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1 Introduction

Discrimination problems differ in nature from reconstruc-
tion tasks. While in reconstruction, it is the mean squared
error that i1s often used to measure the quality of the
scheme, classification requires a different measure which
often i1s not related to the former. The discrimination
power of a certain basis or a set of basis function is not
necessarily connected to the quality of reconstruction as-
sociated with this set. Furthermore, the degree of rel-
evance of the orthonormality constraint to the quality
of the discrimination is questionable. For example, lin-
ear discriminant analysis [1] searches for linear projec-
tions which maximize the between-class variance divided
by the sum of within-class variance. Such projections do
not necessarily coincide with the principal components
of the data which are the directions that optimize MSE
reconstruction.

There have been several approaches to searching for ba-
sis functions for discrimination; Coifman adopts the or-
thonormal basis approach and is actually searching for a
basis that best reconstructs the mean difference between
two classes.

In this paper we briefly review several methods for find-
ing optimal decomposition via basis functions and discuss
their reconstruction properties. We then discuss some
signal decomposition methods for the purpose of discrim-
ination followed by discrimination results. The last two
section describe a different application of wavelet repre-
sentation to model estimation.
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2 Optimal basis function decomposition
for reconstruction

2.1 Entropy based algorithms

Coifman and Wickerhauser [2] presented a simple and
fast algorithm for finding the local best basis (BB) in a
wavelet packet (WP) library basis functions. The search
is very simple and fast due to the orthogonality condi-
tion between the basis functions at each level and the
inclusion properties of basis functions between different
levels. Choosing between different possible bases is done
via the entropy of the coefficients, namely the speed of
decay in coefficient values, which indicated the degree of
compression of the representation.

2.2 Basis pursuit

Unlike the search in orthogonal bases as done in the best
basis method, one can search in an overcomplete dic-
tionary of basis functions. This has been proposed by
Daubechies and termed the Method of Frames [3]. Among
different representations for the same signal, one searches
for a representation whose vector of coefficients has the
smallest {? norm. This approach leads to a quadratic op-
timization problem that is solved via a system of linear
equations. Recently Chen et al. [4] presented a Basis
Pursuit method (BP) that is very similar to the methods
of frames; It decomposes a signal using dictionary ele-
ments so that the coefficients have the smallest /' norm
among all such decompositions. This optimization can be
performed by recent linear programming techniques [5].
Chen et al. demonstrate that for certain signals, the con-
vergence of a basis pursuit algorithm is faster than that
of a best basis representation.

2.3 Matching pursuit

The Matching Pursuit algorithm [6] is an iterative algo-
rithm, which does not explicitly seek any overall goal, but
merely applies a simple rule repeatedly. It is a forward



model selection that adds at each step the single most
correlated new atom among all those not included yet in
the model. The algorithm is very powerful for orthogonal
basis selection, but may fail for non-orthogonal dictionar-
ies.

3 Optimal basis decomposition for dis-
crimination

3.1 Local discriminant bases

The local discriminant base (LDB) [7, 8] creates a time-
frequency dictionary such as WP or local trigonometric
functions (CP), from which signal energies for each basis
coordinates are accumulated for each signal class sepa-
rately. Then, a complete orthonormal basis is formed us-
ing a distance measure between the distributions of those
energies from each class.

The original algorithm [7] attempted to extract best basis
from the energies (squared values) of the WP, which is
the direct approach to finding a best basis for a class of
patterns [2]. Unfortunately, when the distance measure is
applied to these energy coefficients, or more generally to
the distribution of the energies, then the interpretation
of the new basis i1s not clear anymore and the optimality
properties are not so apparent. Moreover, noticing that
the energies may not be so indicative for discrimination,
Saito and Coifman [8] have suggested to use a different
non-linear function of the basis function of the coefficients
(instead of a just square values) so as to alleviate this
problem. However, this approach takes us even further
away from interpretation and optimality of the best basis
approach.

3.2 Discriminant pursuit

Buckheit and Donoho [9] have introduced the discrimi-
nant pursuit (DP) algorithm which follows the approach
of basis pursuit, in the sense that it is not constrained by
seeking only orthogonal discriminant basis functions, but
can search in the overcomplete WP or CP dictionary. The
discrimination power of each basis function is measured

by:

, _ | Ex[wpi(z)] = Ey[wpi(y)]|
Di(X,¥) = STDx (wpi(z)) + STDy (wp;(y))’ ()

which is a 1-dimensional form of Fisher discriminant anal-
ysis criterion [1]. Tt is our experience that often, the ad-
ditional flexibility leads to inferior results. This happens
when the dimensionality is high and the number of train-
ing patterns is relatively small. If the WP representation
is sparse, then for every basis function there are very few
patterns which contribute to its value, thus the variabil-
ity is large and outliers are more likely to cause trouble.
There is another problem associated with this approach;
Since the wavelet packet transformation is linear, it fol-
lows that Ex[wpi(x)] = wp;(Ex[z]). Thus, if the mean
of each signal set is zero, there is no discrimination power
in the means. A simple example is the discrimination be-

tween two signals of the form: sin(wt4u) and sin(2wt+u),

where u ~ UJ0, 27].

3.3 Applicability of wavelet representation to dis-
crimination

The choice of optimal bases for discrimination may not be
so practical for the reasons described above, namely, due
to the small number of training patterns and large number
of WP or CP coefficients that have to be estimated, result-
ing in overfitting to the training set. One way suggested
by Buckheit and Donoho [9] is to "remove” the noise from
the signal using de-noising. We present here a simple al-
ternative: no basis optimization for the set of signals,
rather a usage of a good general basis, namely, wavelets.
We show (Table 1) that classification results and feature
extraction from this basis may be superior to an attempt
to optimize the basis for the class discrimination. This is
due to the nonlinear separability in wavelet space which
is not well captured by linear separation methods.

4 Non-linear feature extraction from wavelet

representation

In this section we briefly discuss an unsupervised learn-
ing algorithm which searches for multi-modality in the
projection space. Exploratory projection pursuit theory
[10, 11] tells us that search for structure in input space
can be approached by a search for deviation from normal
distribution of the projected space. Furthermore, when
input space is clustered, a search for deviation from nor-
mality can take the form of search for multi-modality,
since when clustered data is projected in a direction that
separates at least two clusters, it generates multi-modal
projected distributions.

It has been recently shown that a variant of the Bienen-
stock, Cooper and Munro neuron (BCM) [12] performs
exploratory projection pursuit using a projection index
that measures multi-modality [13]. This neuron allows
modeling and theoretical analysis of various visual de-
privation experiments and is in agreement with the vast
experimental results on visual cortical plasticity. A net-
work implementation which can find several projections in
parallel while retaining its computational efficiency, was
found to be applicable for extracting features from very
high dimensional vector spaces [14, 13]. This method is
applied to feature extraction in a problem discussed in
the next section.

4.1 Application to acoustic signal discrimination

The types of signals explored in this study are the marine
mammal sounds of porpoise and sperm whale which were
recorded at a sampling rate of 25 kHz at various loca-
tions such as the Gulf of Maine, the Mediterranean and
the Caribbean sea. We consider large data files where
the signal consist intermittently of mammal sounds and
background noise. Each of these files contains whale or
porpoise sounds, but not both. Several data sets of length



Feature Extraction From Time-Frequency Dictionary

| | Porpoise | Whale |

LDA on wavelet packet 94 33
LDB on wavelet packet 98 51
Highest energ. from wavelets 72 47
BCM extraction from wavelets 99 76
BCM applied on raw signals 32 95

Table 1: Results of linear and nonlinear feature extraction
from wavelets and wavelet packet representation of Por-
poise/Whale acoustic signals. LDA is the linear discrim-
inant analysis of Buckheit and Donoho, LDB is the local
discriminant basis of Saito and Coifman. BCM is a non-
linear feature extraction that searches for multi-modality
(see text for details).

32768 samples corresponding approximately to 1.3 sec-
onds, were extracted from these large files. These data
sets which contained mammal sounds mixed with back-
ground noise, were used for training and testing.

Full discussion of the results appears in [15]. In this
paper we only point out the fact that a choice of basis
functions using a discrimination measure may not lead to
best results and that optimizing (nonlinear) discrimina-
tion based on linear combinations of basis functions from
a fixed (wavelet) basis, may be more effective.

5 Coherent structure extraction

We follow here the algorithm proposed by Coifman and
Wickerhauser [16] for de-noising a given signal f of length
N so that various parameters of a physical system can be
estimated accurately. The noise is peeled off iteratively
by projecting the signal on a sequence of optimal bases.
The following decomposition process i1s done iteratively
based on the signal-plus-noise model: f = ¢; + 71, where
the coherent part is ¢; and the residue (the noisy part)
is r1. For the next step, the residue r; is considered as a
new signal which is decomposed as r; = ¢2 + 7. If this
decomposition 1s repeated k times, we sum all the coher-
ent parts: ¢ = ¢y + ¢3 + ... + ¢, then f is rewritten as
f = ¢+ r. Recall that from a given mother wavelet, we
can construct a library of orthonormal bases e.g. wavelet
packet and cosine packet. Therefore, we have at our dis-
position a large collection of libraries of bases. If we
choose a library of bases, we search for the best basis
B; for the signal f in this library. We reorder the coef-
ficients a1 > @y > ... > apn in decreasing order, which
correspond to the basis B; (with b's as the basis func-
tions). Then we pick the top M (< N) coefficients a's
where the rate of decay is steepest. In the first equation,
¢1 represents the reconstructed portion (coherent part) of
f, which is based on these M coefficients o’s:

M
L= ajb; (2)
1

Then r; is the residual vector (incoherent):

N

r = Z Oz]'b]'

M+1

(3)

The next step is to consider r; as a new signal for which
we repeat the decomposition into a coherent part and an
incoherent part (noisy part). Again we choose the best
basis which 1s different from the previous best basis. Also
the new basis can be from a new library. At each step,
after reordering the coefficients, it is important to pick the
largest M coefficients o's where the largest rate of decay
If ri represents an incoherent (e.g. gaussian)
signal, any basis B; in the library will not compress it
very well. In fact, this is the stopping criteria for the
iterative procedure. The true coherent part is the sum

occurs.

of all the individual coherent parts which are extracted
during the iteration process.

6 Application to flutter analysis

To determine the flutter boundary of an aircraft requires
accurate measurements of frequencies and damping val-
ues of critical vibration modes as a function of the flight
velocity. Numerous techniques have been reported for
real-time flutter identification with varying degree of suc-
cess [17, 18]. In recent years, it has become clear that
advances in wavelet theory for signal processing and the
use of artificial neural networks to model complex char-
acteristics of nonlinear systems have an important and
direct relevance to parameters extraction of flutter sig-
nals.

The main goal of this section is to present the develop-
ment of using wavelet and artificial neural networks to
predict the frequencies and dampings of a simulated flut-
ter signal. Data from a typical flight test usually includes
responses from more than one mode of vibrations and can
be expressed as:

n

y(t) = Z a;e” it sin(w; + ¢;)

i=1

(4)

where n denotes the number of modes, a;, «;, w; and ¢;
represent the amplitude, damping, frequency and phase
angles of the 1’th component. Note that, w = 27 f, where
f 1s the frequency. Consider for simplicity a simple model
consisting of two modes only:

y(t) = are” " sin(wit + ¢1) +aze” **' sin(wat + ¢2). (5)

The two exponentially decaying sine waves model the de-
caying portion of the response signals from the sine dwell
or sine sweep excitations of the aircraft. Given a time
series of such signal, our task is to determine the values
of frequency and damping of the signal. The procedure
under investigation is to apply artificial neural network
used in conjunction with wavelet packet.



First, by using wavelet packets, we separate the two-mode
signal into two one mode signals each containing one value
of frequency and one value of damping coefficient. In fact,
projected on the best basis, the two-mode signal exhibits
clearly two distinct patterns on the phase plane, which
are well separated both in time and frequency. By pick-
ing the highest coefficients corresponding to each pattern,
the reconstruction gives each of the desired exponentially
decaying sine wave.

An application of the techniques presented in the previous
section is to embed the signal in noise. Again, we could
peel off noise and retain only the exponentially decaying
sine waves.

Next, we use a two-layer (one hidden layer and one output
layer) artificial neural network with feed-forward connec-
tions. A sigmoid transfer function is employed, and the
conjugate gradient algorithm is used to minimize the per-
formance index which represents the square of the errors.
To reduce the complexity of an artificial neural network, a
wavelet transform is applied to the original signal, and we
select only m largest wavelet coefficients as input to our
neural network. The value of m is usually small, and it is
certainly much smaller than M, the number of the data
points for the original signal. Consequently, the number
of inputs and hidden units is small. This results in a more
efficient and robust network model.

In our computational experiments, the input layer 1s of
20-30 dimensions and the hidden units layer contains 15—
20 neurons. Using 200 data sets for the training, the net-
work is then tested on 20 testing data sets. The relative
errors for the predicted damping coefficients are within
5%, and the relative errors for the predicted frequency
values are within 3%.

The most attractive feature proposed here is that when
dealing with real world problem, i.e., multi-mode signals,
our method can be naturally and effectively implemented
in parallel. Since a multi-mode signal is first decomposed
into single-mode components using a wavelet routine, our
artificial neural network can then be employed to ex-
tract the frequency and damping associated with each
one-mode signal. The process can certainly be done in
parallel. In future studies, we plan to use our algorithm
for multi-mode signal problems and to compare the ef-
ficiency and accuracy by using artificial neural network
directly to predict the parameter values of a multi-mode
signal data.
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