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Abstract 

A system for automatic face recognition is presented. It consists of several steps. Automatic detection of the eyes and 
mouth is followed by a spatial normalization of the images. The classification of the normalized images is carried out by a 
hybrid (supervised and unsupervised) Neural Network. Two methods for reducing the overfitting - a common problem in 
high-dimensional classification schemes - are presented, and the superiority of their combination is demonstrated. 

Keywords: Face recognition; Neural Networks; Interest points; Symmetry operator 

1. Introduct ion 

Automatic face recognition has gained much atten- 
tion in recent years, due to the variety of potential 
applications, and the increase in computational power 
which enables effective implementation of algorithms. 

Traditionally, face recognition was based on ex- 
tracting certain features (e.g. spatial location of fa- 
cial features and their geometrical relations) (Bled- 
soe, 1966; Kanade, 1973). These features are detected 
either manually, or by automatic algorithms (Yuille 
et al., 1992; Craw et al., 1992; Brunelli and Pog- 
gio, 1992; Reisfeld and Yeshurun, 1994). Another ap- 
proach (Kirby and Sirovich, 1990; Turk and Pentland, 
1991 ), is based on direct processing of the grey-level 
images. A review of face processing systems could be 
found in (Bruce and Burton, 1989; Samal and Iyen- 
gar, 1992). 

* Corresponding author. 

The task of recognizing faces is inherently a classifi- 
cation problem in high dimensional feature space, and 
thus subject to the "curse of dimensionality" (Bell- 
man, 1961) which essentially says that the number 
of training patterns needed for robust classification, 
should be restrictively high. 

Regarding an image merely as a matrix and looking 
for algebraic invariants (Hong, 1991 ) reduces the di- 
mensionality. However, such algebraic constraints can 
be designed to be invariant to practically any transfor- 
mation but they are too general. For instance they are 
not affected by upside down inversion, while biolog- 
ical systems are (Moses et al., 1993). A recent ap- 
proach to this problem (Bischel and Pentland, 1994) 
is based on the finding that facial images are projected 
to connected domains (an extension of clusters) and 
thus could be used to reduce dimensionality. An al- 
ternative approach for the reduction of the dimension- 
ality is to use a limited set of biologically motivated 
receptive fields (Manjunath et al., 1992; Edelman et 
al., 1992). Yet another way to overcome the "curse" 
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is to base the recognition on a small number of linear 
combinations (projections) of the high dimensional 
space. This approach is at the heart of projection pur- 
suit methods (Huber, 1985) and neural network meth- 
ods. Taking this approach, one is then confronted with 
the task of finding such an optimal projection. A com- 
monly used approach is based on second order statis- 
tics of the data where one extracts the directions in 
which the variance is maximized - also called the 
principal components of the data (Kirby and Sirovich, 
1990; Turk and Pentland, 1991 ). 

In this paper we adopt a different approach to di- 
mensionality reduction and classification, based on a 
combination of supervised and unsupervised learning 
(Intrator, 1991 ). We first automatically detect the eyes 
and the mouth in face image by using the General- 

ized Symmetry Transform, and use this information 
to normalize the images by affine transformation. We 
then proceed to classification. The supervised learning 
seeks projections that minimize mean squared error 
between the output of a feed-forward network and the 
class label of the image. The unsupervised learning 
seeks projections which demonstrate some interesting 
structure in the data essentially by measuring devia- 
tion from Gaussian distribution in the form of multi- 
modality. We conclude by comparing our method with 
principal components based recognition, and by dis- 
cussing the interpretability of our results. 

2. Facial preprocessing and normalization 

The main goal of the preprocessing step in our 
method is the reduction of the dimensionality problem 
by spatial normalization of the face image. We detect 
the eyes and mouth in face images using the General- 
ized Symmetry Transform, and then we warp the face 
image to a "standard" location using these points. 

The Generalized Symmetry Transform is described 
in (Reisfeld et al., 1995; Reisfeld et al., 1990). The 
main idea behind it is the following: starting with an 
edge map, every pixel is assigned a magnitude M that 
estimates the probability that there is a symmetric spa- 
tial configuration of edges around it, and an orienta- 
tion o~, that points in the direction of the main axis 
of symmetry around the pixel. Thus, for example, the 
pixel (or pixels) in the center of a circular, elliptic or 
rectangular area surrounded by edges, will be assigned 

a high value of M. This results in a Symmetry Map, 
where every pixel has a value, and the highest peaks 
of symmetry could be detected. The main difference 
between our method and other symmetry estimation 
methods (or even straight forward detection of cen- 
ters of gravity), stems from the fact that the symme- 
try map is computed prior to the segmentation stage, 
while most other methods are performed only when 
the contours of specific object are already available. 

The Generalized Symmetry Transform is context- 
free, in the sense that it operates directly on pixels and 
not on known objects. However, it is possible to in- 
corporate application specific information to enhance 
its performance. In this paper we have used the fol- 
lowing operations on face images in order to detect 
the location of the eyes and mouth: 

• Computation of the symmetry magnitude and ori- 
entation. This is the standard Symmetry operation de- 
scribed before. 

• Computation of the Radial Symmetry (RS)  (Re- 
isfeld et al., 1995). While the regular symmetry def- 
inition does not depend on the specific spatial orga- 
nization of the edge that contribute to the symmetry 
measure, this measure assigns high value to pixels that 
are surrounded by circular contours. 

• Detection of the highest peaks of the regular and 
radial symmetry in the image. 

• Detection of the midline of the face image by 
finding the peak in the autocorrelation function of the 
edge image. 

• Detection of the eyes and mouth by including ge- 
ometric considerations. This is carried out by finding 
the location of the highest peaks of the symmetry val- 
ues, with the assumption that the eyes should be on 
both sides of the midline, and the mouth should inter- 
sect it (Fig. 1 ). 

Once we have detected the location of the eyes and 
mouth, we warp the image by using affine transforma- 
tion based on 3 anchor points: the centers of the eyes 
and the mouth. The images are warped such that the 
eyes and center of mouth are translocated to prede- 
fined locations, thus forming a normalized grey-level 
image of the face (Fig. 2). We further try to reduce 
the variability by considering the gradient of these im- 
ages, to compensate for variable lighting conditions. 



N. Intrator et al./ Pattern Recognition Letters 17 (1996) 67-76 69 

i i ~ ! i i i i i i i i i ! i ! i i ~ !  ~ i ; i  

!:i:i:i:i:i;i:i~i:~i:~,:i:i:i:~ ?,: :::::::::::::::::::::::::::::::::::::: 

iii~iiiiiiiiiii!~!!::i iii: :: : : : ! iiiii #iii'iiiiiiiiiii!iil 

i!!ii!ii:!ii:!iiiiiiiiiiill ! ii i : i!]!ili!!!:!:i!iiiiiiii!!!:iiii~ !!~!ili 

Fig. 1. Locating facial features. Top left to bottom right: An image, the highest peaks of the symmetry magnitude, the highest peaks of 
RS, the midline and the features after applying geometric constraint. 
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Fig. 2. Normalization transformations. Left to right: Original image; its warping; gradient of the warped image. 
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Fig. 3. A hybrid EPP/PPR neural network (EPPNN). The unsupervised learning rule is applied to the hidden layer units only. 

3. The feature extraction/classification 

We have employed several variations of the fre- 
quently used feed-forward artificial neural network for 
classification. We have chosen to use feed-forward ar- 
tificial neural networks due to their ability to cope with 
very high-dimensional data, thus making them excel- 
lent candidates to perform recognition from pixel val- 
ues. The class of functions that can be approximated 
by a back-propagation type network is very large. 
This architecture (with an unlimited number of pro- 
jections) can uniformly approximate arbitrary contin- 
uous functions on compact sets, as well as their deriva- 
tives (Hornik et al, 1990). The ability to approximate 
a function and its derivatives will be used below for 
model interpretability. 

The error is propagated backwards to the previous 
(hidden) layer for modification of its synaptic weights 
(projections). The single hidden layer architecture is 
of the form 

d 

j k=l 

where cr is an arbitrary (fixed) bounded monotone 
function. The form 

d 

/ k=l 

is more suitable for classification tasks. Since this 
method can approximate any continuous function, 
great care should be taken so that the variance of the 
estimated weights is small, and the model does not 
"overfir' the training data (see (Geman et al., 1991 ) 
for discussion). This is often done using some form 
of complexity regularization such as weight decay 
(see (Weigend et al., 1991 ) for review). 

The performance of a single back-propagation net- 
work can be easily enhanced by training several differ- 
ent networks and averaging their result (Lincoln and 
Skrzypek, 1990). On this network ensemble, we have 
used a hybrid training method (Intrator, 1991). This 
method is based on a formulation that combines unsu- 
pervised (exploratory) methods for finding structure 
(extracting features) and supervised methods for re- 
ducing classification error. The unsupervised training 
portion is aimed at finding features such as clusters. 
The supervised portion is aimed at finding features that 
minimize classification error on the training set. The 
combination of both methods may give better gener- 
alization performance (under "good" a priori assump- 
tions about the structure of the data). The application 
of the hybrid training in a feed-forward neural network 
is done by modifying the learning rule of the hidden 
units to reflect the additional constraints (Fig. 3). 

The unsupervised feature extraction which we used, 
is based on the biologically motivated BCM neuron 
(Bienenstock, 1982). This method essentially seeks 
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clusters in the data distributionby seeking multimodal- 
ity in the projected distribution via a robust measure 
that is based on the third and second order statistics 
of the data. 

3.1. The unsupervised constraint 

The network implementation described below can 
find several projections in parallel while retaining its 
computational efficiency. It was found to be applica- 
ble for extracting features from very high dimensional 
vector spaces (Intrator and Gold, 1991 ). 

Below is a brief description of the unsupervised por- 
tion of the network (see (Intrator and Cooper, 1991 ) 
for details.) The activity of neuron k in the network is 

ck = ~ xiwi~ + wok. 

The inhibited activity and threshold of the kth neuron 
are given by 

j4=k 

The threshold O~t is the point at which the modifica- 
tion function ¢ changes sign. The function ¢ is given 
by 

¢(c ,  ~M) = c ( c  - ~ M ) .  

The risk (projection index) for a single neuron is given 
by 

R ( W k  ) = _ _ { I  -3 I 2 ~2 -gE[ck] -- ~E [Ck] }. 

The total risk is the sum of each local risk. The neg- 
ative gradient of the risk that leads to the synaptic 
modification equations is given by 

awij 

cgt 

k4~j 

This last equation is an additional penalty to the en- 
ergy minimization of the supervised network. Note 
that there is an interaction between adjacent neurons 
in the hidden layer. In practice, the stochastic version 
of the differential equation can be used as the learn- 
ing rule. In the results reported here, a feed-forward 

architecture with a single hidden layer of 12 units was 
used in all the experiments. Training was done us- 
ing the back-propagation algorithm (Rumelhart et al., 
1986) for the supervised part and using the projection 
pursuit learning (Intrator and Cooper, 1991) for the 
unsupervised part. 

For comparison, we also report classification results 
based on other classification techniques. 

The calculation of significance of the object fea- 
tures for recognition was done via a newly introduced 
method for interpreting neural networks which is de- 
scribed elsewhere (Intrator and Intrator, 1993). This 
method extends the interpretability associated with lin- 
ear or logistic regression to feed-forward neural net- 
works. 

4. Experimental methodology 

We have used a subset of the MIT Media Lab 
database of face images, courtesy of Turk and Pent- 
land (1991). Previous results using the same prepro- 
cessing and dimensionality reduction using receptive 
fields and radial basis function networks have been 
described in (Edelman et al., 1992). 

The database we used contained 27 instances of 
each of 16 different persons. The images were taken 
under varying illumination and camera location. Of 
the 27 images, 17 were randomly chosen for each per- 
son to be used in training, while the remaining 10 
were used for testing. The images were preprocessed 
as described in Section 2 namely, the eyes and mouth 
were transformed to standard locations via the sym- 
metry transformation. The size of the warped image 
was 40 × 60 pixels, the eyes locations at ( 13, 27) and 
(27, 27), and the mouth location at (20, 44). The pro- 
cessed images are shown in Fig. 4; on the left, a rep- 
resentation of each of the 16 faces is shown, and on 
the right 16 instances of a single face are presented 
to demonstrate the variability between instances of a 
single image. 

5. Results and discussion 

We have performed many experiments aiming at 
analyzing different components of the face recognition 
scheme. First, we describe the main building blocks 
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Fig. 4. One normalized image of each class (left) and the variability within normalized subjects for a single face (left) 

of our recognition scheme, and then we proceed with 
the more refined and unique methods which further 
improved the results. We start with a discussion on the 
image background of  the Turk and Pentland (1991) 
database. 

5.1. Preprocessing 

Contribution of the facial background 
The faces in the Turk and Pentland data-set are 

part of a larger picture that contains some background 
scenery usually a laboratory room of some sort. Gen- 
erally, the facial background should have a negative 
effect on recognition performance due to its high vari- 
ability. However, in this particular data-set, it appears 
that different subjects were photographed at different 
places, thus the background such as a corner of  a black- 
board, picture on the wall etc., was common to the 
same subject but not to all of  them. The positive effect 
of the image background on recognition results is best 
demonstrated in Table 1 which includes classification 
results using one nearest neighbor classifier. Perfor- 
mance on the full images without any preprocessing is 
already very good. However, this performance drops 
sharply when the image background is removed, and 
only slightly when the faces are removed. 

Table 1 
Effect of the background on nearest neighbor classification. Suc- 
cess ratio is given using the number of images correctly classified 
and their percentage 
Preprocessing type Success ratio 
Full image 156/160 97.50% 
No background 115/160 71.88% 
No face 154/160 96.25% 

Contribution of the image warp 
Once the image background is removed we are left 

with the facial image only of  a fixed size. The image 
warp, i.e., the affine transformation which takes the 
eyes and tip of  mouth to a fixed location, has now a 
strong effect on recognition performance. To account 
for varying light source locations, we also normalized 
the images so that the mean gradient of pixel intensi- 
ties is zero in all directions. The effect of  image-warp 
transformation and gradient normalization on nearest 
neighbor classification results is exhibited in Table 2. 
Classification results were very sensitive to the classi- 
fication scheme. For example, the gradient normaliza- 
tion was helpful in recognition via nearest neighbor 
classification, but not needed for the neural network 
classification schemes. It was surprising to find that 
three nearest neighbors performed much worse that 
one nearest neighbor (Tables 3, 5), suggesting that 
even after the removal of  background and image nor- 



N. Intrator et al. / Pattern Recognition Letters 17 (1996) 67-76 73 

Table 2 
Nearest neighbor performance on the warped faces (with no back- 

ground) 
Warp Gradient Success ratio 
No No 115/160 71.88% 
No Yes 118/160 73.75% 
Yes No 131 / 160 81.88% 
Yes Yes 147/160 91.88% 

Table 3 
The effect of classification method on the removed-background 
images with warping and gradient normalization 
Classifier Success ratio 
1 N N  147/160 91.88% 
3 NN 83/160 51.88% 
RBF 147/160 91.88% 

malization, the variability between images of the same 
class was still large enough, so that under simple Eu- 
clidean metric, there were closer neighbors from other 
classes. The implication of this finding is that another 
transformation was needed to reduce the dimension- 
ality to a more invariant image representation. Earlier 
work with Radial Basis Function (RBF) classifica- 
tion (Edelman et al., 1992) produced similar results 
to one nearest neighbor scheme on the warped images 
(Tables 3, 5). 

5.2. Principal component extraction 

Table 4 
One nearest neighbor classification using varying number of  prin- 
ciple components extracted from 17 images for each person, with- 
out background, with warping and gradient 
Number of Success ratio 

eigenvectors 
1 29/160 18.13% 
5 115/160 71.88% 

20 142/160 88.75% 
40 150/160 93.75% 
50 152/160 95.00% 
62 151/160 94.38% 

Table 5 
Various classification techniques using 17 learned images for a 
person, without background, with warping and gradient for 44 
eigenvectors 
Classifier Success ratio 
I NN 152/160 95.00% 
3 NN 99/160 61.88% 
RBF 152/160 95.00% 

Table 6 
Classification error on a test set from the Turk/Pentland database. 
Average is done on 5 networks. Figure of merit is calculated as 
100 - rejections -- 10 x substitutions. 
Method Success Figure 

(%) of merit (%) 
Back-Propagation 96.72 4- 0.31 73.36 4- 13.43 
Hybrid BCM/BP 96.044- 0.96 71.144- 17.33 
Averaged Back-Propagation 98.75 96.3 
Averaged Hybrid BCM/BP 99.38 98.1 

ality reduction based on neural network approaches. Due to the success of principal components for face 
recognition (Kirby and Sirovich, 1990; Turk and Pent- 
land, 1991 ), we have studied the classification per- 
formance based on projections onto a varying number 
of principal components extracted from the data (PC 
features). In all cases, the principal components were 
the eigenvectors of the covariance matrix of the pixel 
correlations with highest eigenvalues. Nearest neigh- 
bor performance under the various preprocessing de- 
scribed above, is given in Table 4 for a varying number 
of PC features. The extraction of features via principal 
components did not eliminate the strong dependency 
on the number of nearest neighbors (Table 5) however 
improved the results compared with the original im- 
ages (Table 3), suggesting that the image data repre- 
sentation is redundant, and that dimensionality reduc- 
tion, such as the one done by projecting onto the prin- 
cipal components, can reduce the error to a half, while 
reducing the representation from 40 x 60 dimensions 
to 44. In the next section we study the classification 
performance achieved by a much stronger dimension- 

5.3. Neural network classification 

Training neural networks was described in Sec- 
tion 3. Classification results are summarized in Ta- 
ble 6. We first give results of the images obtained 
after eliminating the background and leaving an im- 
age of 60 x 40 pixels. The last two lines in the table 
correspond to results obtained by averaging over the 
outputs of 5 networks before producing the classifica- 
tion results. This network ensemble average method 
can simply be considered as reducing the variance 
of the network outputs (considered as random vari- 
ables) by summing over an ensemble of networks 
(Lincoln and Skrzypek, 1990). This technique has 
been shown to be a good stabilizer for neural network 
results (Breiman, 1992). 

Often the cost of making a mistake (substitution 
error) is larger than the cost of no decision (rejection). 
In digit recognition, a frequent classification measure 
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suitable in such cases is the figure o f  merit, in which 
the cost of substitution is 10 times the cost of rejection. 
The figure of merit, s, is calculated as 

s = 100 - rejections - 10 × substitutions. 

Two points are worth mentioning in the results. 
First, as is often found, network ensemble reduces 
classification error. The results of networks trained 
with additional bias constraints in the form of BCM 
(Intrator and Cooper, 1991; B ienenstock, 1982) are 
intriguing; While the mean performance of networks 
trained with additional (bias) constraints, which are 
supposed to seek structure in the form of multi- 
modality, is slightly worse compared to networks 
that were not trained with such constraints, the en- 
semble performance of such networks yields better 
performance. These results are best explained by the 
bias/variance trade-off (see (Geman et al., 1991) 
for review); the effort to control the bias via bias 
constraints, increases the variance in single networks, 
however, the ensemble network averaging does not 
affect the bias, but reduces the variance leading to an 
overall improvement in classification results. An indi- 
cation of the increased variance can be seen in Table 6 
by the increased standard deviation of the results for 
the hybrid method. These results complement a differ- 
ent set of experiments which tried to study the effect 
of variance constraints on feed-forward neural net- 
works. In that work, variance constraints in the form 
of weight decay (Weigend et al., 1991) were used 
in a real-world character recognition problem. While 
performance of single networks improved on average, 
the performance of the network ensemble was worse 
than the performance of an ensemble of networks 
that were not trained using variance constraints. This 
is because the variance control via weight decay in- 
troduced bias which could not be removed by the 
network ensemble. 

5.4. Interpretability o f  the networks 

Fig. 5 shows a hidden unit representations of a 
plain back-propagation network (left) and of a hy- 
brid BCM/Back-propagation (right) each taken from 
one of the corresponding networks. The different net- 
works had various initial conditions and various rel- 
ative strength of the unsupervised contribution. Al- 
though a total of 12 features were extracted, only 7 

of the projections are different, which gives the sur- 
prising result that an efficient dimensionality reduc- 
tion can give good classification performance of 16 
different faces using only 7 features. 

Fig. 6 presents another way to interpret the results of 
either network. The mean derivative with respect to the 
inputs for each of the 16 persons is shown. This form 
of interpretation is very useful when considering the 
network architecture as a non-linear regression func- 
tion approximation. In this case it indicates which parts 
of the image are most useful in improving the classi- 
fication results, (the white areas) and which parts are 
mostly contributing to classification errors (the dark 
areas). There are various robustification issues related 
to the fact that the models which a network converges 
to are not unique. The full details of the method are 
described in (Intrator and Intrator, 1993). The images 
presented in Fig. 6 give the relative importance of parts 
of the images for the recognition of that specific proto- 
type. The extreme parts of the image (both negative - 
dark, and positive - bright) indicate the important fea- 
tures. Notice that the head outline, eyes and mouth are 
more salient on the Hybrid BCM/BP method (right) 
than on the BP method (left). This is more consis- 
tent with psychophysical experiments (Davis et al., 
1978; Fraser and Parker, 1986) that show that more at- 
tention is devoted to prominent facial features such as 
eyes and mouth. Such interpretability method may be 
useful for human psychophysics studies, and for pos- 
sible comparison between human and machine recog- 
nition, and for the study of object features. 

5.5. Summary 

We have presented a system for face recognition 
that addresses several of the important issues in robust 
recognition: 

• Location variability is addressed by the ability of 
the generalized symmetry transform to locate anchor 
points in the image and thus shift the image to a fixed 
location. 

• The warping of the image using affine transfor- 
mation such that the eyes and mouth are mapped to 
standard locations reduces variability between images, 
thus reducing the number of prototypes needed for 
training, and helps to overcome viewpoint variability. 

• The use of neural network classification reduces 
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Fig. 5. Features extracted using Back-Propagation Network (left) and features extracted using a hybrid BCM/Back-Propagation Network 
(right). 
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Fig. 6. The significance of the features extracted by using a Back-Propagation Network (left) and by using a Hybrid BCM/Back-Propagation 
Network (right). 

dimensionality of  image representation and improves 
recognition performance. 

• The use of  ensemble of  networks improves recog- 
nition performance and reduces substitution errors. 

• The use of  BCM feature extraction, further im- 
proves recognition and reduces rejections for zero sub- 
stitution errors. 

Further  work remains  in s tudying the scaling prop- 
erties of  artificial neural  networks to large data-sets of 
faces. 
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