5.1 we infer that a stable fixed point is such that its projection to one of the inputs is
positive, and it is orthogonal to all the other inputs. Under strabismus we assume that the input to
both eyes is uncorrelated, therefore this situation is possible only if the vector of synaptic weights
of one eye is orthogonal to all but one of the inputs; thus the vector of synaptic weights of the other
eye is orthogonal to all the inputs. Since the inputs span the whole space this vector must be zero.

7 Discussion

We have presented an objective function formulation of the BCM theory of visual cortical plasticity.
This permits us to demonstrate the connection between the unsupervised BCM learning procedure
and the statistical method of projection pursuit and provides a general method for stability analysis
of the fixed points. Relating this unsupervised learning to statistical theory enables comparison
with various other statistical and unsupervised methods for feature extraction.

Analysis of the behavior and the evolution of the network under various visual rearing conditions
is in agreement with experimental results. We thus have the result that a biological neuron may
be performing a sophisticated statistical procedure. An experimental question of great interest is
posed: how does the modification threshold depend on the average activity of the cell @y ~ &2 as
in the original BCM versus @y ~ c? as presented here.
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Appendix

A Convergence of the Solution of the Random Differential Equa-
tions

To show the explicit dependency on the learning rate, we rewrite the random modification equations
in the form:

me = € p(t)p(z - me, Opr)z, me(0) = My, (1)
and the deterministic differential equations,
7?.1’6 =€ :u’(t)E[(tb(m M, G)M):DL 771,6(0) = Mo, (2)

The convergence of the solution will be shown in two steps; First we show that the solution of the
averaged deterministic equation converges, and then we use theorem A.l to show the convergence
of the solution of the random differential equation to the solution of its averaged deterministic
equation.
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A.1 Convergence of the Deterministic Equation

The deterministic differential equations represent a negative gradient of the risk. Therefore, in
order to show convergence of the solution, we only need to show that the risk is bounded from
below. This will assure that the solution converges to a local minimum of the risk.

We can assume that m the synaptic weight vector lies in the space spanned by the random
variable z. When we replace the random variable z with a training set z!,...,z", this assumption
says that m € Span{z!,...,z"}. This implies that there is a A > 0, so that Vm Var(z - m) >
Al m||? > 0.

To show that the vector m. is bounded we assume that none of its components is zero (since
zero is definitely bounded), and multiply both sides of the above equation by ., this implies:

1d, _ _ _
cd el = Bl me] - Bl my)
< || me ||P =Var?(z - me)
< [l me]S = | me |
= [me [P {1 =A% || me |1}, (3)
which implies that || 7 ||< 55.
Using this fact we can now show the convergence of m.. We observe that m. = —V R, where

R(me) = —p{3E[(z - me)®] — $E?[(z - 7c)?]} is the risk. R is bounded from below since || 7 || is
bounded, therefore m. converges to a local minimum of R as a solution to the gradient descent.

A.2 Convergence of the Random Equation

Using the fact that the averaged deterministic version convergence we shall now show the conver-
gence of the random version. For this we need a general result on random differential equations
(Intrator, 1990) which is cited below. This result is an extension of a result by Geman (1977) and
roughly says that under some smoothness conditions on the second order derivatives of the differ-
ential equations, the solution of the random differential equation remains close (in the L? sense) to
the deterministic solution for all times.

We start with some preliminary notation. let H(z,w,t) be a continuous and mixing R™ valued
random process for any fixed z and ¢, where w is a sample point in a probability space. Define
G(z,t) = E[H(z,w,t)], the expected value with respect to w. Let u(t) be a continous monotone
function decreasing to zero, and let € > 0 be arbitrary. Consider the following random differential
equation together with its associated averaged version,

Te(t,w) = € pu(t)H(z(t,w),w,t), z(0,w)=z0 € R".
9e(t) = € u(t)G(ye(1), 1), 9(0) = z0 € B™. (4)

€ generates a family of solutions z., and y..

Theorem A.1 Given the above system of random differential equations, assume:

1. H € R" is jointly measurable with respect to its three arguments, and is of Type II ¢ mizing.

2. G(z,t) = E[H(z(s,w),t)], and for all i and j

Gi(z,t) exists, and is continuous in (z, ).

dz;
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3. (a) There exists a unique solution, z(t,w), on [0,00) for almost all w; and

(b) A solution to
8025 (t,s,2) = G(g(¢,s,z),t), g(s,s,z) =1z,
ezists on [0,00) X [0,00) X R™.

4. There ezist continuous functions By(r), Ba(r), and Bs(r), such that for all i,7,k,7 > 0, and
w:
(a) | Hi(z,w,t) |< Bi(| 2 |);

(5) | (8/02;)Hi(z,w,t) |< Ba(| o |);
(c) | (6%/92;021) Hi(z,w,1) |< Ba(| = |).

5. SUDesq 4 | Ye(t) |< By for some By.

6. 3v>0, ¢c>0, such that p(6) < 6§77, and u(t) < t_(%+1+c), for a monotone decreasing p.

Then under conditions 1-6:

lim sup E | ze — e |2: 0, (5)
e—0 t>0

To use this result, we need only to show that the deterministic and the random solutions are
bounded, which will ensure conditions 2-5. Then under the mixing conditions 1 and 6 on the input
z, we get the desired result.

Verifying that the random solution is bounded for every w can be done by multiplying both sides
of the random differential equations by m., assuming its components are not zero, and applying
the assumptions made above on Var(z - me), we get

TN TN TN N N
8
3 3

> —(z-m)E[(z - m)
2{(z-me) — E[(z - mc)?]}
(z - me) — Var(z - me)}
]

°
3
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S lme P d
d
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)

!

)’{
)A
)

2

>0
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&) {(z - me) = A me ||*}
& {ll me | = A me [I°3, (6)
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which implies that the derivative of the norm will become negative whenever || m. || > A, therefore
1
[ me || < 3
Finally, since the random solution remains close to a converging deterministic solution, it re-
mains close (in the L? sense) to its limit for large enough ¢.
§ is arbitrary, which implies that

E|me(t) —m |2 —0 (7)



