
 
Time Frequency Analysis of Dolphin Clicks Reveals 

Fine Temporal Structure1 
 

Judah Jacobson2   Maryam Saleh3    Nathan Intrator4 
 
Introduction 
 

One of the most effective ways for a dolphin to perceive its environment for the purpose of 
prey detection is to use its active and passive (listening) sonar capabilities. Acoustic energy 
propagates in water more efficiently than any other form of energy, so that an active sonar 
capability is ideal for life in an aquatic environment. Dolphin sound emissions can be classified 
into two broad categories: narrow-band-frequency-modulated continuous tonal sounds, referred to 
as whistles, and broadband sonar clicks that have durations between 50 and 200µs  (Evans 1973).   
Passing air back and forth through a set of nasal passages, which creates a narrow beam of sound, 
first produces the click sound.  This sound is then passed through a fat-filled cavity in the head 
called the melon.  In the melon, the sound is culminated so that the dolphin can actively direct the 
clicks without wasting energy due to scattering the sound.  When searching for a target, dolphins 
usually emit bursts of clicks referred to as a click train.  The interval between clicks appears to be 
a function of the distance from the target. Other factors such as the difficulty of detecting a target, 
the presence or absence of a target of interest, and the animal's expectation of finding a specific 
target also affect the click train.  

 

 
 
Figure 1. Dolphin Sound Propagation and Reception.  Taken from 
http://www.seaworld.org/bottlenose_dolphin/echodol.html 
 
 

The ability of dolphins to accurately perceive their environment and to perform difficult 
recognition and discrimination tasks depends to some degree on the characteristics of their sonar 
signal.  The notion that dolphins make fine adjustments to the spectrum and shape of their click in 
a pulse train is appealing and has been investigated by several researchers.  Bel'kovich and 
Dubrovsky  (1977) argued that any significance attached to changes in spectrum and shape of 
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Patrick W. Moore
Well maybe not. Dolphins have good eyesight and at close range in moderately clear water they use vision.  A major reason dolphins get caught in nets is they do not echolocate in moderately clear water.

Patrick W. Moore
No, the melon collimates the sound it does not actually focus the sound.

Patrick W. Moore
You suggest here (by presumption) that at short ranges dolphins do not use click trains and that is not so, dolphins use click trains all most exclusively and only inter click interval changes as a function of range.

judahj
Reference: http://www.seaworld.org/bottlenose_dolphin/echodol.html

Patrick W. Moore
As a matter of fact we who have studied this animal for many years do not agree with that statement.  Of course the signal structure has some impact on the animals ability to detect and discriminate but the signal structure is NOT the primary \(…depend to a large extent…\) "characteristic" that provides the animal with the information about the target.  It is the actual target structure and the animals ability to extract and use various unknown features in the backscatter that allow it to perform difficult recognition and discrimination tasks. 



dolphin clicks reflects incorrect interpretation of the results or is based on insufficient statistics.  
The spectral changes observed in their experiment were not consistent among all trials and were 
attributed to the dolphin turning momentarily away from the target, to internal steering of the 
beam even when its rostrum was pointed to the target, to fluctuations in the click generation 
mechanisms, or to lapses in the animal's attention during a trial. Dziedzic and Alcuri (1977) found 
that the clicks were relatively invariant when the dolphin was more than 4m away from the target.  
However, when the animal- target distance was less than 4m, they found a spectral spreading of 
the signal accompanying an increase in the difficulty of the discrimination task.  In The Sonar of 
Dolphins (1993), Au argues that these spectral changes were due to changes in the dolphin -
hydrophone orientation.  He states that variations in the signal waveform as a function of the 
angle around a dolphin's head compound the difficulties of obtaining reliable sonar emission 
data on fine spectral adaptation produced for the purpose of optimizing target discrimination and 
recognition.  To study spectral changes in a target discrimination task, contact hydrophones 
should be placed on the head of a dolphin.  Dziedzic and Alcuri had the hydrophones placed 1m 
behind the targets, which led to the dolphin-hydrophone orientation problem.  The study of the 
amplitude-frequency relationship in click trains by Au et al. (1985) and by Moore and Pawloski  
(1990), gives a general impression of the degree to which a dolphin can control the characteristics 
of its sonar signals: Dolphins emit broad band signal with two center frequencies and ability to 
control both frequency and amplitude, mainly as a reaction to environmental noise, with some 
preference to higher frequencies at higher amplitudes.   

In a data that was collected by Moore et al. (1991), three dolphins were trained to perform 
object detection tasks: two of the dolphins, Tt751F and Tt018M, were trained to respond to the 
presence of a specific target, while the third, Tt598M, was trained to perform match-to-sample 
tasks.  Each match-to-sample trial consisted of two intervals. In the sample interval, the dolphin 
inspected a first target via sonar; in the comparison interval, the dolphin was presented with three 
targets, from which it was required to select a match to the original target. Houser et al.  (1999), 
classified the dolphin clicks that were emitted during the experiments using characteristics of the 
frequency spectrum.   From visual inspection of over 30000 clicks, seven categories of click types 
were developed based on Boolean characters such as peak frequency, secondary peak frequency 
if it existed, the locations of both  (high or low), and the number of distinctly bounded regions 
existing within the 3-dB bandwidth.   54,000 clicks were classified using these categories, 
automating the classification process using a computer program utilizing the same Boolean 
characteristics as were used by human inspectors.  The spectra were also sorted using an artificial 
neural network in order to evaluate the choice of click types. Results in general supported the 
choices, although the network did not perform as well in classifying the less frequent click types. 
They found that the two dolphins with the same task used different click types with different 
frequency spreads.   

 
 
The results of Houser et al. show significant change in click type both between dolphins 

performing similar tasks and between different intervals of the same task.  In addition, they 
demonstrate some variability in proportion of click type between different positions in the click 
train.  This variation is partially due to the biological system, which generates the signal and 
presumably, to some extent, to active control of the type of click emitted for different 
circumstances and at different stages of echolocating an object.  

In this paper, we explore click structure using time/frequency analysis.  Using principal 
component analysis, we demonstrate a an atomic decomposition of the clicks, which can be 
termed clicklets.    

 
Methodology 
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Nathan Intrator
Before: dolphins often use higher frequencies when they emit high intensity clicks and have harder time sending high intensity clicks at low frequencies. Furthermore, when the amplitude goes over 210dB, the emitted clicks can become bimodal, having two separate energy peaks at low and high frequency.

Patrick W. Moore
We said no such thing!!! We concluded that " Generally, as the echolocation SPL moves above 210 dB emitted clicks can become bimodal, having two separate energy peaks in the low  frequency and high frequency regions, as we define them" \(page 315, last sentence of the first paragraph under conclusions\) .  We even stated that " for the high frequency condition major energy is in the 129 kHz – bin, BUT is still well distributed IN THE LOWER FREQUENCY BINS \(45, 60, 75 and 90 kHz\).  

Nathan Intrator
Pat’s comment here was The animal uses a biological system to generate clicks and that in it self is responsible for a large portion of variance in signal structure and not due to any purposeful behaviour on the animals part..  

Nathan Intrator
Most of the clicks of Tt751F were of type E  \(spectra with only one peak existing above the 70kHz range\), while Tt018M used a more diverse selection of click types.  In addition, both dolphins used varying proportions of different click types at different positions in the click train.  For example, clicks emitted by Tt751F after the mean click train length were more frequently of type A  \(unimodal with peak below 70 kHz\) than of type E.  Tt018M did not show as much change, emitting stable proportions of types A, E and M  \(3 or more distinctly bounded regions within –3dB of the peak frequency\); however, type W  \(wide-band\) clicks were emitted early on in some click trains but were much less frequent as it progressed.   

Nathan Intrator
Significant differences were found between the two stages performed by Tt598M.  During the sample interval, a greater number of all clicks were emitted except for type A and type D  (spectra with peak above 70 kHz and secondary peak below 70 kHz).  Type A clicks were most frequently observed in this interval, although Types W and M were produced at a near-constant proportion across the click train, and even comprised a greater portion than type A early in the click trains.  During the comparison interval, however, the dolphin emitted type A clicks much more frequently than any other type  (70%-80%).  

Nathan Intrator
Other possible factors such as age and sex are discussed, and may have also influenced the dolphins’  of click type.  

Nathan Intrator
Results are in Rake/Saline. The program to create the 3 clicks is in C:\n\Proj\DolphinBat\Rake_20 trials each\new_results\makeprojnin.m creating clicks.png from 606co9



There are two main differences between time frequency analysis that is done via a continuous 
wavelet transform and spectral analysis via Fourier transform. The first ]is the uniform 
uncertainty that is associated with each frequency component that is estimated from the data. This 
uniform uncertainty is achieved by sampling different frequencies using time windows that are 
adapted to those frequencies  (same number of zero crossing), so that there is same amount of 
information in each such time/frequency window. In fact using a Gabor wavelet, the boxes 
defined by ∆t x ∆f are optimal in terms of their area so that the uncertainty of each is the minimal 
possible as follows from the uncertainty principle of Heisenberg  (Mallat, 1999). The second 
difference is the actual temporal information for different frequency components. This is 
demonstrated in Figure 2 that depicts three time/frequency representations of dolphin clicks. The 
time/frequency representations were obtained using a continuous wavelet transform via a Gabor 
wavelet. It is seen that different frequencies do not appear at exactly the same time during the 
click, thus providing more details than a spectral representation. This additional structure leads to 
a better characterization of the sequence of clicks during a sequence of consecutive click 
collection5 as can be seen in the scatter results below. 

 
Figure 2. Three typical time/frequency analysis of dolphin clicks. The temporal location of 

each frequency demonstrates some variability in clicks in terms of the frequency that are used, 
their duration and the transition from low to medium and high frequency. Note that the middle 
click shows energy all the way to the top of the scale. In all clicks the high frequency information 
suggest that there are actually more than one click emitted, or that the click may undergo different 
paths (through the skull) and thus be expanded in time. Other possibility is some head 

                                                 
5 We call such a sequence a trial although the end of the trial does not reflect the end of the dolphin 
exploration (unless the number of clicks was smaller than 94). 
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judahj
Only see one difference here; maybe should be reworded?

Patrick W. Moore
What type of T/F representations are presented in fig. 2??

Patrick W. Moore
The "trial" is an artifact of data collection i.e. they have no real-world homology!

Nathan Intrator
�  To get the picture use pp with iopt = 17, it calles makeproj  \(not makeprojnin\) to get the results, current results with the sqrt \(s\) in place using 20log. The difference to Houser’s results is in a constant where we divice by the number of requencies. Note that when integrating over time,we get exactly the Fourier rep is found by fft.



misalignment between the dolphin and the microphone.  We believe that this feature can help in 
echolocation as the notches structure becomes richer and less ambiguous. 

 
The clicks that we study in this paper were recorded during an experiment in which a dolphin 
performed a series of match-to-sample trials.  In each trial, a sample target was placed in front of 
the dolphin, which it was allowed to inspect using sonar.  After a prescribed delay, three other 
targets were presented and the dolphin had to identify the target that was used in the previous 
presentation interval.   The individual clicks were recorded at 500 kHz, and 256 sample points 
were stored for each click.  The clicks themselves were very short as can be seen in Figure 2. We 
thus, used a smaller portion of 128 µsec for click classification, which were represented by 64 
time samples and 128 frequency bins. 

The time-frequency analysis of the clicks was performed using an analytic wavelet transform 
with a Gabor wavelet as detailed in (Mallat, 1999). It was compared with a Fourier transform 
(which does not indicate temporal structure).  The clicks were synchronized using a trigger signal 
so that the time/frequency representation would have minimal variation due to the initial point of 
the click. We did not include in our analysis clicks that were not synchronized as this usually 
indicated some transient noise during data collection. Altogether, there were 103 clicks that were 
not included in the calculation of the principal components (out of a total of 1386 clicks).   

 
In our first attempt to classify the clicks using their wavelet and Fourier transforms, we 

calculated a correlation distance matrix of the clicks.  The high dimensional representation given 
by the time/frequency analysis  (and also by the spectral representation) implies that a robust 
estimation of any model parameters requires first a reliable dimensionality reduction. In this 
paper we concentrate on analysis resulting from clicks representation following a dimensionality 
reduction via principal components analysis. 

Principal components analysis  (PCA) is the most commonly used method for reducing 
dimensionality via linear projections. Consequently, this method is the most studied method. PCA 
is optimal when the high dimensional data has a Gaussian distribution.  Some discussion 
including their limitations can be found in  (Duda and Hart, 1973) and some comparison of their 
properties with higher order moments projections can be found for example, in  (Intrator, 1993; 
Yang and Amari, 1997). While, we do not have any evidence that the high dimensional 
time/frequency representation of dolphin clicks has a Gaussian distribution,  it makes sense to 
start with it. In particular, it serves our purpose of demonstrating that the time/frequency analysis 
is relevant to dolphin clicks and provides more information about click structure than spectral 
representations. The principal components were calculated from all the clicks, which were not 
rejected due to energy or synchronization problems (as mentioned above). Clicks were taken from 
the Saline directory. We have used two ways to demonstrate the structure within a click sequence; 
the first is a clustering of the clicks based on proximity. This is done via a clustering tree.  The 
distance in y-axis represents the distance between each of the clicks. A natural distance measure 
is the Euclidian distance between time frequency representations, or between spectral 
representations. This distance measure was also used between the projections of the 
representations onto the first six principal components of the data. The following principal 
components (from 7 and up) still represent interesting structure in time/frequency space; 
however, they should be ignored, due to their small contribution to the variance of the data as is 
indicated by the corresponding eigen values6.. After obtaining the principal components, the high 
dimensional data are projected onto them to obtain a low-dimensional representation. A tree 
clustering - dendrogram - of the projections displays much better clustering than the original high 
dimensional correlation distance matrix  (Figures 7,8) 
                                                 
6 We do not present the plot of the eigen values as it is not very informative. It only indicates that over 98% 
of the variance is explained by the first 8 principal components. 
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Patrick W. Moore
Clicks emitted by a single animal are NOT Gaussian, they are correlated!!!.  

Nathan Intrator
I am not saying here anything about clicks, just stating the optimality criterion for PCA and giving a reference to their limitations. The fact that the clicks are correlated does not imply that their high dimensional distribution is Gaussian. It only implies that the covariance matrix is not diagonal.

Patrick W. Moore
Reported in which Table??



Scatter plots of click sequence provide further information of the dynamics between clicks. 
They show clusters of sequential clicks, demonstrating some continuity in the click sequence, and 
show in some cases  (so1, co9) some general multi-modal structure of clicks. Since we can not 
represent structure in a six-dimensional space directly, we look at all two-dimensional 
projections. Thus, the scatter plots have in their first row projection onto the first principal 
component  (y-axis) vs. projections onto the second to sixth principal component in the x-axis. In 
the second row the y-axis represents projection onto the second principal component, and the x-
axis represent projections onto the third to sixth component. The numbers on the scatter plot 
represent click sequence, which is also coded in color for convenience. 

 
 

 
 
 
Results and discussion 
 
We have created two representations to the click signals. The first is a Fourier transform and the 
second is a Time-Frequency representation. While it is possible to achieve time localization using 
windowed Fourier transform, this approach is not feasible here as the duration of the click is too 
short for a robust temporal estimation via windowed Fourier transform.  
Figure 3 depicts a sequence of clicks from a single trial in raw data format. For convenience, we 
remove the axes. The X-axis represents time from 0 to 200µsec. The Y-axis represents linear 
amplitude scale.  

 
Figure 3. Raw click data. The click itself is very short  (about 80 µsec). It is difficult to conclude 
much about its structure from this representation.  
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Nathan Intrator
File R0606C09.D5K in folder Saline.   From web page generated by CreateHTML.  (all pictures for Saline generated by Createhtml can be found in the Saline folder)



 
The Fourier representation of these clicks, which is depicted in Figure 4, reveals more structure. 
This representation was the basis of the analysis of Houser et al.  (1999).  As was mentioned 
before, they split the data into seven categories depending on the different spectral structure. 
Some of these categories can be seen in the Figure, e.g. the sixth click up to the seventeenth look 
relatively similar and somewhat similar to the clicks in the third row. 
 

 
Figure 4. Spectral representation of the sequence of clicks. The amplitude is presented on a 
logarithmic scale. The X axis spans frequencies from 0 to 250 kHz. Notice some continuity in the 
sequence, e.g. the fourth row shows very similar spectral representation. The transition from the 
last few clicks at the third row to the clicks in the fourth row is relatively smooth.  
 
  
 
Figure 5 depicts a time frequency representation of the same clicks. There are several apparent 
findings from this representation: First, it appears that the representation is consistent with the 
above spectral representation in the sense that it is continuous, namely, the transition from one set 
of clicks to the next set occurs at similar locations and those transitions are often smooth, namely 
occur over a set of clicks and not abruptly.  This can be seen for example, in the third row or in 
the sixth row. Sometimes, there is a chirp-like tilt to the click, e.g., the high frequency tilt in the 
last few clicks at the end of the first row. 
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judahj
From web page generated by createHTML; file R0606C09.D5K in folder Saline



 
 
Figure 5. Time/Frequency representation of click trains from a single trial.  
 
The correlation distance matrix for the Fourier transform contains very little clustering, as can be 
seen in the dendrogram  (Figure 6).  
 The time-frequency results are similar; this is due to the high dimensionality of the data with 
respect to the number of samples and to the inability to find an appropriate distance measure from 
the high dimensional representation.  A natural dimensionality reduction is via principal 
components analysis.  When performing principal components analysis, it is important to increase 
the robustness of the dimensionality reduction method, especially when the number of 
observations is on the order of the number of free parameters that are used in the dimensionality 
reduction. Here, we calculate a dimensionality reduction in a space that is not larger than the total 
number of observations used for the reduction. This number is smaller than the dimensionality of 
the time/frequency representation, and it is thus, more robust to perform the dimensionality 
reduction in this way (Figures 7 and 8). Following the PCA, we project the data onto the first few 
components. The number of components is chosen based on the contribution of the component to 
the overall variance of the data. With these projections, we obtain a representation of the data in 
fewer dimensions.  The results show much clearer clustering, as in Figure 9 with the Fourier and 
wavelet transforms, respectively.  Each shows about 5 different cluster groups; the improved 
clustering can be seen in the corresponding scatter plots  (Figures 10 - 12).    
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judahj
From web page generated by CreateHTML. file R0606C09.D5K in folder Saline

Patrick W. Moore
Did you rotate the PC's ??  Like a Varimax reduction ?? Yes, this is what I mean by dimensionality reduction (Nathan)



 
Figure 6.  Dendrogram using correlation distance matrix of the Fourier transforms.  The 
dendrogram of the correlation distance matrix for the wavelet transforms looks similar.   
 
 
Principal components from Fourier and T/F.   
 
The first principal component appears to code for the overall noise level in the system during the 
collection of the trial. This is observed in the fine changes in background and is thus coded by a 
strong energy for the background while negating the signal  (the blue region). As this noise is 
likely to related to the environment  (and not to the collection system), it is important to correlate 
the noise level during a click production with the type of click produced.  The other PC’s 
demonstrate a pure structure of the click itself in frequency and time. They demonstrate a certain 
richness in click production and in particular a slight shift in high frequencies compared to the 
low frequencies. It is not clear if the shift has to do with some multi-path channel between the 
dolphin and the hydrophone.  
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judahj
Correlation distance matrices were generated by distancematrix.m in folder Saline; file R0606C09.D5K



 
Figure 7. First twelve principal components of Fourier transforms for all files in Saline folder. 
 
The principal components can be interpreted as the atoms of the data representation, as they 
optimally decompose the data.  The principal components obtained from the Fourier 
representation, demonstrate the same properties described in Houser et al.  (1999), namely clicks 
with a middle and high frequencies, bi-modal frequency clicks etc. It appears that only 5-6 
principal components are significant  (in terms of contribution to the variance) in the case of the 
Fourier representation. These components provide further validation to the click types that were 
found by heuristic methods by Houser et al (1999) 
 
 

 9

judahj
CreateHTML saves the output variables in the file createHTML_output.mat.  The Fourier PC’s are mmf, and the TF PCs are mmt. \( \(projections are also saved in struct array in same file\).  This figure was not done from a specific program; it is a modification of the code in createHTML to display the PCs.



 
Figure 8. First twelve principal components of time-frequency analysis for all files in Saline 
folder. The X-axis represents time and spans 128 µSec. The Y-axis represents frequency and 
spans 0-250 kHz. The amplitude, which is shown in color, represents the amplitude of each 
coordinate in each component. 
 
Analysis of the principal components obtained from the time/frequency representation indicates 
several findings:  The first component codes the relative ambient noise during the data collection. 
It can be seen that the values around the locations of the click are very negative, while the 
locations outside of the click area are negative but close to zero. The next five components are 
significant in their contribution to the variance. They emphasize sub-click parts and demonstrate 
the richness of the clicks produced by the dolphin. As they decompose the clicks into smaller 
atoms, we call them clicklets. The sharp boundaries between strong positive values and strong 
negative values indicate that the localization of the various clicks components was very sharp, 
namely the production of the click was very consistent. The clicks were obtained from a single 
experiment of about 20 trials.  Signals that did not have strong enough energy or were not 
synchronized were excluded from the calculation of the principal components, although they later 
participated in the scatter plots (Fig. 10-12).  Synchronization was determined using an automatic 
triggering mechanism that saved clicks, which produced signals that were above a predefined 
threshold. The same threshold was also used for the synchronization of the signals. 
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judahj
Variable mmt in file Saline/createHTML_output  (see previous comment).  The program used for this was displayawt (mmt (1:12),1)  (the 1 is for colorbar option)  



 

 
Figure 9.  Dendrogram of the projections of the Fourier (top) and Time-Frequency  
representations (bottom) of one trial onto the first six  principal components.   
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judahj
From web page generated by CreateHTML. File R0606C09.D5K in folder Saline



 
Figure 9 indicates the clusters formed by the clicks when projected on their corresponding 
principal components. The numbers on the X-axis represent the ordinal number of the click in the 
sequence of emitted clicks. Thus, numbers that correspond to clicks that are close to each other 
(according to the tree structure) indicate similar clicks. The similarity is proportional to the total 
vertical distance between the clicks. There appear to be about 4-5 big clusters, which are 
approximately the same distance from each other. 
 
A more detailed indication of the clustering is demonstrated by projecting the data on two 
principal components at a time (Figures 10-12). The scatter plots depict each click by its ordinal 
number in the sequence as well as using a color scheme that goes from red to blue. In general, the 
scatter plots resulting from the time/frequency projections appear to contain more compact 
clusters, indicating that the clicks can not be described by a simple model of a single signal with 
noise, and is closer to a model of a collection of several prototypical clicks with noise. 
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Figure 10. Scatter plots of projections from trial R0606C09  (Saline) onto the principal 
components. Top: Fourier representation. Bottom: T/F representation. 
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judahj
From web page generated by CreateHTML. file R0606C09.D5K in folder Saline



 

 

 
Figure 11. Scatter plots of projections from trial R0606S01  (Saline) onto the principal 
components. Top: Fourier representation. Bottom: T/F representation. 
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judahj
From web page generated by CreateHTML. File R0606S01.D5K in folder Saline.



 

 
Figure 12 .  Scatter plots of projections from trial R0606S16  (Saline) onto the principal 
components. Top: Fourier representation. Bottom: T/F representation.  Note that the rejected 
clicks are clustered together very closely in T/F but not in Fourier  The rejected clicks were 
numbers 33,65-68, and 72-81.   
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judahj
From output of CreateHTML; file R0606S16.D5K in folder Saline.

judahj
From output of CreateHTML; File R0606S16.D5K in folder Saline.



 
In fact, as there are clusters of various shapes, it is difficult to consider a Gaussian like noise   as a 
possible explanation to the results. There are some other differences between the Fourier and the 
time/frequency clusters. The rejected clicks, namely those clicks that were mistakenly recorded 
usually due to some noise in the triggering mechanism, tend to cluster very far from the clusters 
of  valid clicks, thus, the projections actually validate the fact that these are not proper clicks. 
This can be seen in Figure 12  (bottom), where the compact dark blue cluster represents incorrect 
clicks. On the other hand, the same clicks tend to intermix with the projections of valid clicks in 
the Fourier representation  (top) indicating that this representation is not sensitive enough to 
distinguish between click and non-click signal. 
 
 
 
 
Summary 
 
The aim of this paper was to demonstrate the usefulness of the detailed time frequency 
representation in analyzing dolphin clicks. We have concentrated on the signal sent by 
the dolphin as a first step in validating that a time frequency representation that is based 
on analytic wavelet transform does indeed capture informative structure. We have found 
that such time/frequency analysis uncovers consistent features which are retained across small 
sequences of clicks, indicating that this dolphin is performing a certain strategy which includes 
variation of the temporal order of frequencies, in addition to variation of the frequencies 
themselves, during target exploration. In particular, this dolphin is generating a collection of 
signals that cannot be explained by a  (single) signal + noise model. Furthermore, there is an 
interesting cluster structure of the clicks in high dimension, which may indicate biological 
constraints or signal optimality and need to be further explored.  
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Patrick W. Moore
You are correct! Why did you assume that there were any Gaussian-like noise sources? The major noise component in all the click data if from the background noise of  Kaneohe Bay snapping shrimp.  This noise in most certainly NOT Gaussian.

Patrick W. Moore
Again, snapping shrimp!!

Patrick W. Moore
Again you are correct FFT's are not very good for sorting out snapping shrimp.  However, time waveform analysis and interclick interval are.

judahj
This is the primary source for the intro  (All citations in first two pars of intro were found in this book)
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