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Classification of Seismic Signals by
Integrating Ensembles of Neural Networks

Yair Shimshoni and Nathan Intrator

Abstract—We examine a classification problem in which seismic
waveforms of natural earthquakesare to be distinguished from
waveforms of man-madeexplosions.

We present anintegrated classification machine(ICM), which is
a hierarchy of artificial neural networks (ANN’s) that are trained
to classify the seismic waveforms. In order to maximize the
gain of combining the multiple ANN’s, we suggest construction
of a redundant classification environment (RCE) that consists
of several “experts” whose expertise depends on the different
input representations to which they are exposed. In the proposed
scheme, the experts are ensembles of ANN, trained on different
Bootstrap replicas. We use various network architectures, dif-
ferent time–frequency decompositions of the seismic waveforms,
and various smoothening levels in order to achieve an RCE. A
confidence measure for the ensemble’s classification is defined
based on the agreement (variance) within the ensembles, and an
algorithm for a nonlinear integration of the ensembles using this
measure is presented.

An implementation on a data set of 380 seismic events is
described, where the proposed ICM had classified correctly 92%
of the testing signals. The comparison we made with classical
methods indicates that combining a collection of ensembles of
ANN’s can be used to handle complex high dimensional classifi-
cation problems.

Index Terms—Averaging, bootstrap, classification, combining
estimators, ensembles.

I. INTRODUCTION

W E EXAMINE a two-class classification problem in
which seismic recordings ofnatural earthquakes are to

be distinguished from the recordings ofartificial explosions.
This classification problem began to draw attention in the days
of the cold war, when seismologic recordings were used to
trace nuclear test explosions [3].1 In recent years, researchers
have addressed this problem using various disciplines other
than classic seismologic methods, like artificial intelligence
[4], pattern recognition [5], [6] and artificial neural networks
(ANN’s) [7], [8].

The vast majority of the recorded seismicity in most coun-
tries is artificial (i.e., man-made events like quarry blasts,
mine explosions, military activity, road constructions, etc.).
As the natural events are more important for the analysis of
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the regional seismicity and for seismic hazard assessment,
constructing a reliable automatic method for selecting the
signals of the natural events is crucial for efficient seismic
research. Most of the work done thus far on this classifica-
tion problem is concerned with regional events and nuclear
explosions with magnitudes around 4 on the Richter scale,
such as that in [3] and [7], rather than with local events and
conventional explosions at near distances (magnitudes ),
although these are the majority of the artificial events being
recorded. Many of the methods that appear in the literature
[8], [9] are based on geophysical parametric models that need
explicit information to be extracted or estimated by the analyst
and, thus, are very difficult to be fully automated. Usually,
the methods are based on local characteristics of the seismic
activity rather than proposing general solutions.

The signal space formed by the seismic waveforms is very
high dimensional and when dealing with weak local events,
we have to face also a low signal-to-noise ratio due to the low
signal energy. The nonhomogeneous crust of the earth and the
various source mechanisms of seismic events cause the signal
space to be complex and nonstationary.

In Section II, we specify a model based on ensembles of
ANN’s that can be applied for automated classification of
all kinds of seismic events including weak local events in
any geographical region. The model is data-driven and does
not require prior geophysical information or any intervention
of a human analyst. A multiexpert scheme is designed to
handle the low energy and nonstationary nature of the signals.
Given a recorded signal, we use different decompositions
of its frequency spectrum in order to produce a class label
i.e., natural or artificial event. Section III elaborates on the
preprocess and implementation details followed by evaluation
and results in Section IV.

Although it is implemented here on seismic classification,
the proposed model is a general-purpose classification scheme
that can be applied to a wide range of signal classification
problems with two classes, whereas problems with more than
two classes require only slight changes.

II. THE MODEL

A. Combining Multiple Estimators

The lack ofa priori knowledge about the true underlying
model of the data in the seismic classification problem, like
in many other real-life problems, leads the practitioners to
examine various suboptimal classifiers. Different classifiers
can exploit various types and sets of features; hence, combin-
ing multiple estimators might yield better performance than
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the best single candidate. In the neural network and machine
learning literature, there are several methods for combining
estimators, and the questions involved with this topic—such
as what types of estimators to combine andhow to combine
them—have recently been getting considerable attention.

A well-known branch of the combined models contains
methods like adaptive mixture of experts (AME) [10] and
hierarchical mixture of experts (HME) [11], which are both
based on thedivide-and-conquerapproach, where a mixture of
experts competes to gain responsibility in modeling the output
in a portion of the input space. The system’s output is obtained
as a linear combination of the experts’ output, where the
weights are computed as a parametric function of the inputs by
a gating module. The underlying probabilistic model is based
on the assumption of mutual exclusivity, i.e., a single expert
is responsible for each data point. In the mixture models like
AME and HME, the different experts are usually trained on a
single data set simultaneously by minimizing a combined cost
function. The final combination of the experts is determined by
the gating module that is constructed during the same training
session. When training all the experts on the same data set with
the same data representation, the dependence of errors among
experts is high, thus diminishing their collective contribution.

A different aspect of the multiple model concept is intro-
duced by using a committee of classifiers, which are also
called ensemble[12], [13]. Consider a trained classifier as a
realization of the generic model trained on the given data.
Thus, different data sets would yield different realizations,
all of which are members of the “post training” distribution
of the possible solutions. As the solution space is generally
highly degenerate and includes many local minima, it is
more robust to use a sample from this solution space (i.e.,
ensemble of estimators) rather than a single representative
[14]. The ensemble of classifiers can be averaged to produce
an aggregated classifier, or any linear combination of the
realizations can be used.

When all the classifiers give similar results, the accuracy
of their combined classification depends largely on their bias
due to the bias-variance tradeoff [15]. Whenever the bias
of a generic model is high, the multiple classifications of
its ensemble might all be wrong even if the variance is
low; then, no combination will help. On the other hand,
when the bias is small and the variance is high, we can
expect the ensemble to disagree whenever the input signals
are ambiguous. In such cases, the ensemble’s result, i.e., the
aggregated classification, will have the same bias but a reduced
variance. Hence, combining multiple classifiers can eliminate
the need to regularize overfitted models with high variance
[16]. Moreover, the classification confidence can be evaluated
from the variance that represents the agreement within the
ensemble, where signals with high classification variance are
treated with suspicion.

Estimating the optimal combination of the experts should
be done in a robust way, i.e., by averaging or cross validation
techniques rather than by parametric estimation based on the
same training data [17]. It has been shown that in order for
the combination of experts to be optimal, the experts should
be made as independent as possible [2], [18], [19].

Another method that uses multiple classifiers in a sequen-
tial training scheme is boosting [20], [21]. In this method,
which is typically suitable for very large training sets like in
optical character recognition (OCR) problems, each classifier
is trained on patterns that have been filtered by the previous
classifier. Thus, the result is a combination of classifiers that
were trained on statistically different data sets in a sequential
process.

A more general framework for combining multiple estima-
tors is “stacked generalization” [22], where each estimator is
trained with a different subset of the data, and the optimal
combination is estimated using cross-validation methods. A
formulation of this method for regression estimators was
presented in “stacked regression” [23] and compared with
other methods in [17].

Bagging is a method that produces an aggregated estimator
using bootstrap replicas of the training data [1]. It is reported
to be useful whenever the estimator is unstable, i.e., when
perturbing the training set can cause significant changes in the
constructed classifier. Notice that this condition corresponds to
the requirement mentioned earlier of maximum independence
among the experts. Several ways were suggested for making
the experts less dependent; one example is to inject noise
during the training, as in smooth bootstrap [24].

Since the search for an optimal classifier is tied with the
search for an optimal data representation, i.e., an optimal
transformation of the input signals w.r.t the classification
task at hand, it is advisable to examine and possibly use
more than one signal representation. In order to maximize
the information extracted from the example data and the gain
of combining multiple classifiers, we suggest to construct a
redundant classification environment (RCE), which allows for
different signal representations to supply a wide coverage of
the effective feature space.

B. Creating a Redundant Classification Environment

The hierarchical scheme that is proposed, is based on
experts that are ensembles of ANN’s, each of which is
associated with a specific setting of data representation and
network architecture. The redundancy is pronounced within
these ensembles, which are collections of ANN realizations
trained on different subsets of the data. Each ensemble is
trained using the same data representation, i.e., a unique
time–frequency decomposition and smoothening level of the
input signals. The network architecture (number of hidden
units) is also fixed for all members in an ensemble. The
redundancy is pronounced even further, as we use various
combinations of time–frequency decompositions, smoothening
levels, and network architectures to create and train sev-
eral such ensembles. The different training conditions yield
relatively independent classifiers that might produce differ-
ent classification results given an ambiguous signal. The
integrated classification machine(ICM) that is formulated
next integrates the different ensembles in this classification
environment and produces a final classification that achieves
better generalization performance than the single classifying
components (see the results in Section IV).
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Fig. 1. Feed-forward neural network with input dimensionalityN and one
hidden layer withH units and two output units as used for classification in
the ICM.

C. The Integrated Classification Machine

The ICM is constructed of a hierarchy of classifiers, as
shown in Fig. 1. The smallest building block of the ICM is a
neural network known as the feedforward multilayer percep-
tron with sigmoidal activation functions: ;
see Fig. 1). All networks are trained to predict the class label of
a given seismic signal (Section III-C gives the training details).
As mentioned, we use several representations for the input
signals; thus, the input layer of the neural networks in the ICM
has different dimensionalities according to the respective
input representation used. The hidden layer can contain various
numbers of sigmoidal units, and the output layer contains
two sigmoidal units.

1) The Network’s Prediction Value:The desired output of
the networks for a given signal can be either for natural
events or for artificial events. The sigmoidal output
units of the trained networks will produce continuous values
in the range of 0–1 according to the network weights

(1)

Let us define the (signed) difference of the two output
units as theprediction-valueof the network.
Hence, , and the predicted class label is given
by thresholding at zero assigning the positive values to the
class ofnatural events and negatives to the class ofartificial
events. Each network is trained onrepeated trials,2 changing
only the initial random weights. We define theprediction-value
of the network component in the ICM w.r.t. a signalas
the averageprediction-value of these training trials

2) The Ensemble’s Prediction Value:Each ensemble is a
collection of networks, where each network is trained on one
of the replicas3 of the original data set (for

2In our implementation,T = 5:
3We used 30 bootstrap sets, which is less than suggested in [25](� 200)

but was found to be sufficient.

a specific data representation). Details on the replication of
the data into bootstrap sample sets [25] are given in Section
III-B.

All the networks in an ensemble share the same data repre-
sentation and the same network architecture. Theprediction-
valueof an ensemble w.r.t. a signalis defined as the average
over all theprediction-valuesof the participating networks, as
in the “bagging” method [1]

(2)

3) The Integrated Prediction Value:A collection of
ensembles, which use different input representations, i.e.,
time–frequency decompositions or smoothening levels, and
different network architectures (number of hidden units) form
the ICM shown in Fig. 2. The integratedprediction-valueof
the ICM w.r.t. a signal is defined as

(3)

where is a prior reliability measure of theth ensemble,
which can be determined from the training data or assumed
using prior knowledge (otherwise, ). The second
value is a posterior classification confidence measure
that is specific to each signal and is discussed in the next
section. Both measures are normalized and determine together
the strength of the vote of ensemblein the classification
committee of signal

A. Measuring the Classification Confidence

The seismic signals of the artificial and natural classes
are separated along the high-dimensional input space in a
very nonsmooth manner; thus, it is reasonable to assume
that incorrect classifications will occur more often for signals
located in the vicinity of decision boundaries. The difficulty
in classifying a given signal can be measured by its distance
from these boundaries. Unfortunately, in a high-dimensional
nonlinear input space, as in the current situation, it is not
realistic to estimate these boundaries explicitly. In order to
detect signals with ambiguous class membership and to rank
the different ensembles by their accuracy of classification, we
have constructed a confidence measure for the ensemble’s clas-
sification. This posterior confidence is based on the variance
of the networks’prediction-value

CONF VAR (4)

where is the network’sprediction-value. The CONF
score represents the amount of “agreement” among all the
participating networks in the ensemble [2], [14]. When the
bias of the networks is high, such a measure will not convey
the desired confidence score, i.e., when all members agree on
the same wrong class. In our work, we are dealing with neural
networks with high input dimension and reasonable capacity.
Moreover, neural networks are considered unstable estimators
[1] and are known to suffer more from variance than from bias.
Still, one should examine the classification results carefully to
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Fig. 2. Integrated classification machine. Several representations of the
waveform are fed into different ensembles, then integrated to produce the final
classification. (In level II, the regular arrows are the ensembles’ prediction
values, and the dashed arrows are the attached confidence values).

check whether there is a correlation between the confidence
scores and the errors of the combined classification.

E. Combining the Hierarchy of Classifiers

The ICM shown in Fig. 2 is a hierarchy of classifiers with
two levels of combining multiple classifiers. In the first level,
for each ensemble, networks are combined using simple
averaging to construct an aggregated ensemble classification
(2). These networks are in fact multiple realizations of the
same classifier trained on different bootstrap samples. This
method for combining estimators is called “bagging” (see
Section II-A).

The second level of combining multiple classifiers in the
ICM is the integration of ensembles into the final classification
(3). When integrating the ensembles, a decision must be made
with regard to the strength of the “vote” of each ensemble in
the classification of a given signal, i.e., the ’s in (3)
must be estimated. In order to do that, we can apply fixed
weighting methods like simple averaging of the ensembles,
as we have done in the first level, or apply least-squares
combination with nonnegativity constraint [23]. Finally, prior
weights can be used as well to combine the ensembles in a
fixed manner. Uunlike the network integration into ensembles
at the first level, where each network is the same apart from
being trained on a different subset of the data, in level II,
it is less likely that a fixed weighting will produce better
classification results thanall single ensembles. There might
be some ensembles that use inferior data representations or
less suitable model architectures, which will have disturbing
effects on the weighted result. In practice, we have noticed that
for fixed weighting methods like the ones mentioned before,
the integrated classification results often were worse than the
best participating classifier (ensemble).

Given a low signal-to-noise ratio and nonstationarity of
the signal space, along with shortage of training data, it is
furthermore desirable not to decide on the integration coeffi-
cients, based on the characteristics of the currently available
data set. Therefore, we suggest using the signalto find
the optimal integration of its own “classification committee,”
namely, to apply a nonfixed weighting of the classifiers. One

can use the ensemble’sprediction value as the basis
for the weighting or decide the strength of the votes using the
classification confidence CONF [26].

We have used a nonfixed weighting strategy that is a
dynamic “winner takes all” selection. In order to integrate
the different ensembles in the ICM for aspecificsignal ,
all classifiers (ensembles) are ranked, and the optimalone
is selected. The ranking is by the overall reliability of the
classifiers, and the selection is based on the classification
confidence CONF supplied by the ensembles along
with their classification (see Fig. 2). This approach, which
will be elaborated upon in the next section, is different from
the linear nonfixed weighting that was suggested by [26]
for combining ANN’s, where all classifiers participate in the
committee with weights inversely proportional to the variance
(which is similar to the CONF values used here but estimated
in a different way as they use single ANN classifiers rather
than ensembles).

By applying this method, we aim to exploit both the
robustness of the aggregated classification of the ensembles
and the adaptiveness of our integration strategy, which selects
the most suitable ensemble for each signal out of the entire
classification environment.

F. Competing Rejection Algorithm (CRA)

Generally, a signal is said to be rejected by a classifier
if some measure representing the quality of its classification
does not fall below a predefined threshold. Obviously, the
higher the threshold, the more signals will be rejected, and
thus, the smaller the misclassification rate will be over the
remaining unrejected signals. We present an algorithm that
performs a sequence of classifications by polling the group
of classifiers w.r.t. the signal at hand. Each classifier
(ensemble), in turn, can either classify or reject the signal.
The main motivation is based on the observation that some
classifiers perform globally better than others. Nevertheless,
classifiers can outperform “superior” classifiers on a local
basis and, thus, should be given the opportunity to compete
and possibly “steal” a classification whenever the signal was
rejected by those “superior” classifiers.

In order to implement this idea, a prior reliability ranking
of the classifiers has to be set, and a rejection criterion has
to be defined. The rejection is done by thresholding the
confidence measure CONF (4), i.e., a classification is
rejected when its confidence value is lower than thereject-
threshold. Each ensemble has its own threshold, depending
on its accuracy and variability that fixes the minimum level
of confidence “allowed” for its classifications. Thereject-
threshold is calculated as a certain upper percentile of the
confidence scores CONF of an unlabeled data set as

-

percentile CONF - (5)

Thereject-rateof a classifier represents its global credibility
and can be determined from the performance on training data
or by using subjective information. In the simple case, all
ensembles are considered to have the same credibility, and
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(a) (b)

Fig. 3. (a) Natural earthquake event. (b) Artificial explosion event. The
horizontal axis is recording time in seconds (The sampling rate is50 Hz ).

a uniform reject-rate is set (for example, the upper 20%
percentile). When all classifiers reject a signal, it can be either
“globally rejected” or classified by theultimate classifier,
which is optionally predefined by the user. The global rejection
rate cannot be determined by the user and is usually much
smaller than the singlereject-rates.

Notice that this selection algorithm and the whole ICM
structure is easily scalable, and no retraining is required when
new classifiers are added. It is also flexible in the sense that it is
straightforward to incorporate other types of experts (including
human ones), as long as they produce suitableprediction-value
and CONF value.

III. I MPLEMENTATION FOR SEISMIC CLASSIFICATION

A. Preprocessing the Seismic Signals

The proposed ICM was implemented on a comprehensive
data set4 consists of 380 seismic events, which includes all
the natural local earthquakes that occurred from January 1990
to June 1993 inside an area of 22 500 kmin the north part
of Israel. A similar number of artificial explosion events were
randomly sampled from the same spatio-temporal window. All
events were recorded by a vertical component short-period
seismometer (station JVI of the Israeli Seismic Network). The
recorded signals are bandpass filtered to a frequency band
(0.2–12.5 Hz) and transmitted via FM telemetry to the station,
where they are digitized with sampling rate of 50 Hz using a
12-bit A/D converter (see Fig. 3). All events have magnitude

, whereas 77% of the events are below 2.0, and the
mean magnitude is 1.53.

The recorded seismic signals are mixed with several types of
noise, such as station background noise and telecommunication
interferences. The underground path through which the seismic
waves travel (on their way from the source to the seismometer)
also has a considerable effect on the waveform. A given
recorded signal includes 8000 samples on average, about half
of which consist of the actual seismic event, whereas the rest
are recorded before and after the event for synchronization
with other seismometers. We cut those samples by detecting
the signal onset (with an automatic procedure5) and taking a
fixed size window of samples starting at the onset. The
window is about 45 s of recording [27]. We have used three
spectral decompositions of the waveforms for our basic input

4The seismic data set is available via ftp://www.math.tau.ac.il/�shimsh/
pub/seismic-data/

5Details on our detection algorithm are on p. 5 of ftp://www.math.tau.ac.il/
�shimsh/pub/refs/results.ps.Z

Fig. 4. Class means on the left are for standardized log power-spectrum (dim
= 1024) of W1. On the left the class means for the smoothened representation
(dim = 127). Notice that the differences between classes are smaller than the
STD (unit) of the data set. (The reflection of the mean spectra is caused by
the similar size of the classes in the data set.)

representations (denoteW1, W3, W10). The first frequency
decomposition is made on a single window of 2048 samples
starting from the signal’s onset. The second is based on
three windows, each with 1024 samples and 384 overlapping
samples. For the last representation, we have used ten windows
of 256 samples and 32 overlapping. The size of those windows
and their overlapping defines thetime–frequencyresolution of
the representation. Notice that we preferred to keep all three
representations about the same dimensionality. Obviously, if
the segmentation in time is finer, then the spectral decom-
position will get coarser. However, we can also enlarge the
overlapping factor; thus, larger windows can be used, and finer
spectral resolution is gained at the expense of less locality
in the time representation. In such a case, some resolution
w.r.t. the changes through time is still partially maintained,
but then, we pay the crucial cost of a great expansion in the
dimensionality of the representation, which is undesirable in
our case, as it amplifies the “curse of dimensionality” [28].

After the FFT was applied on a window of samples, it
consists of frequency coefficients that represent the ampli-
tude of the respective frequency components in this specific
window. As the seismic power spectra show a fast decay of
energy, it was more appropriate to use alogarithmic scale,
which also has a smoothening effect on the signals. In the
W3 and W10 representations, the transformed windows were
concatenated to form the final input representation. The signals
after the log scaling were standardized making each of the
dimensions (frequency coefficients) zero-mean with variance
equal one unit. Fig. 4(a) shows the standardized means for
the two classes of theW1 representation (dim ). The
preprocessed signals contain more than 1000 dimensions and
are hardly smooth. Before training any classifier on the data
set, we smoothen it (thus reducing its dimension) by taking
the averages of a sliding window.

We have applied four levels of smoothening, achieving
final dimensionalities of 333, 127, 75, and 31. (Fig. 4 shows
the class means after smoothening). The nature of the pre-
process procedure done here (FFT, scaling, standardization,
and smoothening) is straightforward and is common in many
other domains of problems like speech recognition, etc. We
might use sophisticated preprocessing of the seismic signals to
equalize the effect of several factors on the recorded signals,
i.e., the distance from the source to the seismometer or the
event’s magnitude [7]. We have decided to stay within the
common preprocess procedures in order to avoid an additional
bias in our model and to keep it as general as possible.
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B. Constructing the Bootstrap Sample Sets

Eight input representations were selected for the original
data set (combining three time–frequency resolutions and
four smoothening levels). For each one, we have constructed
a data set , containing earthquakes
and explosions. Taking the distribution of the
given data as a plug-in estimator of the real distribution of the
data , we followed the “bootstrap pairs” technique [17].

The original data set was pseudo replicatedtimes in
the following way: Let be sets of indices for the
two classes Construct bootstrap sample sets
of size by sampling uniformly with repetitions
from the two sets of indices, respectively [notice that both
classes should be sampled separately to preserve the class
probability in the resulting replicated samples]. The
resulting different TRAIN-SET’s consist of 380 indices and
are partially overlapping as they contain multiple appearances
of some indices (hence, they donot contain about 36% of
the indices on average). The probability that an index will be
excluded from one replicated set of size is
asymptotically equals to 0.368. In our case, where

and , the expected number of
TRAIN-SET’s (bootstrap sample sets) from which a signal
will be excluded is about 11. In other words, each replicated
TRAIN-SET contains approximately 240 distinct indices. The
remaining (unsampled) indices form a corresponding TEST-
SET for each of the TRAIN-SET’s. These sets arenot used
in any part of the training process or model selection; they
are used only to evaluate the generalization performance of
the model.

In conclusion, for each input representation, we have the
data sets replicated into 30 couples of disjoint sets such
that TRAIN TEST The sampled
indices in each of those bootstrap sample sets are the same for
all ’s, regardless of the representation; therefore, we can
accurately compare classifiers of different representations.

C. The Networks’ Training Scheme

All the networks were trained using gradient-based least-
squares learning with the back-propagation algorithm6 [29].
We used a fixed low learning rate The ini-
tializing weights were sampled from a uniform distribution
U We used abatch-typetraining, and the number
of epochs was limited to 1000 in order to avoid exhaustive
learning of the training data.

IV. RESULTS

A. Evaluation of Performance

The performance estimates we used for comparison and
evaluation of the classifiers were based on cross-validation
techniques [25]. The networks at the bottom of the ICM
structure are evaluated by averaging over trials. A single
network’s performance is estimated via the misclassification

6We have used a customized version of TRAINBP function from the neural
network toolbox of MATLAB 4.2.

rate over the TEST-SET, which corresponds to the TRAIN-
SET on which the network was trained. The performance of
an ensemble can be evaluated by averaging the performance
of its 30 networks, and the final classification can be evaluated
accordingly by averaging over the ensembles. This simple
bottom-up evaluation does not take into consideration the
combinedclassification, which may improve the average result
[1]. This error evaluation is therefore used only as an indicator
for the ICM’s error rate.

In the setting we defined, the misclassification rate (MCR)
of the combined ensemblecannotbe measured over the whole
data set because it will not be a pure cross-validated result.
In order to present a cross-validated error estimation that is
more realistic than the simple average of the MCR’s, we
classify each signal by combining only a subset of the
ensemble, namely, only those networks that were trained on
bootstrap samples sets that did not contain the signal
Denote this subset of networks as thecross-validated subset

corresponding to signal It consists of
networks (as described before, each signal was excluded from
about 11 TRAIN-SET’s). Now, we can produce a combined
classification for each signal in the original data set, based
on the networks in the corresponding The cross-
validatedprediction-valueis defined as

(6)

This estimate [25] is denoted asand is used in a weighted
combination with the apparent error (which is calculated
over the original data set) to construct the 0.632 estimator7:
Err Err We think that in the
framework of trained neural networks, the 0.632 estimator
is still quite optimistic; therefore, we have used the pure
Notice that in a later work, the 0.632 estimator was refined
to enable more freedom in choosing the weights of the Err
and the , as a function of therelative overfitting rate[30].

As we are combining only a third of the available classifiers
in each ensemble and use the (possibly pessimistic) estimate

, we suggest that we should consider our reported evaluation
of the ensembles’ performance (and, thus, of the whole ICM)
as an upper bound of its true performance.

B. Comparing the Different Ensembles

The ICM model we presented in this work was tested on a
comprehensive seismic data set consists of 380 events. Fifteen
ensembles (30 networks each) were trained with five trials on
eight different input representations with various numbers of
hidden units (2250 ANN’s in total). The data set along with
the complete results are available viaftp [31].

The results suggest that the most relevant factor is the
representation, mainly, the time–frequency resolution as well
as the smoothening level (input dimension). Out of the three
time–frequency resolutions, the one with the single window
W1 achieved the best results. This finding might suggest that
information on the spectral changes through time has less

7The 0.632 corresponds to the probability for a signal to be included in a
bootstrap sample set (see Section III-B).
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TABLE I
MISCLASSIFICATION RESULTS FORDIFFERENT METHODS. LEFT: AVERAGES OF

SINGLE CLASSIFIERS. RIGHT: COMBINED CLASSIFICATION RESULTS.
(k-NN: k-NEAREST NEIGHBOR, LDA: L INEAR DISCRIMINANT

ANALYSIS, ANN: ARTIFICIAL FEED-FORWARD NEURAL NETWORK)

discriminant power. For all time–frequency resolutions, the
larger models (higher input dimensionalities) yielded better
results than models with smoothened data. This probably has
occurred because of the lower bias of the large models due
to their greater capacity [15]. The bias–variance calculation
that appears in the complete results [31] showed that the
massive averaging decreases the variance of the classifiers,
thus eliminating the need for regularization.

Both for the single networks and for the aggregated ensem-
ble results, the preferred model are of a single spectral window
W1 using the higher input dimensionality (DIM The
uncombined results (level I) are improved after aggregation
(by the ensemble) by 10–20% on average, proving the benefit
of averaging multiple ANN’s.

C. Comparison with Classical Methods

We have compared our ANN ensemble with two classical
methods using the same training and testing sets (the bootstrap
sample sets) and under the same scheme of aggregating mul-
tiple classifiers. The classifiers tested werelinear discriminant
and -nearest neighbors(with several values).

The results for the average misclassification rate (MCR)
of single classifiers (30 realizations) and for the aggregated
classification are shown in Table I. The results forANN and
- are for the best among several values ofand ,

respectively. The linear classifier was incapable of coping with
the larger models and did not show the same scalability as the
neural network models. In general, one can see that theneural
networkclassifiers outperformed both the linear classifier and
the - classifier.

D. Results for the Integrated Classification

To test the performance of level II of the ICM, we have
grouped the large models of the three time–frequency rep-
resentations, providing a wide time–frequency coverage. The
ensembles were ranked for the competing rejection algorithm
at the orderW1-333, W3-375, W10-300, and all three were
with six hidden units. theultimate classifierwas set to beW1-
333, and thus, all signals were eventually classified to one of

TABLE II
INTEGRATED AND NONINTEGRATED MISS-CLASSIFICATION RATES. THE FIRST

COLUMN CORRESPONDS TONONLINEAR INTEGRATION WITH THE COMPETING

REJECTION ALGORITHM, THE SECOND COLUMN SHOWS THE RESULT

WITH LINEAR INTEGRATION BASED ON VARIANCE, AND THE THIRD

COLUMN REFERS TOFIXED UNIFORM AVERAGING. THE LAST THREE

COLUMNS SHOW THE MCR FOR SINGLE (UNINTEGRATED) ENSEMBLES

the two classes. Therejection ratewas set to 20% for all three
ensembles, and therejection thresholdswere extracted from
the unlabeled data, as described in Section II-F.

Table II shows MCR’s for three integration methods. The
first is the competing rejection algorithm (CRA), which we
have presented, and the other methods of integration are
variance-based weighting (VAR) as suggested by [26] and
uniform averaging (AVG).

The results show that the best ensemble’s performance
(based onW1, dim ) was further improved by the
integration with the two inferior ensembles of the three and
ten spectral windows(W3-375, W10-300)when the CRA was
used. Integration with the other two methods has failed to
reach the performance of the best single ensemble.

V. CONCLUSIONS

We have addressed the problem of seismic signal classi-
fication by constructing anintegrated classification machine
(ICM), which consists of a collection of neural networks’
ensembles. A redundant classification environment (RCE) was
created, by which we tried to achieve a robust classification
for the noisy and nonstationary seismic signals.

Examining the classification results corresponding the dif-
ferent input representations, it appeared that there was no
gain in using more than a single spectral window for the
nonintegrated classification. Nevertheless, when ensembles
from different time-frequency resolution were integrated by
the competing rejection algorithm (CRA), there was a com-
plementary affect yielding an improved performance.

The main factor influencing the classification performance
was the input representation used, namely, the time–frequency
resolution and the smoothening level. The best result for a
single classifier was achieved using a single spectral window
W1 and low level of smoothening (DIM ).

For all time–frequency resolutions, the larger models (higher
input dimensionalities) yielded better results than models with
smoothened data.

It seemed that the main contribution to the classification
error was due to thebias of the classifiers, which is not
eliminated by the averaging.8 Since the massive averaging
reduces the classification variance, it is advisable in a multiple
classifier model (like the ICM we have presented) to use

8The exact bias–variance calculation can be found on p. 27 of the
results appendix, which is available from: ftp://www.math.tau.ac.il/�shimsh/
pub/refs/results.ps.Z
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classifiers with larger capacity, thus giving us greater ability
to handle high-dimensional signals with lower bias.

Comparing the ANN with classical classification methods
shows that ANN classifiers are preferable for the problem at
hand over the LDA classifiers, which did not show the same
scalability as the ANN models. The - classifier showed
some scalability but performed worse than the ANN for all
representations.

Improved performance was achieved by integrating en-
sembles of ANN trained on different data sets or input
representations using nonconstant weighting based on a clas-
sification confidence. We have used the classification variance
as a posterior confidence measure by which the CRA selects
the optimal classifier for each signal. By applying such a
method, we aimed to exploit both the robustness of the
aggregated classification (level I) and the adaptiveness of the
integration strategy (level II). The integrated classification by
this method outperformed the nonintegrated models as well
as other integration methods like linear nonfixed weighting
(also based on the variance) and uniform averaging of the
ensembles. The best overall result achieved was 92% of correct
classifications on testing data.

The ICM model is a general framework and can be ap-
plied for other waveform classification problems. The high
performance achieved on the seismic classification at hand
(being based on data from one seismometer only), motivates
an implementation of the proposed method for classification
of seismic events, which is a task still carried out by humans.

REFERENCES

[1] L. Breiman, “Bagging predictors,”Mach. Learn., vol. 24, pp. 123–140,
1996.

[2] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,”Advances Neural Inform. Process. Syst., vol. 7,
1995.

[3] R. S. Taylor, M. Denny, E. Vergino, and R. Glaser, “Regional discrim-
ination between NTS explosions and western US earthquakes,”Bull.
Seismic Soc. Amer., vol. 79, pp. 1142–76, 1989.

[4] C. Chiaruttini, V. Roberto, and F. Saitta, “Artificail intelligence tech-
niques in seismic signal interpretation,”Geophys. J. Int., vol. 98, pp.
265–73, 1989.

[5] M. Joswig, “Pattern recognition for earthquake detection,”Bull. Seismic
Soc. Amer., vol. 80, pp. 170–186, 1990.

[6] J. Wüster, “Discriminate of chemical explosions and earthquakes in
central Europe—A case study,”Bull. Seismic Soc. Amer., vol. 83, pp.
1184–1212, 1993.

[7] F. U. Dowla, S. Taylor, and R. Anderson, “Seismic discrimination
with artificial neural networks: Preliminary results with regional spectral
data,” Bull. Seismic Soc. Amer., vol. 80, pp. 1346–1373, 1990.

[8] P. S. Dysart and J. Pulli, “Regional seismic event classification at the
NORESS array: Seismological measurements and the use of trained
neural networks,”Bull. Seismic Soc. Amer., vol. 80, pp. 1910–1933,
1990.

[9] M. A. H. Hedlin, J. B. Minster, and J. A. Orcutt, “An automatic means
to discriminate between earthquakes and quarry blasts,”Bull. Seismic
Soc. Amer., vol. 80, pp. 2143–2160, 1990.

[10] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,”Neural Comput., vol. 3, no. 1, pp. 79–87,
1991.

[11] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the EM algorithm,”Neural Comput., vol. 6, pp. 181–214, 1994.

[12] L. K. Hansen and P. Salamon, “Neural networks ensembles,”IEEE
Trans. Pattern Anal. Machine Intell., vol. 12, pp. 993–1001, 1990.

[13] M. P. Perrone and L. N. Cooper, “When networks disagree: Ensemble
method for neural networks,” inNeural Networks for Speech and Image
Processing, R. J. Mammone, Ed. New York: Chapman-Hall, 1993.

[14] L. K. Hansen, C. Liisberg, and P. Salamon, “The error-reject trade-
off,” available via FTP from NeuroProse(archive.cis.ohio-
state.edu) , 1994.

[15] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias-variance dilemma,”Neural Comput., vol. 4, pp. 1–58, 1992.

[16] P. Sollich and A. Krogh, “Learning with ensembles: How over-fitting
can be useful,”Advances Neural Inform. Process. Syst., vol. 8, 1996,
to be published.

[17] M. LeBlanc and R. Tibshirani, “Combining estimates in
regression and classification,” available FTP from NeuroProse
(archive.cis.ohio-state.edu) , 1993.

[18] R. Meir, “Bias, variance and the combination of least squares estima-
tors,” Advances Neural Inform. Process. Syst., vol. 7, 1995.

[19] R. A. Jacobs, “Methods for combining experts’ probability assessments,”
Neural Comput., vol. 7, pp. 867–888, 1995.

[20] R. Schapire, “The strength of weak learnability,”Mach. Learn., vol. 5,
pp. 197–227, 1990.

[21] H. Drucker, C. Cortes, L. Jackel, Y. LeCun, and V. Vapnik, “Boosting
and other ensemble methods,”Neural Comput., vol. 6, pp. 1289–1301,
1994.

[22] D. H. Wolpert, “Stacked generalization,”Neural Networks, vol. 5, no.
2, pp. 241–259, 1992.

[23] L. Breiman, “Stacked regression,” Tech. Rep. TR-367, Dept. Statistics,
Univ. California, Berkeley, Aug. 1992.

[24] Y. Raviv and N. Intrator, “Bootstrapping with noise: An effective
regularization technique,”Connection Sci., vol. 8, pp. 355–372, 1996.

[25] B. Efron and R. J. Tibshirani,An Introduction to the Bootstrap. New
York: Chapman-Hall, 1993.

[26] V. Tresp and M. Taniguchi, “Combining estimators using nonconstant
weighting functions,”Advances Neural Inform. Process. Syst., vol. 7,
1995.

[27] Y. Shimshoni and N. Intrator, “Classification of seismic signals by
integrating ensembles of neural networks,” inProc. Int. Conf. Neural
Inform. Process.,Hong Kong, 1996.

[28] R. E. Bellman,Adaptive Control Processes. Princeton, NJ: Princeton
Univ. Press, 1961.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inPDP, vol. 1, D. E. Rumelhart
and J. L. McClelland, Eds. Cambridge, MA; MIT Press, 1986.

[30] B. Efron and R. Tibshirani, “Cross-validation and the bootstrap: Esti-
mating the error rate of a prediction rule,” Tech. Rep. TR-477, Dept.
Statistics, Stanford Univ., Stanford, CA, 1995.

[31] Y. Shimshoni, “Classification of seismic signals using ensem-
bles of neural networks—Results appendix,” 1995, available via
(ftp.math.tau.ac.il/pub/shimsh/results.ps.Z) .

Yair Shimshoni is a Ph.D. student at the com-
puter science department at Tel-Aviv University,
Tel-Aviv, Israel. His areas of interest include neural
computation and machine learning, classification
and prediction using methods for combining experts,
and automation of seismic data analysis.

Nathan Intrator received the Ph.D. degree from
Brown University, Providence, RI.

He currently holds positions at the Computer
Science Department, Tel-Aviv University, Tel-Aviv,
Israel, and at the Institute for Brain and Neural
Systems, Brown University. He has contributed
to the mathematical analysis of the Bienenstock,
Cooper, and Munro (BCM) theory and applied
his methods to various real-world applications in-
cluding speech and 3-D object recognition. His
areas of research include neural computation, high-

dimensional statistics, methods for controlling bias and variance of predictors,
combining experts and model discovery via neural networks.


