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Abstract 2. Methodology 

We introduce a hybrid recognitionlreconstruction archi- 
tecture that is suitable for recognition of images degraded 
by various forms of blur. This architecture includes an 
ensemble of feedTfonvard networks each of which is con- 
strained to reconstruct the inputs in addition to perform- 
ing classification. The strength of the constraints is con- 
trolled by a regularization parameter. Networks are trained 
on original as well as Gaussian-blurred images, so as to 
achieve higher robustness to different blur operators. 

Face recognition is used to demonstrate the proposed 
method and results are compared to those of classical un- 
constrained feed-jonuard architectures. In addition, the ef- 
fect of state-of-the-art restoration methods is demonstrated 
and it is shown that image restoration with the proposed 
hybrid architecture leads to the best and most robust results 
under various forms of blur. 

1. Introduction 

Image blur tums out to degrade recognition more than 
noise [ l l ,  2, 17, 91. Approaches to address recognition of 
blurred images can be divided into three groups: implicit, 
restoration and direct. Under the implicit approach, blur is 
not addressed during training and blurred images are tested 
as other degraded images. [23, 3, 171. Under the restora- 
tion approach, blurred images are restored before recogni- 
tion [22, 12, 91. The success of this approach is not obvi- 
ous since image restoration is an ill-posed inverse problem 
[4, 6, 181 and restored images contain artifacts. Under the 
direct recognition approach, blur is addressed explicitly in 
the recognition model [2, 13, 171. In particular, symmetric 
blur was studied [2]  and poor quality character images [ 131. 
In this paper, we propose a combined approach to address 
blurred face image recognition via an ensemble of recently 
introduced [ 171 hybrid recognition-reconstruction network 
ensembles which are trained on original and blurred images. 

2.1. Recognition/reconstruction networks 
and their ensembles 

Figure 1 presents the hybrid recognition/reconstruc- 
tion network architecture. This network attempts to im- 
prove the low dimensional representation by minimizing 
concurrently the mean squared error (MSE) of reconstruc- 
tion and classification outputs. The relative influence of 
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Figure 1. A single hidden layer drives both 
the classification output layer and the recon- 
struction. 

each of the output errors is defined by a trade-off param- 
eter X that is unknown a-priori. 

Under a Bayesian formulation this parameter is a hyper- 
parameter, therefore, one can integrate the network pre- 
dictions over it’s posterior distribution [lo, 161. In the 
same way integrating over the posterior distribution of the 
weights can be considered [5 ] .  A rough approximation 
of such integration leads to combining of suboptimal neu- 
ral networks to regression ensembles which classify by the 
Bayesian rule from an average over all ensemble members’ 
outputs. We consider three types of regression ensembles: 
U - unconstrained ensemble, corresponding to integration 
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over posterior weights and with fixed X = 0; R - recon- 
struction ensemble, including networks with different X pa- 
rameter and with learning started from fixed initial weights; 
J -joined ensemble, combining networks with different A 
parameters and different initial weights. 

2.2. Training with blurred images Table 1. Filter types used for image degrada- 
tion. 

Recognition of blurred images requires a substantial 
amount of training data processed by different blur oper- 
ators. Unfortunately, such data is not available, and to solve 
the problem, a-priori information about possible degrada- 

4. Image restoration 
tion transformations is imposed by adding extra Gaussian 
blurred images (with standard deviation ~7 = 2) to the train- 
ing set. The network is trained only on original images 
(method A) or on the additional blurred images while con- 
strained to reconstruct the non-blurred images (method B). 
This biases the hidden units to become insensitive to vari- 
ous blur operation and thus improves the results of the clas- 
sification system'. Three types of ensembles are studied 
for each of methods A,B: U, R and J. The number of net- 
works in the unconstrained ensemble (U) of methods A,B 
is equal to 6. Reconstruction ensembles (R) of methods 
A,B have been composed from networks with the trade-off 
parameter A, with values from [0, 0.31 with steps of 0.05. 
Ensemble performances are tested on images degraded by 
different blur operations in conjunction with additive noise 
and also on restored images. 

3. Image degradation 

Degradation process is often modeled as a space- 
invariant blurring with a convolution operator h and corrup- 
tion with additive noise n : g = h * f + n. Major causes 
of blurring are misfocus, camera jitter, object motion and 
atmospheric turbulence. They lead to a low pass operation. 
Of particular interest is blur with band-pass filter, that is 
a difference of Gaussians (DOG) filter. A third family of 
image filters is the high pass filter which leads to image 
sharpening. This is common in medical imaging, industrial 
inspection and military applications. 

Noise results from image sampling, recording, trans- 
mission, etc. In this paper we consider additive Gaussian 
white noise limiting it to be independent on each pixel, with 
zero mean and some variance ~ 7 .  Examples of images 
with different degradations are presented in Figure 2 and 
main filters that have been used in Table 1. For all filters 
their point spread functions in polar coordinate systems are 
given. We also use a root filter to enhance images. This 
nonlinear filter acts on image amplitudes in Fourier domain: 
a = A " ,  a < l .  

'An altemative training with reconstruction of blurred images to their 
copy led to slightly inferior results [ 161 and is not addressed here 

Image restoration refers to the problem of recovering an 
image from its blurred and noisy version using some a pri- 
ori knowledge of the degradation phenomenon and the im- 
age nature. It is well-known that restoration problem is an 
ill-posed problem [4, 6, 181, i.e. a small noise in the ob- 
served image results in an unbounded perturbation in the 
solution. This instability is often addressed by a regular- 
ization approach [20,7, 15, 14, 211 that includes restricting 
the set of admissible solutions and introducing some a pri- 
ori knowledge about the image and the degradation model. 
In the following sections, we briefly review the restoration 
techniques we have used in this work. 

4.1. MSE minimization and regularization 

Assuming the blur operator H is known, a natural cri- 
terion for estimating an original pixel image f from an ob- 
served pixel image g in the absence of any knowledge about 
noise, is to minimize the difference between the observed 
image and a blurred version of the restored image: 

minM(f) = min ) I  g - Hf 11'. (1) 

Often, gradient or conjugate gradient descent methods are 
used for M(f)  minimization [7, 151. An application of the 
gradient method to the minimization problem ( 1) produces 
the following iterative method: 

(2) 

When the blur matrix H is nonsingular and p is&sufficiently 
small, the iterative method converges to the f = H - l g .  
This solution is known as the inverse filter method. In 
the frequency domain, it corresponds to the following es- 
timation of the ideal image frequency response: F ( u ,  U) = 
G(u, v ) / H ( u ,  3). Motion or defocusing blur leads to a sin- 
gular matrix H. In this case, the above optimization method 
yields an iterative method that converges to a least square 
solution f+ = H + g  of (1) [7, 61, where H+ is the gener- 
alized inverse of matrix H. In the presence of noise, the 
iterative algorithm converges to f+ + H + n  and thus con- 
tains noise filtered by the pseudo-inverse matrix. Often, H 

f f 

f k + l  = fk + ,B(Htg - HtHfk). 
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is a low-pass filter, therefore, the noise is amplified and the 
obtained solution may be very far from the desired one. 

To overcome this sensitivity to noise, some a priori in- 
formation about the noise or the ideal image is often in- 
troduced as a quantitative constraint that replaces an ill- 
posed problem by a well-posed one. This regulariza- 
tion method [20, 151 has a functional minimization form: 
L(f) =I1 Hf - g ( I 2  +a ( 1  Cf [I2, where theregularization 
operator C is chosen to suppress the energy of the restored 
image in the high frequencies. This is equivalent to smooth- 
ing in the spatial domain. Since the H filter is often a low 
pass filter, the regularization operator C is taken to be a 
Laplacian in order to recover the smooth original image. A 
regularization parameter a may be known a priori or esti- 
mated, but theoretically it is inversely proportional to the 
signal to noise ratio (SNR). 

Although regularization of the MSE criterion with 
smoothness constraint 1 1  Cf 1 1  is the basis for most of the 
work in image restoration, it often leads to unacceptable 
ringing artifacts around sharp intensity transitions. This ef- 
fect is due to image blurring around lines and edges. The 
ways to address this problem include adaptive image reg- 
ularization [7] and considering total variation (TV) regu- 
larization [14]. These methods are generalized to both un- 
known filter and image in [21, 11 and refered to as blind 
deconvolution. 

corruption 

(a) ”Clean data” 

5. Data set description and network details 

A B 
U l R l J  U l R l J  

12.8 12.8 13.5 9.5 10.8 8.8 

We have used a data-set locally collected by the Tel-Aviv 
University Computer Vision Group [ 191. The data-set con- 
tains images of 37 male and female faces with 10 pictures 
for each person in high resolution 84 x 56. We split the data 
to 6 training images and 4 testing images for each person 
and used a normalization preprocessing. This preprocess- 
ing partially removes the variability due to viewpoint, by 
setting (automatically) the eyes to the same position in all 
images [ 191. Further preprocessing evaluates the difference 
between each image and an average over all the training set, 
leading to the so called “caricature” images [8]. 

The number of hidden units was set to 10 and a learning 
rate constant was set to 0.01. The initial weights were gen- 
erated from uniform distribution in the interval [0 0.001]. 
The number of epochs was about 5000-10000. 

. ,  
blur: d = 5 
(e) DOG filter: 
u1 = 1 & uz = 2 
(d) Root filter: 

6. Results 

20.9 20.9 17.6 16.2 10.8 11.5 

31.8 26.4 23.6 23.0 26.4 20.9 

16.9 17.6 12.8 10.1 10.8 8.1 

Table 2 presents classification errors (in percent) of de- 
graded and restored images. Figure 2 shows corresponding 
degradation and restoration results on one image from TAU 
data set. Results of other restoration methods and other 
types of noise appear in [ 161. 

~, 

blur: U = 2 
Root filter on (e): 
(f) a = 0.6: 

I Types of I Training scheme 1 Training scheme 

12.8 13.5 12.8 14.9 12.8 10.8 

volution of (g) 
(i) Motion blur: 
d = 5 pixels (0 = 0) 
& Gaussian noise 

I I I I I I 

I (b) Out-of-focus I I I I I I 

12.8 14.2 12.8 10.1 10.1 8.8 

21.6 23.6 19.6 16.9 15.5 12.2 

a = 0.6 

I (e) Gaussian I 19.6 I 16.2 I 16.9 I 14.2 I 11.5 I 10.8 

I 13.5 1 14.2 1 14.2 I 12.2 1 12.2 I 8.8 a = 0.8: 

(g) Pruned 
7 x 7 pixels 
Gaussian filter 
& Gaussian 
noise, SNR=100 
(h) Blind decon- 

0) smoothing & 
blind decon- 

Table 2. Ensembles of classification schemes 
(A,B) versus blur and its restoration. 

We note that ensembles of method B are less sensitive to 
noise and blur than ensembles of method A and the joined 
ensemble of method B has the best classification perfor- 
mance. Restoration preprocessing further improves recog- 
nition. 

7. Summary 

We have proposed a hybrid recognition/reconstrction 
network architecture for addressing object recognition in 
blurred-images. This approach includes the following 
methods: (i) Expansion of the training data with Gaussian 
blurred images (direct approach); (ii) Constraining recon- 
struction of blurred images to their unblurred version using 
the hybrid network (direct approach); (iii) Use of state-of- 
the-art restoration methods as preprocessing to the degraded 
images (restoration approach) 

We have demonstrated that the combined approach leads 
to improvement in recognition of images degraded by a 
wide range of image blur and noise. 
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Figure 2. Corresponding degraded images 
description is given in Table 2 
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