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Classification of Seismic Signals by
Integrating Ensembles of Neural Networks

Yair Shimshoni and Nathan Intrator

Abstract—We examine a classification problem in which seismic the regional seismicity and for seismic hazard assessment,
waveforms of natural earthquakesare to be distinguished from  constructing a reliable automatic method for selecting the
waveforms of man-madeexplosions _ . signals of the natural events is crucial for efficient seismic

We present anintegrated classification machinglCM), which is . o
a hierarchy of artificial neural networks (ANN's) that are trained rgsearch. MO,St of the work dpne thus far on this classifica-
to classify the seismic waveforms. In order to maximize the tion problem is concerned with regional events and nuclear
gain of combining the multiple ANN’s, we suggest construction explosions with magnitudes around 4 on the Richter scale,
of a redundant classification environment (RCE) that consists sych as that in [3] and [7], rather than with local events and

of several “experts” whose expertise depends on the different ., entional explosions at near distances (magnitsdes),
input representations to which they are exposed. In the proposed

scheme, the experts are ensembles of ANN, trained on different although these are the majority of the art|f|C|§1I event_s being
Bootstrap replicas. We use various network architectures, dif- recorded. Many of the methods that appear in the literature
ferent time—frequency decompositions of the seismic waveforms, [8], [9] are based on geophysical parametric models that need
and various smoothening levels in order to achieve an RCE. A explicit information to be extracted or estimated by the analyst
confidence measure for the ensemble’s classification is deflnedand, thus, are very difficult to be fully automated. Usually,
based on the agreement (variance) within the ensembles, and an S L2
algorithm for a nonlinear integration of the ensembles using this the_ methods are based or! local characterl_stlcs of the seismic
measure is presented. activity rather than proposing general solutions.

An implementation on a data set of 380 seismic events is The signal space formed by the seismic waveforms is very
described, where the proposed ICM had classified correctly 92% h|gh dimensional and when dea"ng with weak local events,

of the testing signals. The comparison we made with classical\ye paye to face also a low signal-to-noise ratio due to the low
methods indicates that combining a collection of ensembles of

ANN’s can be used to handle complex high dimensional classifi- S|gr1al energy. The nonhomogenepus_crust of the earth a”‘? the
cation problems. various source mechanisms of seismic events cause the signal

. I - space to be complex and nonstationary.
Index Terms—Averaging, bootstrap, classification, combining . .
estimators, ensembles. In Section II, we specify a model based on ensembles of
ANN'’s that can be applied for automated classification of
all kinds of seismic events including weak local events in
|. INTRODUCTION any geographical region. The model is data-driven and does
E EXAMINE a two-class classification problem innot require prior geophysical information or any intervention
which seismic recordings ofatural earthquakes are to of @ human analyst. A multiexpert scheme is designed to
be distinguished from the recordings aftificial explosions. handle the low energy and nonstationary nature of the signals.
This classification problem began to draw attention in the dafven a recorded signal, we use different decompositions
of the cold war, when seismologic recordings were used & its frequency spectrum in order to produce a class label
trace nuclear test explosions [13][‘] recent years, researcherd.€., natural or artificial event. Section lll elaborates on the
have addressed this problem using various disciplines ottiégprocess and implementation details followed by evaluation
than classic seismologic methods, like artificial intelligencand results in Section IV.

[4], pattern recognition [5], [6] and artificial neural networks Although it is implemented here on seismic classification,
(ANN’s) [7], [8]. the proposed model is a general-purpose classification scheme
The vast majority of the recorded seismicity in most courihat can be applied to a wide range of signal classification
tries is artificial (i.e., man-made events like quarry blastBroblems with two classes, whereas problems with more than

mine explosions, military activity, road constructions, etc.Jwo classes require only slight changes.

As the natural events are more important for the analysis of
Il. THE MODEL
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the best single candidate. In the neural network and machinéAnother method that uses multiple classifiers in a sequen-
learning literature, there are several methods for combinitigl training scheme is boosting [20], [21]. In this method,
estimators, and the questions involved with this topic—suethich is typically suitable for very large training sets like in
aswhat types of estimators to combine ahdw to combine optical character recognition (OCR) problems, each classifier
them—have recently been getting considerable attention. is trained on patterns that have been filtered by the previous
A well-known branch of the combined models containglassifier. Thus, the result is a combination of classifiers that
methods like adaptive mixture of experts (AME) [10] andvere trained on statistically different data sets in a sequential
hierarchical mixture of experts (HME) [11], which are bottprocess.
based on thelivide-and-conqueapproach, where a mixture of A more general framework for combining multiple estima-
experts competes to gain responsibility in modeling the outpidis is “stacked generalization” [22], where each estimator is
in a portion of the input space. The system’s output is obtaing@ined with a different subset of the data, and the optimal
as a linear combination of the experts’ output, where thgymbination is estimated using cross-validation methods. A
weights are computed as a parametric function of the inputs f¢mulation of this method for regression estimators was
a gating module. The underlying probabilistic model is basgflesented in “stacked regression” [23] and compared with
on the assumption of mutual exclusivity, i.e., a single expesiher methods in [17].
is responsible for each data point. In the mixture models like gagging is a method that produces an aggregated estimator
AME and HME, the different experts are usually trained on gsing bootstrap replicas of the training data [1]. It is reported
single data set simultaneously by minimizing a combined CQgf pe yseful whenever the estimator is unstable, i.e., when
function. The final combination of the experts is determined Qyaryrhing the training set can cause significant changes in the
the gating module that is constructed during the same trainiggnsirycted classifier. Notice that this condition corresponds to
session. When training all the experts on the same data set Wifli requirement mentioned earlier of maximum independence

the same data representation, the dependence of errors aMQABng the experts. Several ways were suggested for making
experts is high, thus diminishing their collective contributiory,, experts less dependent; one example is to inject noise

A different aspect of the multiple model concept is introauring the training, as in smooth bootstrap [24].
duced by using a committee .Of cIaSS|f!ers, wh|cr'1'are aISOSince the search for an optimal classifier is tied with the
called ensemblg12], [13]. Consider a trained classifier as %earch for an optimal data representation, i.e., an optimal

realization of the generic model trained on the given Olatf’flansformation of the input signals w.r.t the classification

Thus, different data sets would yield different realization§ask at hand, it is advisable to examine and possibly use
all of which are members of thepbst training distribution ore than oryle signal representation. In order to maximize

OT the possible solut|0ns: As the solution space S gene_:ram/e information extracted from the example data and the gain
highly degenerate and includes many local minima, it i

; . Gf combining multiple classifiers, we suggest to construct a
more robust to use a sample from this solution space (i.e. e : )

. . redundant classification environment (RCE), which allows for
ensemble of estimators) rather than a single representaﬂv& . . .

. different signal representations to supply a wide coverage of
[14]. The ensemble of classifiers can be averaged to prodtg e .
. . S € effective feature space.
an aggregated classifier, or any linear combination of the
realizations can be U_S_Ed' . L B. Creating a Redundant Classification Environment
When all the classifiers give similar results, the accuracy . ] . ]

of their combined classification depends largely on their bias The hierarchical scheme that is p,roposed, is based on
due to the bias-variance tradeoff [15]. Whenever the bi§XPerts that are ensembles of ANN's, each of which is
of a generic model is high, the multiple classifications Ssociated with a specific setting of data representation and

when the bias is small and the variance is high, we cdigined on different subsets of the data. Each ensemble is

expect the ensemble to disagree whenever the input sigrfédned using the same data representation, i.e., a unique
are ambiguous. In such cases, the ensemble’s result, i.e., ttig—frequency decomposition and smoothening level of the
aggregated classification, will have the same bias but a redud@@it signals. The network architecture (number of hidden
variance. Hence, combining multiple classifiers can elimina#its) is also fixed for all members in an ensemble. The
the need to regularize overfitted models with high variané@dundancy is pronounced even further, as we use various
[16]. Moreover, the classification confidence can be evaluateé@mbinations of time—frequency decompositions, smoothening
from the variance that represents the agreement within te¥els, and network architectures to create and train sev-
ensemble, where signals with high classification variance &l such ensembles. The different training conditions yield
treated with suspicion. relatively independent classifiers that might produce differ-

Estimating the optimal combination of the experts shoulkeht classification results given an ambiguous signal. The
be done in a robust way, i.e., by averaging or cross validatitnegrated classification machindCM) that is formulated
techniqgues rather than by parametric estimation based on tigxt integrates the different ensembles in this classification
same training data [17]. It has been shown that in order fenvironment and produces a final classification that achieves
the combination of experts to be optimal, the experts shodetter generalization performance than the single classifying
be made as independent as possible [2], [18], [19]. components (see the results in Section V).
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CLASS LABEL a specific data representatioh Details on the replication of
Natural Event (1,0} {0.1) Artificial Event meBdata into bootstrap sample sets [25] are given in Section
All the networks in an ensemble share the same data repre-
Output Layer — % sentation and the same network architecture. pieeliction-
wi1 w21 ‘. valueof an ensemble w.r.t. a signalis defined as the average
\ over all theprediction-valuef the participating networks, as
__ HiddenLayer @ in the “bagging” method [1]
b ENS 1 J NET b
' y @D = 5 > w (| DY), (2)
\ b=1

G @ @) In @ 3) The Integrated Prediction ValueA collection (K) of
put Layer A A A / A
" Pre-Processed Seismic Signal ensembles, which use different input representations, i.e.,
' o ' _ time—frequency decompositions or smoothening levels, and
Fig. 1. Feed-forward neural network with input dimensionalityand one - gigtarent network architectures (number of hidden units) form
hidden layer withH units and two output units as used for classification in . . . L.
the ICM. the ICM shown in Fig. 2. The integratgatediction-valueof

the ICM w.r.t. a signak: is defined as

C. The Integrated Classification Machine y*(x) = Z afr(2)yENS () (3)
The ICM is constructed of a hierarchy of classifiers, as kek

shown in Fig. 1. The smallest building block of .the ICM is dvhereqy, is a prior reliability measure of théth ensemble,
neural network known as the feedforward multilayer percegpich can be determined from the training data or assumed
tron with sigmoidal activation fu_nctlons’.(c) = (1/(14+e°); using prior knowledge (otherwisey, = (1/K)). The second

see Fig. 1). All networks are trained to predict the class label ofy,e 3, (1) is a posterior classification confidence measure
a given seismic signal (Section I1I-C gives the training detailsh 4t js specific to each signal and is discussed in the next
As mentioned, we use several representations for the iNRUl.ion. Both measures are normalized and determine together

signals; thus, the input layer of the neural networks in the ICM| strength of the vote of ensemblein the classification
has different dimensionaliti€gV) according to the respective . mittee of signatr.

input representation used. The hidden layer can contain various
numbers(H) of sigmoidal units, and the output layer contain
two sigmoidal units. ST o
1) The Network’s Prediction ValueThe desired output of ~The seismic signals of the artificial and natural classes
the networks for a given signal can be eitfjer0} for natural are separated along the high-dimensional input space in a
events or{0,1} for artificial events. The sigmoidal outputVery nonsmooth manner; thus, it is reasonable to assume
units of the trained networks will produce continuous valudbat incorrect classifications will occur more often for signals

in the range of 0-1 according to the network We|ghts located in the V|C|n|ty of decision boundaries. The dlﬁlCUlty
in classifying a given signal can be measured by its distance

A Measuring the Classification Confidence

. H N from these boundaries. Unfortunately, in a high-dimensional
O =0 ZWW Zwiixi +wio | + Wio nonlinear input space, as in the current situation, it is not
=1 j=1 realistic to estimate these boundaries explicitly. In order to
=12 (1) detect signals with ambiguous class membership and to rank

. . . t?e different ensembles by their accuracy of classification, we
Let us define the (signed) difference of the two Outpl.h , ,
X L 5 - ave constructed a confidence measure for the ensemble’s clas-
unitsy = (O* — O?) as theprediction-valueof the network. _..°~ ; : : ; .
) ..~ sification. This posterior confidence is based on the variance
Hence,y € [-1,1], and the predicted class label is given X e
! L e of the networks’prediction-value
by thresholdingy at zero assigning the positive values to the
class ofnatural events_and negatives to the (?Iassadiflu_al CONF™5(z) = [VAR (5T (2))] ! (4)
events. Each network is trained @hrepeated triald,changing
only the initial random weights. We define theediction-value wherey™ T (z) is the network’sprediction-value The CONF
of the network component in the ICM w.r.t. a signalas score represents the amount of “agreement” among all the
the averageprediction-valuey(z) of theseT training trials participating networks in the ensemble [2], [14]. When the
yNET (1) = (1/T) L, w(z). bias of the networks is high, such a measure will not convey
2) The Ensemble’s Prediction Valud&Each ensemble is athe desired confidence score, i.e., when all members agree on
collection of B networks, where each network is trained on oriinie same wrong class. In our work, we are dealing with neural
of the B replicas of the original data seb’b = 1,---, B (for networks with high input dimension and reasonable capacity.
21n our implementation]” = 5. Moreover, neural networks are conS|dere_d unstable est|mfators
3\We used 30 bootstrap sets, which is less than suggested ifi425)0) [11 and are known to sgffer more fro.rr_1 variance than from bias.
but was found to be sufficient. Still, one should examine the classification results carefully to
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Clasg Label can use the ensemblesediction valuey®¥5(z) as the basis
for the weighting or decide the strength of the votes using the
o egrated classification confidence CONFS(z) [26].
We have used a nonfixed weighting strategy that is a

ok ¥ LD

dynamic ‘winner takes all selection. In order to integrate

Level I the different ensembles in the ICM for specificsignal z,
Ensenble 1 Ensemble k| -~ T- - Ensenble K all classifiers (ensembles) are ranked, and the optional
f // f is selected. The ranking is by the overall reliability of the
! / classifiers, and the selection is based on the classification
L A 1 || L ’I" / confidence CONEY3(z) supplied by the ensembles along
\ N \\\\\Rem”m“"’" r 7 _ 4 with their classification (see Fig. 2). This approach, which
it @ emtion & will be elaborated upon in the next section, is different from

the linear nonfixed weighting that was suggested by [26]
Fig. 2. Integrated classification machine. Several representations of fig combining ANN's, where all classifiers participate in the
waveform are fed into different ensembles, then integrated to produce the ﬁE?J'mmittee with WeightS inversely proportional to the variance
classification. (In level I, the regular arrows are the ensembles’ prediction . =~ .~ . .
values, and the dashed arrows are the attached confidence values). (which is similar to the CONF values used here but estimated
in a different way as they use single ANN classifiers rather

. . . than ensembiles).
check whether there is a correlation between the confldenceBy applying this method, we aim to exploit both the

scores and the errors of the combined classification. robustness of the aggregated classification of the ensembles

o _ - and the adaptiveness of our integration strategy, which selects
E. Combining the Hierarchy of Classifiers the most suitable ensemble for each signal out of the entire

The ICM shown in Fig. 2 is a hierarchy of classifiers wittlassification environment.
two levels of combining multiple classifiers. In the first level,
for each ensembleB networks are combined using simple=. Competing Rejection Algorithm (CRA)

averaging to construct an aggregated ensemble classificatiogenera"y, a signal is said to be rejected by a classifier

(2). These networks are in fact multiple realizations of ¢ some measure representing the quality of its classification
same classifier trained on different bootstrap samples. ThiSes not fall below a predefined threshold. Obviously, the
method for combining estimators is called "bagging” (Sefigher the threshold, the more signals will be rejected, and
Section 1I-A). o _ ~_thus, the smaller the misclassification rate will be over the

The second level of combining multiple classifiers in thgsmaining unrejected signals. We present an algorithm that
ICM is the integration of ensembles into the final cIass|f|cat|oF|319r]corrns a sequence of classifications by polling the group
(3)- When integrating the ensembles, a decision must be made - cjassifiers w.r.t. the signal at hand. Each classifier
with regard to the strength of the “vote” of each ensemble @nsemple), in turn, can either classify or reject the signal.

the classification of a given signal i.e., the(x)'s in (3) The main motivation is based on the observation that some
must be estimated. In order to do that, we can apply fixeehssifiers perform globally better than others. Nevertheless,
weighting methods like simple averaging of the ensemblegqassifiers can outperform “superior” classifiers on a local

as we have done in the first level, or apply least-squargssis and, thus, should be given the opportunity to compete
combination with nonnegativity constraint [23]. Finally, priory,q possibly “steal” a classification whenever the signal was
weights can be used as well to combine the ensembles "f‘eﬂected by those “superior” classifiers.

fixed manner. Uunlike the network integration into ensembles|, order to implement this idea, a prior reliability ranking

at _the firs_t level, wher_e each network is the same apart frgfp the classifiers has to be set, and a rejection criterion has
being trained on a different subset of the data, in level Yo pe gefined. The rejection is done by thresholding the
it is less likely that a fixed weighting will produce bettelgnfidence measure CoﬁlifS(x) (4), i.e., a classification is
classification results thaall single ensembles. There mightrejected when its confidence value is lower than iject-

be some ensembles that use inferior data representationgnftshold Each ensemblé has its own threshold, depending

less suitable model architectures, which will have disturbing, jis accuracy and variability that fixes the minimum level
effects on the weighted result. In practice, we have noticed that ~onfidence “allowed” for its classifications. Theject-

for fixed weighting methods like the ones mentioned beforg,resholdis calculated as a certain upper percentile of the

the integrated classification results often were worse than {shfigence scores COl@ﬁs(a:) of an unlabeled data s&* as
best participating classifier (ensemble).

Given a low signal-to-noise ratio and nonstationarity of Reject-Thresholdy,
the signal space, along with shortage of training data, it is = percentile{ CONF*(z), Reject-Rater}.  (5)
furthermore desirable not to decide on the integration coeffi-
cients, based on the characteristics of the currently availableThereject-rateof a classifier represents its global credibility
data set. Therefore, we suggest using the signab find and can be determined from the performance on training data
the optimal integration of its own “classification committee,br by using subjective information. In the simple case, all
namely, to apply a nonfixed weighting of the classifiers. Orensembles are considered to have the same credibility, and
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horizontal axis is recording time in seconds (The sampling rasé i/ ). STD (unit) of the data set. (The reflection of the mean spectra is caused by
the similar size of the classes in the data set.)

a uniform reject-rate is set (for example, the upper 20%
percentile). When all classifiers reject a signal, it can be eithefpresentations (denot/1, W3, W1Q) The first frequency
“globally rejected” or classified by theiltimate classifier decomposition is made on a single window of 2048 samples
which is optionally predefined by the user. The global rejectiaftarting from the signal's onset. The second is based on
rate cannot be determined by the user and is usually mugiee windows, each with 1024 samples and 384 overlapping
smaller than the singlesject-rates samples. For the last representation, we have used ten windows
Notice that this selection algorithm and the whole ICMf 256 samples and 32 overlapping. The size of those windows
structure is easily scalable, and no retraining is required whgnd their overlapping defines thiene—frequencyesolution of
new classifiers are added. It is also flexible in the sense that itfi@ representation. Notice that we preferred to keep all three
straightforward to incorporate other types of experts (includingpresentations about the same dimensionality. Obviously, if
human ones), as long as they produce suitptgdiction-value the segmentation in time is finer, then the spectral decom-

and CONF value. position will get coarser. However, we can also enlarge the
overlapping factor; thus, larger windows can be used, and finer
[ll. | MPLEMENTATION FOR SEISMIC CLASSIFICATION spectral resolution is gained at the expense of less locality
in the time representation. In such a case, some resolution
A. Preprocessing the Seismic Signals w.r.t. the changes through time is still partially maintained,

The proposed ICM was implemented on a comprehensigit then, we pay the crucial cost of a great expansion in the
data set consists of 380 seismic events, which includes aq}\lmensmnahty of the representation, which is undesirable in
the natural local earthquakes that occurred from January 1984 case, as it amplifies thedrse of dimensionalityf28].
to June 1993 inside an area of 22500%in the north part  After the FFT was applied on a window of samples, it
of Israel. A similar number of artificial explosion events wergonsists of frequen_cy coefficients that represc_ant t_he amP',"
randomly sampled from the same spatio-temporal window. Al{de of the respective frequency components in this specific
events were recorded by a vertical component short-peri§gdow- As the seismic power spectra show a fast decay of
seismometer (station JVI of the Israeli Seismic Network). TH'€r9y: it was more appropriate to usdogarithmic scale,
recorded signals are bandpass filtered to a frequency bfych also has a smoothening effect on the signals. In the
(0.2-12.5 Hz) and transmitted via FM telemetry to the statiow3 and W10 representations, .the transformed yvmdows were
where they are digitized with sampling rate of 50 Hz using cpncatenated to fqrm the final input r(.apresenta.uon. The signals
12-bit A/D converter (see Fig. 3). All events have magnituddter the log scaling were standardized making each of the
M, < 2.7, whereas 77% of the events are below 2.0, and tHimensions (frequency coefficients) zero-mean with variance
mean magnitude is 1.53. equal one unit. Fig. 4(a) shows the standardized means for

The recorded seismic signals are mixed with several typestBiB two classes of th@/l representation (dime= 1024). The

noise, such as station background noise and telecommunicafipProcessed signals contain more than 1000 dimensions and

interferences. The underground path through which the seisrfl€ Nardly smooth. Before training any classifier on the data
waves travel (on their way from the source to the seismomet&fl: W€ smoothen it (thus reducing its dimension) by taking
also has a considerable effect on the waveform. A givéie averages of a sliding window.

recorded signal includes 8000 samples on average, about half® have applied four levels of smoothening, achieving

of which consist of the actual seismic event, whereas the rQQf“I dimensionalities of 333, 127{ 75, and 31. (Fig. 4 shows
are recorded before and after the event for synchronizatiflf €lass means after smoothening). The nature of the pre-
with other seismometers. We cut those samples by detectffgcess procedure done here (FFT, scaling, standardization,
the signal onset (with an automatic procedymnd taking a and smoothening) is straightforward and is common in many

fixed size window 0f~2000 samples starting at the onset. Th@ther domains of problems like speech recognition, etc. We
window is about 45 s of recording [27]. We have used thrdgight use sophisticated preprocessing of the seismic signals to

spectral decompositions of the waveforms for our basic inpﬁguahze the effect of several factors on the .recorded signals,
i.e., the distance from the source to the seismometer or the
4The seismic data set is available via ftp://www.math.tau.acsiimsh/

publseismic-data/ event's magnitude [7]. We have decided to stay within the
5Details on our detection algorithm are on p. 5 of ftp://www.math.tau.ac.igpmmon preprocess procedure$ in order to avoid an _add'tlonal
~shimsh/pubrefsiresults.ps.Z bias in our model and to keep it as general as possible.
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B. Constructing the Bootstrap Sample Sets rate over the TEST-SET, which corresponds to the TRAIN-

Eight input representations were selected for the originaF | ©n Which the network was trained. The performance of
data setD (combining three time—frequency resolutions an@l €nsemble can be evaluated by averaging the performance

four smoothening levels). For each one, we have constructddts 30 networks, and the final classification can be evaluated
a data seD,,r = 1,---,8, containingV; = 191 earthquakes accordingly by averaging over the ensembles. This simple
and N, = 189 explosions Taking the distributionFp of the bottom-up evaluation does not take into consideration the

given data as a plug-in estimator of the real distribution of tfg2MPinecclassification, which may improve the average result
dataF, we followed the bootstrap pairs technique [17]. [1]. This error evaluation is therefore used only as an indicator

The original data set was pseudo replicatBdtimes in for the ICM's error rate. , o
the following way: Let{I¢}" be sets of indices for the N the setting we defined, the misclassification rate (MCR)
two classesc = 1.2. CoznsztzrlactB bootstrap sample sets Of the combined ensembé@nnotbe measured over the whole
of size (N7 + N3) 7by sampling uniformly with repetitions data set because it will not be a pure cross-validated result.
from the two sets of indices, respectively [notice that botty order t(_) present a cros_s-validated error estimation that is
classes should be sampled separately to preserve the jASEe realistic than the simple average of the MCR's, we
probability P(c;) in the resulting replicated samples]. The&lassify each signak by combining only a subset of the
resultingB different TRAIN-SET's consist of 380 indices ande"Seémble, namely, only those networks that were trained on
are partially overlapping as they contain multiple appearanda@otstrap samples sets that did not contain the signal
of some indices (hence, they dwt contain about 36% of Denote this subset of networks as tt@ss-validated subset
the indices on average). The probability that an index will eV (@) correspond_lng to signak. It consists of B* <B
excluded from one replicated set of si2eis (N — 1/N)¥ networks (as described before, each signal was excluded from
asymptotically equals to 0.368. In our case, whefe — about 11 TRAIN-SET's). Now, we can produce a combined
191; N, = 189 and B = 30, the expected number of classification for each signal in the original data set, based

TRAIN-SET's (bootstrap sample sets) from which a sign@ the5” networks in the correspondingV'(z). The cross-
will be excluded is about 11. In other words, each replicatédiidatedprediction-valueis defined as

TRAIN-SET contains appro_ximately 240 distinct ind_ices. The NS () = 1 Z NET () (6)
remaining (unsampled) indices form a corresponding TEST- ¥ = B Yo .
SET for each of the3 TRAIN-SET’s. These sets ar®t used beCV(x)

in any part of the training process or model selection; they This estimate [25] is denoted agand is used in a weighted
are used only to evaluate the generalization performance@mbination with the apparent error (which is calculated
the model. over the original data set) to construct the 0.632 estimator
In conclusion, for each input representation, we have tlpg632 _ 0.632¢9 + 0.368 Err,,,. We think that in the
data setsD,. replicated into 30 couples of disjoint sets suckamework of trained neural networks, the 0.632 estimator
that D’ = TRAIN, U TEST,,b = 1,---,30. The sampled is still quite optimistic; therefore, we have used the paye
indices in each of those bootstrap sample sets are the same\fgfice that in a later work, the 0.632 estimator was refined
all D,’s, regardless of the representation; therefore, we c@fienable more freedom in choosing the weights of thg Err
accurately compare classifiers of different representations. and thee,, as a function of theelative overfitting rate[30].
As we are combining only a third of the available classifiers
C. The Networks’ Training Scheme in each ensemble and use the (possibly pessimistic) estimate
All the networks were trained using gradient-based least: W€ suggest that we should consider our reported evaluation
squares learning with the back-propagation algoritfjag]. of the ensembles’ perfqrmance (and, thus, of the whole ICM)
We used a fixed low leaming ratg — 0.001. The ini- @S &n upper bound of its true performance.
tializing weights were sampled from a uniform distribution
U[=0.1,0.1]. We used abatch-typetraining, and the number B. Comparing the Different Ensembles
of epochs was limited to 1000 in order to avoid exhaustive The ICM model we presented in this work was tested on a

learning of the training data. comprehensive seismic data set consists of 380 events. Fifteen
ensembles (30 networks each) were trained with five trials on
IV. RESULTS eight different input representations with various numbers of

hidden units (2250 ANN'’s in total). The data set along with
the complete results are available ¥ip [31].
_ . The results suggest that the most relevant factor is the
The performance estimates we used for comparison arghresentation, mainly, the time—frequency resolution as well
evaluation of the classifiers were based on cross-validatigg the smoothening level (input dimension). Out of the three
techniques [25]. The networks at the bottom of the ICNlme—frequency resolutions, the one with the single window
structure are evaluated by averaging d¥er 5 trials. A single 1 achieved the best results. This finding might suggest that
network’s performance is estimated via the misclassificatigfformation on the spectral changes through time has less

6We have used a customized version of TRAINBP function from the neural ” The 0.632 corresponds to the probability for a signal to be included in a
network toolbox of MATLAB 4.2. bootstrap sample set (see Section II-B).

A. Evaluation of Performance
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TABLE | TABLE I
MISCLASSIFICATION RESULTS FORDIFFERENT METHODS. LEFT: AVERAGES OF INTEGRATED AND NONINTEGRATED MISS-CLASSIFICATION RATES. THE FIRST
SINGLE CLASSIFIERS RIGHT: COMBINED CLASSIFICATION RESULTS CoLUMN CORRESPONDS TONONLINEAR INTEGRATION WITH THE COMPETING
(k-NN: k-NeEAREST NEIGHBOR, LDA: LINEAR DISCRIMINANT REJECTION ALGORITHM, THE SECOND COLUMN SHOwS THE RESULT
ANALYsIS, ANN: ARTIFICIAL FEED-FORWARD NEURAL NETWORK) WITH LINEAR INTEGRATION BASED ON VARIANCE, AND THE THIRD
CoLUMN REFERS TOFIXED UNIFORM AVERAGING. THE LAST THREE
Rep. Single Classifier Aggregated Classifier CoLUMNS SHow THE MCR FOR SINGLE (UNINTEGRATED) ENSEMBLES
TF | DIM )| ENN | LDA || ANN k-NN | LDA || ANN Integrated Machine Ensembles
w1 333 0.141 0.462 0.099 0.116 0.437 0.082
CRA VAR AVG W1-333 W3-375 W10-300
wi 127 0.137 | 0.215 0.100 0.116 | 0.174 0.087
0.079 0.095 0.095 0.082 0.097 0.113
w1 50 0.129 | 0.132 0.102 0.113 | 0.121 0.089
Wi 31 0.142 0.117 0.110 0.118 0.105 0.095

w3 | 375 i 0.156 | 0.467 |[ 0.104  0.137 | 0.392 || 0.097  the two classes. Thejection ratewas set to 20% for all three
w3 75 0.155 | 0.149 [[ 0.111 0.134 | 0.139 || 0.103 ensembles, and theejection thresholdswvere extracted from
the unlabeled data, as described in Section II-F.

Table Il shows MCR'’s for three integration methods. The
first is the competing rejection algorithm (CRA), which we
have presented, and the other methods of integration are

discriminant power. For all time—frequency resolutions, th\éariance-based weighting (VAR) as suggested by [26] and

larger models (higher input dimensionalities) yielded betté‘lnifﬁrm avelraginhg (AVS)‘ he b ble ;

results than models with smoothened data. This probably ed ressvts 3 OW_t at the e;st Ense_m €s gel;orn;]ance
occurred because of the lower bias of the large models 61ﬁtesgeratig:: wji:[h t'ﬂ; ENS?;ZG;';’;SG”U;;ELIQ%?;’& th?/eé znd
to their greater capacity [15]. The bias—variance calculati .

that appears in the complete results [31] showed that {0 spectral windowgW3-375, W10-300yhen the CRA was

massive averaging decreases the variance of the classifigﬁs?,d' Integration with the other two methods has failed to
thus eliminating the need for regularization. reach the performance of the best single ensemble.

Both for the single networks and for the aggregated ensem-
ble results, the preferred model are of a single spectral window V. CONCLUSIONS
wi using the higher input d|mens!onal|ty (DIM: 333). The . We have addressed the problem of seismic signal classi-
uncombined results (level I) are improved after aggregatl%n

(by the ensemble) by 10—20% on average, proving the ben C tion by constructing amntegrated classification machine
of averaging multiple ANN's ' ?I M), which consists of a collection of neural networks’

ensembles. A redundant classification environment (RCE) was
created, by which we tried to achieve a robust classification
for the noisy and nonstationary seismic signals.

We have compared our ANN ensemble with two classical Examining the classification results corresponding the dif-
methods using the same training and testing sets (the bootsfeapnt input representations, it appeared that there was no
sample sets) and under the same scheme of aggregating main in using more than a single spectral window for the
tiple classifiers. The classifiers tested wimnear discriminant nonintegrated classification. Nevertheless, when ensembles
and K -nearest neighborgwith severalK values). from different time-frequency resolution were integrated by

The results for the average misclassification rate (MCH)e competing rejection algorithm (CRA), there was a com-
of single classifiers (30 realizations) and for the aggregatptémentary affect yielding an improved performance.
classification are shown in Table |. The results A0dN and The main factor influencing the classification performance
k-NN are for the best among several valuesifand k, was the input representation used, namely, the time—frequency
respectively. The linear classifier was incapable of coping withsolution and the smoothening level. The best result for a
the larger models and did not show the same scalability as #irgle classifier was achieved using a single spectral window
neural network models. In general, one can see thate¢iieal W1 and low level of smoothening (DIM= 333).
networkclassifiers outperformed both the linear classifier and For all time—frequency resolutions, the larger models (higher

wio 300 0.191 0.484 0.125 0.176 0.471 0.111

w10 120 0.213 0.238 0.134 0.168 0.195 0.113

C. Comparison with Classical Methods

the K-NN classifier. input dimensionalities) yielded better results than models with
smoothened data.
D. Results for the Integrated Classification It seemed that the main contribution to the classification

grror was due to thédias of the classifiers, which is not

grouped the large models of the three timefrequency régiminated by the averagirfgSince the massive averaging
resentations, providing a wide time—frequency coverage. THzHUCeS the Cla55|f_|cat|on variance, it is advisable in a multiple
ensembles were ranked for the competing rejection algorittffiassifier model (like the ICM we have presented) to use
at the orderw1-333, W3-375, W10-3p@nd all three were _ _ _

ith six hidden units. theltimate classifiemvas set to baVi- The exact _b|as—_var|_ance 'calculanon can be found on p. 27 of the
with six > . results appendix, which is available from: ftp://www.math.tau.aesimsh/
333 and thus, all signals were eventually classified to one pib/refsiresults.ps.z

To test the performance of level Il of the ICM, we hav
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classifiers with larger capacity, thus giving us greater abilifg4] L. K. Hansen, C. Liisberg, and P. Salamon, “The error-reject trade-
to handle high-dimensional signals with lower bias.

Comparing the ANN with classical classification methodgs
shows that ANN classifiers are preferable for the problem at
hand over the LDA classifiers, which did not show the santé®!
scalability as the ANN models. ThE-N N classifier showed
some scalability but performed worse than the ANN for all7]
representations.

Improved performance was achieved by integrating ens
sembles of ANN trained on different data sets or input

representations using nonconstant weighting based on a cl[ellgg—

sification confidence. We have used the classification variarnee]
as a posterior confidence measure by which the CRA sele

the

optimal classifier for each signal. By applying such a

method, we aimed to exploit both the robustness of the
aggregated classification (level I) and the adaptiveness of
integration strategy (level Il). The integrated classification bjg3)

this method outperformed the nonintegrated models as well
as other integration methods like linear nonfixed weightin

24]

(also based on the variance) and uniform averaging of ttgs]

ensembles. The best overall result achieved was 92% of corrﬁg}

classifications on testing data.

The ICM model is a general framework and can be ap-
plied for other waveform classification problems. The higﬁm
performance achieved on the seismic classification at hand
(being based on data from one seismometer only), motivaiég
an implementation of the proposed method for classificatigsy,
of seismic events, which is a task still carried out by humans.
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