
Improving Classification via Reconstruction∗

Inna Stainvas
School of Computer Science

Tel-Aviv University

Ramat-Aviv, 69978 ISRAEL.

stainvas@math.tau.ac.il

Nathan Intrator †

School of Computer Science

Tel-Aviv University

Ramat-Aviv, 69978 ISRAEL.

nin@math.tau.ac.il

Amiram Moshaiov
Department of Solid Mechanics,

Materials, and Structures

The Iby and Aladar Fleischman

Faculty of Engineering

Tel-Aviv University

moshaiov@eng.tau.ac.il

July 2000

∗This work was partially supported by the Israel Science Office, the Israel Science Foundation founded by The
Israel Academy of Sciences and Humasnities – Center of Excellence Program, and by the Hermann Minkowski –
Minerva Center for Geometry at Tel Aviv University. I. S. was supported by the Don and Sara Marejn Scholarship
Fund for Students. Part of this work was done while N. I. was affiliated with the Institute for Brain and Neural
Systems at Brown University and supported in part by ONR grants N00014-98-1-0663 and N00014-99-1-0009.

†Corresponding author. Address: Box 1843, Brown University, Providence, RI 02912, Phone 401-863-3857, Fax
401-863-3494



Stainvas et al. 2

Abstract

Learning a many-parameter model is generally an under-constrained problem that requires
additional regularization. We propose to use reconstruction as a regularization constraint for
image classification. We show that fusing the two models together is an effective regularizer
which adds to the improvement achieved by weight decay constraints. This regularization is
effective for single networks and network ensembles.

Classification results are demonstrated on two facial data-sets which are extended to include
various image degradations. We show that combining weight decay and reconstruction con-
straints improves image classification for a wide range of degradations. In particular, “bagging”
ensembles which are composed of regularized networks trained on different cross-folds produce
best results.

Keywords: Reconstruction/Classification network; Dimensionality reduction; Face classification;
Network ensembles; Classification of corrupted images; Weight decay; Regularization; Image degra-
dation.
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1 Introduction

With the large increase in computational power, classification from pixel valued images emerges as
a topic of considerable research interest. An image is regarded as a vector of pixel intensities and
thus, belongs to a very high dimensional space. This leads to parameter estimation difficulties that
are widely known as the curse of dimensionality (Bellman, 1961), namely, the fact that there is
insufficient data to robustly train a classifier in high dimensional space. Training leads to predictors
with high variance and in order to control this variance, innovative bias constraints should be used
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(Geman et al., 1992). One way is to construct efficient low dimensional representations which are
sufficient for the classification task. For example, this can be achieved by multiple class constraints
(Intrator and Edelman, 1996).

In this paper, we continue this line of thought and study the effect of regularization in the
form of reconstruction constraint on the resulting classifier. We further study if reconstruction
constraints can replace, or should be added to weight decay (WD).

Reconstruction constraints have been used for reliability estimation of network familiarity with
novel scenes (Pomerleau, 1993) for the purpose of car navigation or for selective attention using
the ability of the residual to represent confidence of network familiarity with the input (Baluja
and Pomerleau, 1995). A variant of reconstruction constraints was used in regression probelms
when some of the inputs were also used as network outputs (Caruana and de Sa, 1997). They
suggested a multi task learning (MTL) approach for training networks (Caruana, 1993), however,
their approach did not include a regularization between the different task, which we find essential.

Our motivation for using reconstruction as a constraint to classification is the simple fact that
this is an essential taks of (visual) cortex, and thus, it may be possible that reconstruction con-
straints help creating a better hidden representation for classification, when training data size is
small. A network performing reconstruction and classification (with no regularization) was pro-
posed to model a portion of hippocampus (Gluck and Myers, 1993).

Our work extends previous work by trying to make recosntruction a practical tool for real-
word applications; In particular, we show that regularization plays an important role in finding
the optmial constraint level, and that simple weight decay is actually superior to reconstruction
constraints when its level is carefuly chosen. We find reconstruction to be effective only in com-
bination with weight decay. We introduce reconstruction constraints into ensemble training and
study in detail reconstruction ensembles based on different ensemble parameters. We demonstrate
that in this context, bagging ensembles are superior. Finally, we introduce a Bayesian framework
for reconstruction ensembles and relate it to MDL modeling.

2 Methodology

2.1 Statistical motivation

In many parameter models, the bias/variance dilemma (Geman et al., 1992), is more pronounced.
When the predictor’s bias is appropriate (fits the underlying assumptions about the data), its
contribution to the over-all prediction error is often small compared to the contribution of the
variance. Different regularization methods exist for finding an optimal tradeoff by means of adding
a penalty, usually in the form of some measure of smoothness to the predictor (Wahba, 1990; Poggio
and Girosi, 1994).

While smoothness can be considered a universal goal for a predictor, there are other related
goals which are based on a measure of the quality of the hidden-units’ representation. Some of
these constraints are related to the information content of the hidden-unit representation. For
example, one might search for a hidden representation which has highest entropy, or which has
certain deviations from Gaussian distribution. Furthermore, if one is interested in preserving the
cluster structure of the data, a variant of the BCM learning rule (Intrator and Cooper, 1992) can be
used, while if high kurtosis is of interest, some kurtosis maximization rule can be used, (Oja, 1995).
In the context of entropy maximization and independent component analysis (ICA), a recent review
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(Yang and Amari, 1997) provides a lot of insight and relation to other methods. Reconstruction
constraints, however, have not been used in the context of improving hidden units representation
for classification task.

2.2 Reconstruction constraints

Figure 1 presents the architecture of the hybrid classification/reconstruction network. This network
attempts to improve the low dimensional representation by minimizing concurrently the mean
squared error (MSE) of the reconstruction and classification outputs. In other words, the network
attempts to improve the quality of the hidden layer representation by imposing feature selection
which is useful for both tasks: classification and reconstruction1.

The hybrid learning rule for the hidden layer units is a composition of the errors back-propagated
from the reconstruction and classification layers. The relative influence of each of the output layers
is determined by a constant λ which represents a tradeoff between reconstruction and classification
confidences.

A hybrid classification/reconstruction architecture

Classification

Reconstruction

Hidden
layer

Input

Figure 1: A single hidden layer drives the classification layer and the reconstruction layer. The
relative effect of the errors on the gradient that is propagated to the hidden layer is determined by
a regularization parameter λ

2.3 Bayesian framework for a hybrid classification/reconstruction networks

When a similar misclassification loss function is applicable to all classes an optimal Bayes classifier
assigns class labels to the class with maximal posterior probability (Duda and Hart, 1973). These
probabilities are often estimated using parametric models and then plugged-in the Bayesian rule.
There are two main paradigms to parameter estimation: sampling and diagnostic (Ripley, 1996).
Both give a parametric model for the joint density p(x, c|θ) of the feature vector x and class

1The hidden layer should have a smaller number of units compared with the inputs, so as to achieve a bottleneck
compression and allow for generalization.
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label c. In the sampling paradigm, interest centers on conditional class densities p(x|θ, c) and
p(x, c|θ) = p(x|c, θ)πc, with prior class probabilities πc assumed to be known or to be estimated.
In the diagnostic paradigm, interest centers on the posterior densities p(c|x, θ) and:

p(x, c|θ) = p(c|x, θ)p(x|θ) (1)

In neural network models, the diagnostic paradigm is usually considered and any information about
θ in the unconditional density p(x|θ) is discarded by conditioning on the observed x’s (Bishop,
1995; Ripley, 1996). In our case however, we model both p(c|x, θ) and p(x|θ) via the same group
of parameters. We show that in the simplest case, this consideration leads to the hybrid classifica-
tion/reconstruction network introduced above.

In a Bayesian framework, model parameters θ is found by maximizing the posterior probabili-
ties: θ? = arg maxθ p(θ|D), where D is a finite training set of pairs (xi, ci). Using Bayesian formula:
p(θ|D) = p(D|θ)p(θ)/p(D), and since p(D) does not depend on θ, the most plausible model para-
meters θ? maximize the sum of the log-likelihood of the data D (under the regular assumption of
independent samples) and log-priors of the parameters θ:

θ? = arg max
θ

[log p(D|θ) + log p(θ)] (2)

Assuming the samples to be independent and taking into account (1) we get the following opti-
mization problem:

θ? = arg max
θ

[
N∑

i=1

log p(xi, ci|θ) + log p(θ)] =

arg max
θ

[
N∑

i=1

log p(ci|xi, θ)

︸ ︷︷ ︸

log−likelihood L(c|x,θ)

+
N∑

i=1

log p(xi|θ) + log p(θ)
︸ ︷︷ ︸

log−prior

] (3)

The first and third RHS terms are recognized as log-likelihood and log-prior, respectively, and are
conventionally used to train supervised NN models. In feed-forward networks, typically there is
one output unit for each class, and activation of each output unit represents the corresponding
posterior probability p(Ck|x) of the k-class. The targets c are often chosen by 1-of-c coding scheme,
which assigns cik = δk,cl(i) where cl(i) is the class label of input xi. There are different ways to
approximate log-likelihood L(c|x, θ) (Bishop, 1995, sections 6.6-6.8):

• sum-of-squares error function L(c|x, θ) = −β1E1 with E1 = 1
K

∑N
i=1

∑K
k=1(yk(xi, θ) − cik)2

and β1 induced by analogy with regression tasks, where it is inversely proportional to a noise
variance in the outputs.

• cross-entropy error function that models p(ci|xi, θ) =
∏K

k=1[yk(xi, θ)]cik and
L(c|x, θ) = −

∑N
i=1

∑K
k=1 cik log yk(xi, θ)

Though the sum-of-squares error is not the most appropriate to classification, it has computational
advantage and is widely used (Leung and Zue, 1989; Bishop, 1995).

When some observations are unlabeled they can still be added to the training set D. In this
case, the summation indices in the first and second terms may be different. When class labels
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are not present at all, the second RHS term disappears and the plausible model parameters are
fit to optimaly reconstruct the input feature vectors x. This is essentially unsupervised learning,
which, in the simplest case, is realized by a standard autoencoder, or more generally, by minimum
description length (MDL) principle (Hinton and Zemel, 1997). For the standard autoencoder the
third term may be rewritten as log p(x|θ) = −β2E2, where E2 is a reconstruction error normalized
by the number of input units and is given by E2 = 1

d

∑N
i=1

∑d
l=1(ul(xi, θ) − xli)

2; β2 is a proper
normalization coefficient, which is inversely proportional to the noise variance in the reconstruction
output. Learning by the optimization (3), corresponds to a flexible combination of supervised and
unsupervised learning.

The model parameters θ are composed of three groups: the hidden weights w shared by re-
construction and classification feed-forward networks and hidden-to-output weights W1 and W2 for
classification and reconstruction sublayers. We utilize sigmoidal activation functions in the hidden
and classification units and linear functions in the reconstruction units. The optimization task (3)
leads to minimization of a goal function:

F(w,W1,W2) = β1E1(w,W1) + β2E2(w,W1) − log p(w,W1,W2).

Parameters β1 and β2 are unknown hyperparameters and with a proper normalization can be
replaced by a single hyperparameter λ with

F(w,W1,W2) = (1 − λ)E1(w,W1) + λE2(w,W1) − ν log p(w,W1,W2). (4)

Using steepest gradient descent and Gaussian prior for the hidden weights w (with weight decay
regularization) (Bishop, 1995) the learning rule can be written as:

∆w = −η((1 − λ)(5wE1 + µw) + λ 5w E2) λ ∈ [0, 1]. (5)

∆W1 = −η(1 − λ) 5W1
E1, ∆W2 = −ηλ 5W2

E2.

We rescale the gradients for hidden-to-output weights and consider instead:

∆W1 = −η 5W1
E1, ∆W2 = −η 5W2

E2. (6)

One can easily see that a new rescaled weight increment has positive projection onto the negative
gradient of F and thus amounts to a gradient descent method (Luenberger, 1984).

For λ = 0 the hidden representation is extracted by a simple classification network with WD
smoothing. The weights W2, attempt to reconstruct the input from hidden units that are trained
with a classification model only. For λ = 1 the hidden layer degenerates to an autoencoder hidden
layer and the classification task is solved by an independent classification network with the weights
W1 from this compressed data representation. For linear activation functions in the hidden layer,
the network hidden weights span the space of principal components (Kramer, 1991). This network
may be well approximated by a network with sigmoidal activation functions in the hidden layer and
WD smoothing. This network is refered to as a PCA network in our results. For λ values between
0 and 1, the tradeoff between classification and reconstruction goals affects particularly the hidden
representation from which hidden-to-top weights are learned with the same rate independent of λ.

The notation used for the different cases are given in Table 1.

3 Regularization in classification/reconstruction network

There are two regularization parameters in the proposed network. The first µ is responsible for a
smoothness (norm) of the hidden weights and the second λ controls the relative influence between
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weight modification due to classification errors. We apply the following suboptimal (but quicker)
sequential optimization:

1. First, an optimal µ? parameter for WD networks is estimated.

2. Second, using (µ = µ?), an optimal λ? for Reco.+ WD networks is found.

Our experience shows that the alternating optimization starting from Reco. nets (λ = 0) leads to
worse results and is, thus, not considered here. We, however, compare regularized Reco. nets with
regularized WD and Reco.+WD networks for one of the data-sets used.

3.1 Regularization parameter in Bayesian framework

In the Bayesian framework, one has to estimate a posterior distribution of the hyperparameters
given the data p(ζ|D) and prediction of any other variable P is given by: (Bishop, 1995, Sections
10.4-10.5):

p(P|D) =

∫

p(P|D, ζ)p(ζ|D)dζ, (7)

The easiest way to evaluate (7) is known as evidence approximation and assumes that the posterior
probability distribution p(ζ|D) for the hyperparameters is sharply picked around ζ ? (p(ζ|D) ≈
δ(ζ − ζ?)) and thus p(P|D) ≈ p(P|D, ζ?) (MacKay, 1992).

We use the evidence approximation in the form p(ζ|D) ≈ 1
S

∑S
1 δ(ζ − ζ?

s ) which assumes that
the posterior probability distribution p(ζ|D) is sharply picked around several values ζ ?

s . This
assumption combined with an assumption that posterior weights are also well localized leads to
averaging over several networks with ”good” ζ values (indeed, we assume that these ζ are close to
each other):

p(P|D) ≈
1

S

S∑

s=1

p(P|D, θ?
s , ζ

?
s ) (8)

that amounts to neural network ensembles (Section 3.3).
In practice, the regularization parameter ζ?

s , is estimated via cross-validation (Section 3.2).
We demonstrate that a simple averaging procedure in the vicinity of an optimal ζ produces better
results than seeking a unique optimal ζ value. We have also attempted to find p(ζ|D) using ”Monte
Carlo simulation” as proposed in (Rognvaldsson, 1998)2. However, since this procedure does not
outperform a simple averaging it is not further discussed.

2Rognvaldsson estimates an optimal regularization parameter via: ζ? = (
∑

K

k=1
nkζk)/(

∑
K

k=1
nk) where nk are

Network types

PCA: Uncons.: WD: Reco.: Reco.+WD:

λ = 1 λ = 0 λ = 0 λ > 0 λ > 0
µ > 0 µ = 0 µ > 0 µ = 0 µ > 0

Table 1: We refer to hybrid classification/reconstruction networks with λ = 0 and without WD
(µ = 0) as Uncons. (unconstrained) networks; with λ = 0 and WD (µ 6= 0) as WD networks; with
λ = 1 and WD as PCA networks. Networks with λ between marginal values are referred to as
Reco. networks and when WD is additionally used as Reco. + WD networks.
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3.2 Regularization approach via cross-validation

Cross-validation (CV) technique is a well known approach for searching a regularization parameters
and is especially useful for small data sets. (Carven and Wahba, 1979; Hastie and Tibshirani,
1990; Wahba, 1990) It is often used for choosing the number of hidden units or deciding about
early training stopping in NNs (Bishop, 1995). It proceeds by randomly splitting the data D into
V -disjoint subsets D1, . . . , DV of approximately equal size. For every, ν ∈ V , a classifier f ν is
constructed on the data D\Dν (the samples not included in Dν) and a misclassification rate is
evaluated on the omitted data subset Dν : R(fν) = 1

|Dν |

∑

(xn,cn)∈Dν
χ(fν(xn) 6= cn), where χ is an

indicator function, and |Dν | is the size of the subset Dν . It is assumed that the procedure is “stable”,
i.e. the true classification rate of the classifier f ν : R?(fν) = P (fν(x) 6= c) is nearly equal R?(f)
where the classifier f is constructed based on the whole D. The true rate R?(f) is estimated by:
RCV (f) = 1

V

∑V
ν=1 R(fν). A practical recommended number of subsets is around 5 − 10 (Breiman

et al., 1984; Kohavi, 1995). In the context of the regularized neural networks, we consider a set
of classifiers that is depends on ζ and the performance is estimated by RCV (fζ) = 1

V

∑V
ν=1 R(fν

ζ ).

The optimal parameter (ζ?) has to minimize RCV (fζ):

ζ? = arg min
ζ∈Z

RCV (fζ). (9)

For every ζ and a given cross-fold Dν , the construction of a classifier f ν
ζ amounts to training

a regularized neural networks by gradient descent according to (5-6). Gradient descent in NNs
often leads to many local minima. There is no a guarantee that the same optimal ζ parameter
corresponds to all the resulting different models. Therefore, ideally a regularization parameter has
to be estimated separately per local minimum or instead, per specific initial weights.

The procedure proceeds as follows; First, all networks are trained with several initial weights
for a fixed number of epochs. Then, an optimal parameter ζ is found based on (9). Finally,
the optimal model is tested on an unseen “test set” T , a set that has not been used at all during
training or model selection.

3.3 Regularized Neural Network Ensembles

Another way to assess the effect of regularization constraints is by combining regularized networks
into ensembles. It is well known that an ensemble of experts is capable of improving the performance
of single experts (Wolpert, 1992; Krogh and Vedelsby, 1995; Raviv and Intrator, 1996). There are
two main questions to be addressed when constructing ensembles: (i) how to evaluate an ensemble
classification prediction from predictions of its members and (ii) which networks to combine.

There are different ways to evaluate an ensemble classification prediction. The first, is using
a majority rule over all the experts in the ensemble (Hansen and Salamon, 1990). We call this a
classification ensemble. The second rule is based on averaging the real values of the outputs of all
the ensemble members and then producing a decision by thresholding. We call this a regression
ensemble. A method called logarithmic opinion pool (Heskes, 1998), is threshold the direct prod-
uct of the ensemble members’ classification outputs. This is consistent with an interpretation of
classification outputs as posterior class probabilities.

found as follows. Average cross-validation errors ek and variances σk per each ζk value are found. Assuming errors
per ζk to be independent and normal N (ek, σ2

k), these K distributions are sampled and a ζ corresponding to the
minimum error is selected as a ”winner”. This is repeated several times collecting statistics nk on how often ζk value
was a winner. We have used a value nk/

∑
K

k=1
nk as an estimate of the posterior probability p(ζk|D).
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As our aim is to test the usefulness of regularization constraints and not finding a “optimal”
combination of experts, we used only uniform weighing for all ensemble members. Our experiments
indicate that a simple averaging with uniform weights improves results and is superior to both
classification ensembles and a simple product of experts. Thus, we present results with a simple
ensemble averaging.

The improvement in regression ensembles depends on the level of independence of the errors
made by the experts. This independence reduces the contribution of the variance portion of the
error when ensemble average is used (Raviv and Intrator, 1996). This also gives some hints which
networks to combine. We consider three types of simple regression ensembles Ens. A,B and C, with
network outputs averaged over: (A) ζ values close to the “optimal” ζ ?, all networks are trained
from the same initial weights (see also Section 3.1); (B) Initial weights, all networks correspond
to the same degree of regularization (the same regularization parameter ζ); (C) Different training
cross-folds, all networks correspond to the same regularization values, this is a “bagging” type of
ensemble. To enable a comparison of different ensemble types, the number of hybrid networks in
all experiments is taken to be the same. The mathematical formulae describing the performance
criteria are given in the Appendix.

It turns out that an ensemble of networks that were trained with different regularization pa-
rameters ζ is useful (Ens. A). This result is not obvious since networks that are trained from
the same initial weights, data and close ζ values are likely to be correlated in their outputs. In
experiments below, it is found that Ens. B is superior to Ens. A due to its members independence,
i.e. due to the existence of many (local) minima in the error surface. Finally, we find that the most
powerful are bagging ensembles (Ens. C). Ensembles B and C are also regularized models depend-
ing on the regularization parameter. The optimal ζ for Ens. B is chosen based on cross-validation
approach like to single nets and the optimal parameter of Ens. C is taken the same as for Ens. B
(see Appendix for details). Ensemble B with ζ = 0 is a conventional ensemble of unconstrained
networks that is refered to as unconstrained ensemble of type B. We also consider unconstrained
bagging ensembles, i.e. ensembles of type C with ζ = 0.

4 Image degradation

The accuracy of classification falls abruptly when image quality is slightly degraded. The physical
causes of image defects are myriad: natural climate conditions such as fog, rain or snow; partial
occlusion and noise; changes in illumination and shadows that are due to movement of surrounding
objects. Most of these factors cause image blur, and often image restoration is done to cope with
the latter. Restoration does not remove the blur completely and may lead to an additional artificial
image enhancement as well.

A real-world classification system has to be robust to realistic image degradation, including
degradation process to which it has not been trained for.

Below, we briefly describe the type of degradations that were used and provide examples of
degraded images in Figure 2;
”Undegraded” data: The original test set (not used for neural network training and regular-
ization parameters tuning) without any image degradation.
Varying illumination: Varying illumination is a natural degradation affecting classification per-
formance. It is simulated using a polynomial model (Lai and Fang, 1999): i′(x, y) = i(x, y) +
β(x, y), β(x, y) = I(sinφ(x − x0) − cosφ(y − y0)), where i(x, y) and i′(x, y) are original and arti-
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Degraded images (Pentland data set)

a b c d e

f g h i j

Figure 2: Various image degradations: a. undegraded face; b. varying illumination; c. slightly
rotated image; d. partially occluded image; e. Gaussian blur σ = 2 pixels; f. DOG filter σ1 = 1
and σ2 = 3 pixels; g. Out-of-focus blur R = 2; h. High-pass-filter R = 2; i. Gaussian noise snr = 1
; j. Salt and Pepper noise d = 20%.

ficially illuminated images, respectively. This illumination does not change the intensity of image
pixels lying on a straight line passing through a point (x0, y0) in the direction φ. An illumination
surface slant variable I is taken to be so that max(|β(x, y)|) = max(|i(x, y|). Images are illuminated
randomly within a small vicinity of the angle φ0. Our preprocessing (Section 5) partially removes
the variability caused by illumination. It appears that the results are more sensitive to the variance
of the angle (∆φ) than to the mean value φ0. This is probably due to our preprocessing, which
removes average values.
Rotation: The data-set contains faces in orientation and rotation around a frontal horizontal
view. The image normalization (Section 5) partially compensates for 3-D rotations at the expense
of causing facial distortion.

In order to simulate this type of degradation, images are randomly rotated in the image plane
by a small angle chosen uniformly from an interval [−α, α].
Partial occlusion: This is achieved by replacing the pixel values at any area of arbitrary polygon
shape of the face by either the average intensity of the pixels in that area multiplied by some factor
k or by the image of the occluding object.
Blurring with Gaussian filter: Blurring with Gaussian filter is one of the simplest types of
image degradations. We have used a blurring Gaussian with a standard deviation σ = 2 (pixels).
For our data-sets with intermediate resolution this scale of smoothing leads to loss of many details
around the eyes and mouth. This is the most difficult transformation for methods that rely on edge
detection.
Blurring with DOG filter: Difference of Gaussians (DOG) filter, which produces a Mexican
hat type receptive field, is a form of image preprocessing known to be present in early mammal
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vision (Marr, 1982; Kandel and Schwartz, 1991). It enhances edges while smoothing the image.
Standard deviations of the on and off center (positive and negative Gaussians) were 1 and 2 (pixels)
respectively.
Out-of-focus blur: This blur is a common type of degradation when a lens with a circular
aperture is defocused. The point spread function (PSF) of this blur is approximated by the cylinder
whose radius R depends on the extent of the focus defect (Cannon, 1976).
High-pass filtering: This is an ideal high-pass filtering that eliminates small frequencies inside
a circle of a small radius R. While this filter is not physically realizable, it is widely used in image
processing for performance comparison between different types of filter degradations.
Gaussian noise: Gaussian white noise is commonly used to model sensor noise and quantization
process (Rosenfeld and Kak, 1982). We limit ourselves to Gaussian noise that acts independently
on each pixel with zero mean and some variance that is taken so that a signal to noise ratio is equal
to some predefined value snr.
”Salt and Pepper” noise: This degradation replaces pixel intensities by either the maximum
or minimum grey-level value at random locations of a certain percentage of the image (Rosenfeld
and Kak, 1982). Results presented here were done with 20% replacement.

5 Data-set description and implementation details

The widely available facial data-set (Turk and Pentland, 1993) as well as a face data-set locally
collected by the Tel-Aviv University Computer Vision Group (Tankus, 1996) were used in our
simulations. While there have been many successful classification approaches to the Turk/Pentland
data, we demonstrate that when the images are given in a reduced resolution 32×32 (the original and
widely-used resolution is 64× 64), or are degraded either by blur or partial occlusion, classification
performance deteriorates dramatically. The Turk/Pentland data-set contains 27 images of 15 male
faces (we took out the single bearded person). For each person, we randomly choose 15 images for
training (data D) and 12 images for testing (data T). The 15 training samples were split into five
cross-folds (by taking out 3 different images per person).

Preprocessing details and previous results studying effect of background, illumination and com-
parison with PCA for original resolution are given in (Intrator et al., 1996). The preprocessing
partially removes the variability due to viewpoint, by setting (automatically) the eyes and tip of
the mouth to the same position in all images (Tankus et al., 1997). Further preprocessing evaluates
the difference between each image and an average over all the training set, leading to the so called
”caricature” images (Kirby and Sirovich, 1990).

The second data-set was collected by the Computer Vision group at Tel-Aviv University (TAU).
It is of high resolution 84 × 56, and contains images of 37 male and female faces with 10 images
per person. We compressed images to a low resolution 42× 28 and split data into test T (4 images
per person) and training D (6 images per person) sets. Cross-validation with three disjoint groups
of size 2 images per person is considered. Preprocessing was similar to the one described above,
except that only the eye locations were fixed (Tankus et al., 1997).

All networks used for a given data-set have the same architectural complexity (for the classifi-
cation part); The number of output units in the reconstruction sublayer is the same as the number
of image pixels (1024 for Pentland data and 1176 for TAU data). There are 15 hidden units in all
networks and a number of output classification units is as the number of classes (15 for Pentland
data-set and 37 for TAU data-set). The initial weights of the networks are chosen randomly out
of a uniform distribution between -0.001 and 0.001. A constant learning rate is set to 0.05. Net-
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works for Pentland data- set are trained 3000 epochs and for TAU data set 5000 epochs. Initial
weights are resampled 5 times for Pentland data set (the same as a number of training cross-folds
in cross-validation) and 4 times for TAU data (the number of training cross-folds is 3).

6 Results

To assess the usefulness of reconstruction constraints, we consider single regularized networks and
various ensemble combinations (see Section 3.3). Single networks include unconstrained networks,
PCA networks and optimal networks regularized either by WD or reconstruction constraints or by
both (see Table 1).

Regularized and unconstrained model parameters

Pentland data-set

Models Nets Ens. A Ens. B Ens. C

PCA λ = 1, µ = 0.05 - λ = 1, µ = 0.05

Uncons. λ = 0, µ = 0 - λ = 0, µ = 0

WD λ = 0 λ = 0 λ = 0
µ? = 0.05 µ? = 10−2 × [0 5 10 15 20] µ? = 0.05

Reco. µ = 0 µ = 0 µ = 0
λ = 0.05 λ? = 10−2 × [0 2.5 5 10 15] λ = 0.05

Reco. +WD µ? = 0.05 µ? = 0.05 µ? = 0.05
λ? = 0.1 λ? = 10−2 × [0 1 2.5 5 10] λ? = 0.05

TAU data-set

Models Nets Ens. A Ens. B Ens. C

PCA λ = 1, µ = 0.05 - λ = 1, µ = 0.05

Uncons. λ = 0, µ = 0 - λ = 0, µ = 0

WD λ = 0 λ = 0 λ = 0
µ? = 0.05 µ? = 10−3 × [5 10 20 50] µ? = 0.005

Reco. +WD µ? = 0.05 µ? = 0.05 µ? = 0.05
λ? = 0.005 λ? = 10−3 × [1 5 10 13] λ? = 0.013

Table 2: Models obtained by considering 4 network architectures (columns) with different degree
and type of constraints (rows). There are 5 different networks (column marked by “Nets”): PCA
has a hidden layer that is similar to PCA representation (see the end of Section 2.3); Uncons. stands
for unconstrained network; WD, Reco., Reco. + WD stand for optimal networks with weight decay,
reconstruction and combined reconstruction and WD constraints, respectively. Optimal parameters
λ? and µ? are found using CV approach on data going over all different degradations. Ens. A–
C stand for ensembles of type A–C, respectively. There are no PCA ensembles of type A and
unconstrained nets, since Ens. A is a combination of nets with different regularization parameters,
this is marked by (-). For Ens. A with (WD, Reco., Reco. + WD) constraints, the corresponding
integration parameters are given. Note, that optimal parameters for networks and ensembles are
not the same. All ensembles for Pentland data-set are composed of 5 networks; for TAU data-set
ensembles A-B are composed of 4 networks and ensemble C from 3 nets; ensembles generation is
explained in Section 3.3.
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6.1 Model selection considerations

Ideally, model selection has to be specific to the image degradation; instead, it is preferable to have
a single model that is moderately good for a wide class of possible degradations (this selection is
based on CV approach that is done on degraded data). Optimal model parameters found by CV
(see Appendix for details) and integration parameters for ensembles of type A (Ens. A) are given
in Table 2. It turns out that the optimal regularization parameters for ensembles and networks
are not the same; a similar observation for regression tasks was reported in (Taniguchi and Tresp,
1997). We also note, that an effective area of integration parameters for ensembles of type A, which
is taken in a vicinity of the optimal parameters of corresponding networks, turns out to be biased
to λ = 0, i.e. in the direction to unconstrained networks.

Classification results for all degradation types are given in Tables 3 for Pentland data and in
Table 4 for TAU data. These tables present averaged error rates and standard deviations obtained
from multiple runs with different training sub-sets and initial conditions (see Appendix for details)

6.2 Network architecture comparison:

Our results demonstrate that classification is improved most when ensemble averaging is taken over
different cross-folds3 Ens. C.

It follows that averaging over different training subsets is more effective than averaging over
initial weights, or averaging over regularization parameters. This suggests that there is larger
independence in errors of nets trained on different small subsets of the high-dimensional data.

6.3 Comparison of constraints

PCA models Principal component analysis is a standard statistical technique for dimensionality
reduction based on the eigenvectors of the data covariance matrix (Duda and Hart, 1973). In the
context of classification, this method was used in (Kirby and Sirovich, 1990) for faces and in (Murase
and Nayar, 1993) for man-made objects. Later, it was shown that this technique is not optimal
(under a given compression rate) for classification (O’Toole et al., 1993; Turk and Pentland, 1993).
Our results once again confirm this statement, PCA networks (networks with a regularization value
λ = 1) and their ensembles are inferior to all other models with the same architectural complexity.
Unconstrained models Unconstrained (Uncons.) models corresponding to training without
reconstruction and WD constraints serve as a base-line for comparison. Unconstrained models are
significantly superior to PCA models. This indicates that the features required for classification and
reconstruction are not identical (see also Figure 3). Our results show that unconstrained models
are inferior to constrained models, mainly when images are degraded.
Constrained models We have considered three types of constraints for Pentland-data: WD con-
straints, reconstruction constraints “Reco.” and a combination of both “Reco. + WD” (described
in detail in Section 3). It appears, that a WD network chosen via cross-validation is superior to an
unconstrained network for all data-degradations. A network with reconstruction constraints may
be inferior to the unconstrained network (Table 3, columns marked by “Nets” in mini-tables). Net-
works with hybrid constraints “Reco. + WD” are superior to WD nets in most of the degradation
cases; The more significant improvement is achieved for rotation, illumination, partial occlusion
and high-pass filtering.

3Note that the test data on with the networks are tested was not used in training or regularizing any of the
cross-folds.
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Percent misclassification errors and standard deviations (Pentland data-set)

Clean data Illumination φ = 4.5o ± 4.5o

Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 12.4/1.6 - 10.7/0.9 9.7/0.3 12.7/1.2 - 11.4/1.2 10/0.3

Uncons. 2.4/0.3 - 2.1/0.1 1.7/0 3.2/0.3 - 2.6/0.0.3 1.9/0.1

WD 2.2/0.3 2.1/0.2 1.8/0.4 1.4/0.1 2.3/0.2 2.3/0.3 1.9/0.2 1.2/0.1

Reco. 2.1/0.3 2.1/0.2 2.1/0.2 1.8/0.1 2.8/0.2 2.9/0.4 2.3/0.3 1.8/0.2

Reco. + WD 2.0/0.4 2.0/0.3 1.9/0.3 1.7/0.2 2.3/0.3 2.4/0.3 2.1/0.3 1.6/0.1

Rotation α = 5o Partial occlusion k = 3
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 14.8/1.1 - 13.7/1.8 12.6/0.3 32.8/0.6 - 27.6/0.6 26.8/0.7

Uncons. 4.7/0.4 - 4.1/0.2 3.2/0.2 23.2/1.6 - 23.1/0.5 21.9/0.7

WD 3.4/0.5 3.1/0.2 3.1/0.4 2.0/0.2 19.0/1.0 18.0/1.0 17.3/1.0 16.8/0.7

Reco. 4.4/0 3.6/0.2 3.9/0.3 3.0/0.3 22.3/1.1 20.7/1.1 21.7/1.6 21.1/0.6

Reco. + WD 3.1/0.4 3.1/0.4 3.3/0.2 1.9/0.1 20.2/0.9 18.2/0.7 18.4/0.9 17.4/0.4

Gaussian blur σ = 2 DOG filter σ1 = 1, σ2 = 3
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 18.7/1.4 - 15.8/1.6 13.9/0.3 21.8/1.7 - 17.7/1.3 14.4/0.6

Uncons. 8.2/0.5 - 7.4/0.7 6.6/0.4 6.2/0.7 - 4.4/0.3 3.7/0.3

WD 6.7/0.8 7.0/0.7 6.7/0.5 5.3/0.3 4.8/0.3 4.8/0.5 3.8/0.4 3.1/0.3

Reco. 9.7/0.8 7.6/0.8 7.6/0.6 7.0/0.3 5.1/0.7 4.6/0.5 3.9/0.2 2.9/0.3

Reco. + WD 8.6/1.0 6.9/0.6 7.3/0.5 5.8/0.4 3.3/0.3 3.6/0.3 3.9/0.3 2.9/0.3

Out-of-focus blur R = 2 High pass filter R = 2
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 15.3/1.2 - 12.0/1.4 10.4/0.2 34.6/2.4 - 31.7/1.7 29.0/0.4

Uncons. 3.6/0.4 - 3.2/0.3 2.3/0.2 25.6/1.1 - 23.2/1.0 21/0.8

WD 3.2/0.4 3.0/0.1 2.9/0.2 2.3/0.2 23/1.0 22.4/0.7 21/0.7 21.8/0.5

Reco. 3.9/0.2 4.0/0.3 2.9/0.2 2.3/0.1 22.6/1.1 21.3/0.8 21.2/1.0 19.3/0.7

Reco. + WD 2.9/0.2 2.9/0.2 2.8/0.2 2.2/0 20.1/0.7 21/1.0 20.8/0.9 20.3/0.5

Gaussian noise snr = 1 Salt and pepper noise d = 0.2
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 13.9/1.9 - 12.8/1.5 10.7/0.3 21.8/1.4 - 16.8/0.6 15.4/0.5

Uncons. 3.2/0.4 - 3.0/0.3 2.2/0.3 6.3/0.4 - 4.6/0.7 3.0/0.6

WD 2.8/0.3 2.9/0.4 3.1/0.3 2.2/0.3 5.0/0.8 4.6/0.9 4.2/0.8 2.4/0.3

Reco. 3.7/0.5 3.2/0.5 3.1/0.4 2.2/0.2 6.7/0.7 5.1/0.4 5.6/0.9 4.1/0.3

Reco. + WD 2.7/0.4 2.6/0.4 2.8/0.3 2.1/0.2 4.6/0.9 4.2/0.5 4.7/0.8 3.4/0.2

Table 3: Each mini-table shows classification performances of the models versus a certain type of degrada-
tion (indicated in the first row of mini-tables). Classification performance is given by an averaged percent
misclassification rate and its standard deviation (PE/SD) (see Appendix for details on (PE/SD) evaluation).
Models are obtained considering different networks and their combination to ensembles (columns) when they
are regularized by different degree and type of constraints (rows); the best parameters are given in a com-
panion Table 2. The smallest PE per network architecture (column) is enclosed in a box and a corresponding
row shows the best type of constraints versus it. The best overall model versus a degradation (mini-table)
is enclosed in a box and bolded. In most of the cases, classification performance of network architectures
improves from best networks to Ens. C in the same order as table columns. Models marked with PCA are
always significantly inferior to other models of the same architecture. The best WD network is always su-
perior to an unconstrained network for all data-degradations, while the best Reco. net is sometimes inferior
to an unconstrained network. Networks with combined constraints (Reco. + WD) are superior to WD. nets
in 7 degradation cases from 10. In most of the cases, among ensembles of types A (Ens. A) the best are
ensembles with combined (Reco. + WD) constraints. For Ens. B-C the best ensembles are with combined
(Reco. + WD) or WD constraints depending on a degradation type. Taken as a base-line for comparison
unconstrained Ens. C, the most significant improvement is achieved for clean data and such degradations
as rotation, illumination, partial occlusion and high-pass filtering.
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Percent misclassification errors and standard deviations (TAU data-set)

Clean data Illumination φ = 4.5o ± 4.5o

Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 36.5/3.7 - 32.8/3.2 26.5/0.5 47.1/3.2 - 41.2/4.3 36.8/0.2

Uncons. 20.5/4.7 - 15.1/2.7 11.7/1.0 30.9/5.0 - 27.5/4.3 21.8/0.7

WD 17.8/2.7 16.7/3.6 15.3/2.6 9.8/0.8 28.8/4.5 28.4/4.9 26.8/4.0 18.8/0.9

Reco. + WD 15.3/1.8 14.9/2.2 14.9/2.1 9.0/0.1 27.0/4.1 26.8/3.7 27.0/3.6 19.4/0.2

Rotation α = 5o Partial occlusion k = 1.5
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 46.9/1.0 - 41.7/1.1 37.0/0.7 43.2/3.5 - 36.5/2.4 31.4/0.4

Uncons. 32.4/4.6 - 27.0/3.8 23.7/0.9 25.9/3.8 - 21.0/2.6 15.4/0.4

WD 27.5/2.9 28.4/3.4 25.7/2.7 20.4/0.9 23.4/3.2 22.3/2.5 20.5/2.6 15.4/0.6

Reco. + WD 26.6/2.8 27.0/3.5 24.1/2.3 19.4/0.9 21.0/2.9 19.6/2.2 18.7/1.6 12.5/0.8

Gaussian blur σ = 2 DOG filter σ1 = 1, σ2 = 2
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 47.1/2.2 - 42.8/2.7 37.7/0.9 46.4/2.9 - 44.4/2.1 33.5/1.3

Uncons. 32.7/4.6 - 29.3/3.0 25.5/0.3 25.0/3.4 - 21.0/3.0 15.2/1.5

WD 30.9/3.2 30.0/3.8 28.1/2.4 22.6/1.4 23.0/2.5 22.5/3.0 19.8/3.3 13.9/0.8

Reco. + WD 27.7/2.6 28.2/3.0 27.5/3.3 23.5/0.3 22.3/2.9 20.1/2.1 19.4/2.6 12.8/1.7

Out-of-focus blur R = 2 High pass filter R = 2
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 36.5/3.2 - 34.0/2.7 28.0/0.9 50.7/2.1 - 42.8/2.0 34.5/0.9

Uncons. 23.0/4.5 - 18.2/3.4 13.0/2.1 26.8/2.9 - 22.3/2.2 17.6/1.6

WD 20.5/2.8 20.1/3.6 16.9/2.6 12.0/1.0 24.8/1.6 24.6/1.3 22.1/1.5 15.7/1.3

Reco. + WD 18.7/1.8 18.2/1.9 16.7/1.8 10.6/0.3 23.2/2.1 20.1/1.6 20.3/1.4 13.9/0.3

Gaussian noise snr = 10 Salt and pepper noise d = 0.2
Models Nets Ens. A Ens. B Ens. C Nets Ens. A Ens. B Ens. C

PCA 36.5/3.5 - 33.1/3.6 26.4/0.4 53.4/4.8 - 45.1/2.6 35.6/0.4

Uncons. 21.4/4.3 - 15.8/2.8 11.3/0.4 36.9/4.1 - 27.7/3.6 23.8/0.8

WD 18.2/2.8 16.2/3.4 15.1/3.0 10.6/0.8 31.1/3.6 29.3/3.8 27.7/3.6 22.1/0.7

Reco. + WD 16.2/1.9 15.5/2.4 14.6/2.3 9.3/0.7 27.3/4.1 27.3/3.8 27.0/5.0 20.4/1.0

Table 4: This table and all notations are the same as in Table 3; models parameters are given in Table 2. In
most of the cases (similar to Pentland data-set), classification performance of network architectures improves
from best networks to Ens. C in the same order as table columns. It is impressive that Ens. C are better
than Ens. A–B despite the less number on networks composing Ens. C (3 nets versus 4 in Ens. A–B ). In
about all the cases combined “Reco. + WD” constraints are better than WD constraints for all network
architectures. Network architectures with WD constraints are better than unconstrained models and PCA
models are always significantly inferior to other models of the same architecture. It is clearly seen, that
regularized network architectures not only have smaller percent error rates but also have smaller deviations.
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Hidden weight representations

Unconstrained classification network λ = 0

PCA network λ = 1

Figure 3: Hidden weights presented as images. There is an evident difference between PCA and
classification constraints.

For TAU data-set, only two types of constraints were considered: WD and its combination
with reconstruction constraints “Reco. + WD”. The results (Table 4) are easier to interpret since
“Reco. + WD” constraints are better than WD constraints for all network architectures. In
addition, regularized network architectures not only have smaller error rates but also have smaller
deviations.
Hidden representation of constrained networks It was already shown (Figure 3) that hid-
den representations of unconstrained and PCA networks are not the same. Hidden weights of
classification networks as image filters look more informative and contrast in the areas of eyes,
mouth and hairs than hidden weights of PCA networks. At the same time PCA networks being
asymptotically equivalent to a standard PCA method extract hidden weights that are about or-
thogonal that may be a desired property for efficient data coding. In order to test an orthogonality
property of a single network a following orthogonality measure R was introduced:

R = 1 −
1

h(h − 1)

h−1∑

i=1

h∑

j>i

|wj · wi|, (10)
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where wi, i = 1 . . . h is a vector of hidden weights connecting a hidden unit i with the input layer.
This measure is nonnegative and is equal to its maximum value 1 when all hidden weights are
mutually orthogonal. Since in our experiments each network with the specific λ value is presented
by a committee of networks trained on different data to get a stable result LHS. of Eq. 10 is averaged
and its standard deviation is found similar to CV approach for PE and SD (see Appendix). An
orthogonality measure of hidden weights of the networks with different constraints is presented in
Figure 4 and shows that as a degree of reconstruction constraints grows an orthogonality measure
of hidden weights for constrained networks grows as well. Regularization with WD constraints also
orthogonalizes hidden weights in the beginning but starting from some value orthogonality measure
falls down.

Hidden weights orthogonality (Pentland data set)

Reconstruction and WD constraints WD constraints
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Figure 4: When the degree of reconstruction constraints grows, the orthogonality between the
hidden weights. For WD constraints, orthogonality grows at the beginning and then goes down
again. For PCA networks (λ = 1) an orthogonality measure R = 0.95 and its std is 0.01; (it is out
of its limits on the left panel).

This finding allows us to conceive reconstruction constraints via a minimum description length
principle (MDL) (Rissanen, 1985). Following the MDL principle for a supervised task (Hinton and
Zemel, 1997) one searches for a model that allows to encode the input data efficiently and to reduce
model prediction errors of the output simultaneously (classification output in our consideration).
Reconstruction constraints regularizing hidden representation of the classification/reconstruction
network lead to more efficient input data encoding. Indeed, principal components are uncorrelated
and principal eigenvectors are orthogonal, while hidden weights of unconstrained classification
networks may have a large correlation. As we have seen one of the roles of reconstruction constraints
is in hidden units decorrelation.

7 Conclusion

We have studied a real-world classification problem under realistic degradation conditions.
In particular, we have studied the case where the distribution of the training data does not match
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the distribution of the test data, due to different image degradations. This is a very challenging
task that is unfortunately much less studied. For an overview of existing methods that address
degraded image classification see (Stainvas and Intrator, 2000).

We have compared the effects of ensembles based on different variables: initial conditions,
regularization parameter and cross-folds. We find that averaging over cross-folds is far superior to
averaging over other variables, even at the price of training on smaller size sub-samples.

We have studied reconstruction constraints as a regularization method for classification schemes.
Our finding here is a bit surprising; We find that a careful search for optimal weight decay parame-
ters leads to comparable and possibly superior performance to networks that were trained only with
reconstruction constraints. However, the combination of both constraints, can further improve the
performance. We have also demonstrated that an optimal degree of regularization for ensembles
is different than the optimal value for single networks. This results from the variance reduction
property of ensembles while keeping the bias portion of the error unchanged, thus implying that
networks trained for ensemble should have a lower bias (since the variance reduction is achieved by
esembling) (Raviv and Intrator, 1996; Naftaly et al., 1997).

Appendix: Technical details of model evaluation

We denote networks with trained on different cross-folds and with different initial conditions by
by Nλ(wj , cfk) and their classification outputs on the data X by nλ(wj , cfk;X), j = 1 . . . J, k =
1 . . . K. There are two approaches to treat regularized models (Moody, 1991; Taniguchi and Tresp,
1997): (i) when each unconstrained network with λ = 0 trained from certain initial weights is
considered as a distinct model corresponding to some local minimum and requiring a particular
degree of regularization; in this case an optimal regularization parameter depends on initial weights
λ?(wj); (ii) when the same regularization parameter is found for different initial weights. We tried
both approaches and found the first one to be superior in our case. Cross-validation was used to
asses regularization effects:

PE(λ,w) =
1

K

K∑

1

Er(nλ(w, cfk;Dk)) (11)

SD2(λ,w) =
1

K

K∑

1

(Er(nλ(w, cfk;Dk)) − PE(λ,w))2/K (12)

where Er(nλ(w, cfk;Dk)) is the misclassification rate of the network Nλ(w, cfk) on the validation
data Dk. An optimal parameter λ?(w) is found by minimizing (11). Finally, we evaluate PE(λ?, w)
and SD(λ?, w) on an unseen test data (T), by substituting the unseen data instead of Dk in (11, 12).
This estimation of SD’s assumes that errors of networks trained on different cross-folds of the same
size have similar distribution.
Ens. A averaged over λ We combine networks trained on the same data cfk and with the same
initial weights w and with several “good” λ values into a simple regression ensembles:

e(w, cfk;X) =
1

I

I∑

i=1

nλi
(w, cfk;X)

The number of networks in ensembles A is I. Percent error rate and its deviation for Ens. A is
estimated similar to (11, 12) by replacing nλ(w, cfk;X) with e(w, cfk;X). In other words, cross-
validation approach is used to estimate ensemble performances. Since networks are averaged over
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λ the problem of model selection is simplified. It is easier to find an effective region of parameters
than to pick up one unique “good” value versus a large data variability.
Ens. B averaged over initial weights Ensembles B are composed of networks that were
trained on the same cross-fold with a fixed regularization value but with different initial conditions.

e(λ, cfk;X) =
1

J

J∑

j=1

nλ(wj , cfk;X)

This ensemble is a regularized ensemble of networks depended on λ. An estimation of λ parameters,
percent error rates and their SD’s is the same as for single nets (11, 12) with replacing n(λ, cfk;X)
by e(λ, cfk;X).
Ens. C averaged over training data Ensembles C are composed of networks that were trained
with the same initial weights and with a fixed regularization value but with different training cross-
folds.

e(λ,w;X) =
1

K

K∑

k=1

nλ(w, cfk;X)

This ensemble is a regularized ensemble of networks depended on λ. To estimate PE and their SD’s
we use formulae similar to (11, 12) but with averaging over initial weight conditions:

PE(λ) =
1

J

J∑

1

Er(e(λ,wj ;T ))

SD2(λ) =
1

J

K∑

1

(Er(e(λ,wj ;T )) − PE(λ))2/J

The number of networks in bagging ensemble (Ens. C) is equal to the number of cross-folds K.
For bagging ensemble we don’t select a optimal λ parameter but instead take it to be the same as
for Ens. B. For comparison between ensembles of types A–C to be fair the number of networks in
ensembles is taken to be the same, if it is not emphasized additionally.
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