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Abstract. We review the field of offline cursive word
recognition. We mainly deal with the various methods
that were proposed to realize the core of recognition in
a word recognition system. These methods are discussed
in view of the two most important properties of such
a system: the size and nature of the lexicon involved,
and whether or not a segmentation stage is present. We
classify the field into three categories: segmentation-free
methods, which compare a sequence of observations de-
rived from a word image with similar references of words
in the lexicon; segmentation-based methods, that look
for the best match between consecutive sequences of pri-
mitive segments and letters of a possible word; and the
perception-oriented approach, that relates to methods
that perform a human-like reading technique, in which
anchor features found all over the word are used to boot-
strap a few candidates for a final evaluation phase.
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1 Introduction

The field of offline cursive word recognition has made
great progress during the past ten years. Many methods
have been developed in an attempt to satisfy the need
for such systems that exists in various applications like
automatic reading of postal addresses and bank checks,
processing documents such as forms, etc.

Most of these methods, while presenting a large spec-
trum of perspectives on the problem, share a common
structure, having the same modules. In the flow chart
given in Fig. 1, three common alternative structures of
word recognition systems are presented. The typical mo-
dules are preprocessing, then a possible segmentation
or fragmentation phase, feature extraction, the core of
recognition, and post-processing. Preprocessing usually
includes normalization, noise reduction, reference line
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finding, and either contour or skeleton tracing if nec-
essary. Next, there is the segmentation phase and its
substitutes. In a segmentation process, in contrast with
simple fragmentation or splitting into pieces, there is an
attempt to split the word image into segments that relate
to characters. Some methods prefer to avoid segmenta-
tion altogether for reasons that will be discussed later
on. In the latter a new problem may arise due to the fact
that most recognition modules, which come next, require
a one-dimensional signal of features, and cannot handle
features taken directly from the word image. Segmenta-
tion can be bypassed when the features used are global,
i.e., they are located in the word resolution and there-
fore they can be organized in the order they appear in
the word from left to right. However, when local features
are preferred, one needs to divide the word image into
sequential fragments, before the feature extraction stage
takes place. In this case the fragmentation process sub-
stitutes the full segmentation. Next, a feature extraction
process takes place. When high resolution features are
used, the extraction process is more sensitive to noise.
It is common to use code books in this stage when the
feature space is discrete. The recognition process follows
next. This process is heavily influenced by the nature of
the segmentation process, as will be discussed later on.
The recognition process is followed by post-processing.
This process relates to lexicon lookup, string correction,
and re-evaluation of a word probability with respect to
syntax and context issues.

Most of this survey focuses on the algorithms that
were proposed in order to realize the recognition phase.
The other modules that usually constitute a word recog-
nition system are briefly discussed in Sect. 2.

One can classify the field of offline cursive word recog-
nition into three categories according to the size and
nature of the lexicon involved: large; limited, but dy-
namic; small and specific. Small lexicons do not include
more than 100 words, while limited lexicons may go up
to 1000. Large lexicons refer to any lexicon size beyond
that. When a dynamic lexicon (in contrast with specific
or constant) is used, it means that the words that will
be relevant during a recognition task are not available
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Fig. 1. Three alternative structures of a
word recognition system. Each alternative
differs in the way it handles the segmen-
tation phase

during training because they belong to an unknown sub-
set of a much larger lexicon. This classification coincides
with the different modeling techniques associated with
the different recognition methods. When small or limited
lexicons are involved a model-discriminant approach is
often used. Using this approach, each word is represented
by a unique model. Given an observation sequence OT

1 ,
one goes over all word models and finds the word Wi as-
sociated with the model that has maximum a posteriori
probability Pr(Wi|OT

1 ). Using the Bayes rule

max
i

Pr(Wi|OT
1 ) = max

Pr(OT
1 |Wi)Pr(Wi)
Pr(OT

1 )

Pr(Wi) is usually assumed to have a uniform distribu-
tion due to the fact that statistics on the frequency ap-
pearance of each lexicon word is unavailable (unless spec-
ified otherwise). Since Pr(OT

1 ) is also independent of Wi,
the a posteriori probability converges to the score given
by the word model Pr(OT

1 |Wi).
Practically, a system that is based on a model-dis-

criminant method cannot handle large lexicons. In this
case, usually a single model acts as a hypothesis gener-
ator that reacts to the input observations and produces
a ranked list of candidate words. Note that in this hy-
pothesis (path)-discriminant method, the generator pro-
duces spurious words (outside the lexicon), besides the
legal ones with their associated matching score. During
the process the lexicon is used to verify the existence
of complete words or prefixes of hypotheses. However,
models in both large or limited lexicon environments
have a lot in common. Since the lexicon available during
training is large in both cases, there cannot be a reliable
training if only some word samples will be used. There-
fore, models used in these scenarios are built from letter
models and hence might be called letter-oriented. This is
based on the assumption that a specific letter looks the
same when it appears in different locations and neigh-
borhoods (regarding the other letters that surround it).
Empirically, this assumption is very solid if one selects
valuable features that are invariant in this manner, in
spite of the noise that characterizes cursive script due to
the ligatures between letters.

Clearly, the larger the lexicon is, the more flexible the
application that utilizes it can be, but the recognition be-
comes more difficult and the results get less satisfactory.
Furthermore, all methods that were proposed for larger
lexicons are applicable to smaller ones as well but are
less suitable, meaning they will probably do worse.

Besides the lexicon size and nature, a major issue
that the recognition method should relate to is the seg-
mentation problem. This issue is one of the most impor-
tant decisions one needs to make when starting to de-
sign a word recognition system. Ideally a perfect segmen-
tation algorithm would split a cursive word image into
complete characters. Then, using character recognition
techniques, the word would be recognized with high con-
fidence. Unfortunately such a segmentation algorithm is
not available. Furthermore it may never be available due
to ambiguity in cursive words that was best expressed
by Sayre’s paradox [71]: ”To recognize a letter, one must
know where it starts and where it ends, to isolate a letter,
one must recognize it first”. This conflict was reflected
in the field of cursive word recognition methods result-
ing in a situation of having very few methods that rely
on pure segmentation followed by a separate recognition
phase. Three examples of methods of this kind ([88], [60]
and [66]) will be discussed in the relevant section.

Based on this last observation two approaches were
developed. One implements a segmentation-free
approach, i.e., there is no attempt to split the word im-
age into segments that relate to characters. Still, it is
possible that the image would be split into pieces in or-
der to produce a sequence of observations, i.e., symbols.
Instead of a letter-by-letter recognition, one tries to rec-
ognize the whole word as one entity, by searching for a
word with the most similar complete description to the
one obtained from the whole input image.

The other approach uses a segmentation-based meth-
od. Given a sequence of primitive segments derived from
a word image, and a group of possible words, we seek
for a top-level segmentation that maximizes the average
matching score between respective characters and seg-
ments. Top-level segmentation means that each segment
is a union of one or more consecutive primitive segments,
under the condition that each primitive segment appears
exactly one time. In other words a top-level segmenta-
tion is a subset of the primitive segmentation points.
The term primitive with respect to segments stands for
elementary segments that were created by the segmen-
tation algorithm that was used. We find this approach
preserves the semantic meaning of symbols with respect
to characters, while the segmentation-free approach can
prevent errors caused by unsuccessful pre-segmentation.

In both approaches many methods use dynamic-pro-
gramming tools in order to find the best interpretation.
Optimization problems often use dynamic-programming
techniques when the optimal solution is a combination of
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Fig. 3. A single HMM that can handle a large lexicon. Each
one of the 26 letters is associated with a sub-HMM that is
connected to all the others. The resulting model gains a clique
topology in which different paths represent different word
interpretations

optimal solutions to partial problems. In a word recog-
nition case the optimal interpretation of a word image
may be constructed by concatenating the optimal in-
terpretations to disjoint parts of the word image. One
should refer to [3] and [18] for further explanations re-
garding dynamic programming. A very important appli-
cation that is also commonly used by methods of both
approaches is a hidden Markov Model (HMM). Some find
the HMMs to be a particular case of the more general
dynamic-programming field.

When small or limited lexicons are used (in segmen-
tation-free or segmentation-based approaches), each
word is associated with a separate HMM that is a con-
catenation of the relevant letter sub-HMMs as illustrated
in Fig. 2.

When large lexicons are used, a single HMM in which
different paths (state sequences) represent different word
interpretations is used. Such HMMs can be described as
a graph with a clique topology, where each node repre-
sents a letter sub-HMM and the arcs represent transi-
tions between them (Fig. 3). Section A briefly reviews
HMMs and some observations to do with their role in
word recognition.

In this paper we have decided to use the type of the
segmentation scheme as the major criterion for classify-
ing the recognition method used. As many recognition
methods can be easily adapted to handle both limited
and large lexicons, the size and nature of the lexicon
is not used as a major classification criterion. However,
the relationship between each approach and the various
lexicon size and nature is discussed.

We take perception-oriented methods as forming a
different/separate category. These methods differ from
both the segmentation-free and segmentation-based ori-
ented methods. The common principle to the methods
that belong to this class is first to identify some char-
acters and then continue with trial and error techniques
regarding the gaps that were left – using the provided
lexicon for help. These methods attempt to recognize in-
dividual characters that are present in the word image,

and do not try to recognize the word as a whole. The
implementation of the recognition phase is not segment-
oriented and it does not follow the regular scheme of a
left to right search.

For practical reasons there is a common assumption
that an input word is not necessarily cursive. It is likely
that there will be a mixture of cursive, hand printed, a
mixture of lower case and upper case, etc. Therefore it
is common to find methods that propose extra model-
ing for more than one style. This could be achieved by
doubling each model and training each copy to handle a
different writing style, or by combining redundant sub-
models parallel to the existing ones in parts of the word
that may be written in another style. Since this treat-
ment can be applied to any method, we do not mention
specifically those who have decided to use it.

We believe that surveys are important tools that help
to synchronize different research efforts around the world
and make use of the knowledge and previous experience
that was acquired by others. The reader might be inter-
ested in other relevant surveys involving online cursive
recognition [82], OCRs [42,84], and segmentation tech-
niques [52,8].

2 Stages in a word recognition system

In this section a global structure of a word recognition
system is described. The following structure is a union of
all common operations that usually appear in systems of
this kind. A typical complete word recognition process
consists of the following parts: preprocessing, a possi-
ble segmentation or fragmentation, feature extraction,
recognition, and post-processing. The core of a recog-
nition system is the algorithm that produces word in-
terpretation given a sequence of observations in either
one of the various word representation levels that will
be mentioned. This is the main issue of this survey and
it will be discussed widely in the next sections.

The preprocessing starting point depends on the en-
vironment in which the system is running. It may in-
clude external word segmentation (extraction) from a
multi-word neighborhood and other various document
processing techniques. Given a stand-alone word, a few
normalization operations are performed, among which
are:

– Skew correction – a rotation transformation that
brings the word orientation parallel to the horizontal;

– Slant correction – a shear transformation that at-
tempts to make all the vertical strokes erect;

– Smoothing – including all different kinds of noise re-
duction;

– Scaling – invariance to size (used in rare cases only).

Another important procedure in a major part of the sys-
tems is reference line finding. This procedure is essential
for the feature extraction stage that comes next. Op-
tional contour or skeleton tracing are also parts of the
preprocessing phase.

In Fig. 4 one can observe some of the various prepro-
cessing algorithms that are commonly used. First, the
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Fig. 4. Some of the various preprocessing algorithms that are commonly used. From left to right: the original image, then the
image after going through skew correction, slant correction, reference line finding, and eventually a thinning algorithm that
produces the word skeleton

original image is presented on the left, then the image
after going through skew correction, slant correction, ref-
erence line finding, and eventually a thinning algorithm
that produces the word skeleton. The algorithms were
executed in a raw, i.e., each algorithm was input the
image that resulted from its preceding algorithm.
Pre-segmentation is the process of word segmentation
into primitive segments. Many algorithms have been pro-
posed for this task and we recommend two surveys that
review this field [52] and [8]. In the case of a segmenta-
tion-free method, this stage may be ignored or replaced
with splitting the image into sequential fragments that
do not attempt to match complete characters.
The role of the feature extraction stage is to retrieve
observations out of the word image. There are several
classes of features. Segmentation-free methods use either
raw features, which are pixel-wise like strokes, or global
symbolic features such as ascenders, descenders, loops,
etc. Segmentation-based methods look for local features
in the segment that is being evaluated. The most pop-
ular features in this case are the global features (ascen-
ders, descenders, loops) and local irregularities such as
X and T crossings, end points, sharp curvatures, etc.
Other, less symbolic alternatives are different kinds of
pixel moments, distribution in the different parts of the
segment, etc. A feature is assumed to be more reliable
if it is less sensitive to noise and to the variance in writ-
ing style, and if it has good ability to distinguish among
words or letters as required.
After the recognition module has finished running, some
methods use post-processing techniques to improve the
recognition results. Some of these operations such as lex-
icon lookup and string correction are mentioned in this
paper because they are built in during the recognition
task. However additional syntax and context are very
popular to bust or disqualify legal words according to
the circumstances. A special case appears when large
lexicons are involved. In this case a hypothesis genera-
tor outputs possible words that might not be present in
the lexicon. Therefore, one may find it very difficult to
search for an optimal solution under the constraint of
being legal, i.e., to appear in the given large lexicon. A
unique post-processing was developed for this purpose,
based on the minimum edit-distance that will be men-
tioned later on in other aspects of recognition. Given a
hypothesis that is the optimal interpretation of the input
word image, we find the lexicon word that is the most
similar to the hypothesis. Similarity between words is
measured as the number of operations – insertion, dele-

tion, substitution – necessary to transform one word into
the other. From a different point of view this process is
considered as correction of garbled words [62]. Note that
regular post-processing of this kind requires going over
all the words in the lexicon and performing non-trivial
calculation for each one of them. This puts limitations
on the size of the lexicon that is assumed to be large.
Therefore, a proper usage of this process is in combina-
tion with some kind of lexicon reduction.

The interested reader may refer to [80] for more de-
tails on a complete handwritten text recognition system.

3 Segmentation-free methods

In a segmentation-free method, one should find the best
interpretation possible for an observation sequence de-
rived from the word image without performing a mean-
ingful segmentation first. An observation sequence can
be classified into three categories according to the rep-
resentation level of the word it stands for. The first cat-
egory relates to observations that are based on low-level
features taken directly from the word image. Such fea-
tures include smoothed traces (quantized/normalized
fragments) of the word contour, pieces of strokes between
anchor points, edges of a polygonal approximation of the
image skeleton, etc. The second category aggregates such
low-level features to serve as primitives. For example,
neighboring strokes can be merged into a smoothed pat-
tern, that will constitute a primitive. The main differ-
ence between the current category and the former one
is in the nature of the relevant feature space – continu-
ous in contrast with discrete. The last category involves
methods that use even higher-level features of a word
image. The most popular features are the most irregu-
lar, i.e., holistic features that are hard to miss and are
invariant with respect to all the different writing styles.
In this case holistic means global with respect to a whole
word resolution, meaning that features of this kind, such
as ascenders, descenders, loops, i dots, t strokes, etc., are
prominent even in an image of a complete word. These
features may be sub-classified according to size, location
or orientation. These features will be referred to as sym-
bols.

In this section we discuss different algorithms that
were proposed for comparison between a pair of obser-
vation sequences. Most methods use either a minimum
edit-distance calculation based on dynamic-program-
ming, or a resemblance estimation provided by HMMs.
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However, there are some specialized methods that in-
clude different comparison procedures. Nevertheless, in
most cases, such systems can utilize the minimum edit-
distance as well. The top-level organization of this sec-
tion matches the various comparison approaches (spe-
cialized, minimum edit-distance, HMMs). Each subsec-
tion is further sorted according to the feature level of the
word image representation that was used. The discussion
in this section will be in view of the size and nature of
the lexicon that the application may use. Table 1 shows
the location of each method that will be mentioned later
with respect to the comparison technique and represen-
tation level.

3.1 Specialized methods

In what follows we will discuss methods in which an ob-
servation sequence is mapped to a space with a distance
metric on complete sequences. All these methods are of
model-discriminant nature. Since finding the most likely
word is similar to other categories of model-discriminant
– i.e., comparison between the input sequence and all
stored references, we focus on the unique details of each
of the methods.

1. Low level
Govindaraju et al., [36], represented a word image
as a sequence of strokes in the temporal dimension.
Temporal information, i.e., a complete linear order
among the strokes, is extracted by traversing the
strokes between consequent anchor points such as
peaks, valleys, intersection and end points. When an
intersection point is encountered, the traversal pro-
ceeds along the smoothest path, determined heuris-
tically based on orientation, trend and a gradient
smoothness criterion. Finally, a feature vector associ-
ated with the word image is obtained. No details were
specified regarding the matching algorithm. However,
the dynamic-programming or edit-distance seem to
be a possible good choice in this scenario.
Gorsky [35] have used a holographic representation,
meaning that each sequence of consequent stroke
quanta that share approximately the same direction
(which will be referred to as fragments) is mapped
into a single point in a special parameter space. The
following features constitute the coordinates of a
point: global x-order (number of fragments along the
x-axis), local order of a fragment among the neigh-
boring fragments, and direction. These features are
insensitive to most of the distortions produced by
different writing styles and may also overcome miss-
ing or additional stroke components. The intensity
of a point depends on the length of the fragment it
originated from and bonuses for distinguishing prop-
erties. Both indices and values were discrete and nor-
malized, therefore the resulting holograph is a three-
dimensional matrix. A certain word prototype, i.e.,
model, is created by mapping a set of words written
by various people to a single holograph, i.e., matrix.
Comparison between an input word and a prototype
both represented in holographic form could be carried

out either by cross-correlation or by computing the
percentage of word fragments that are ”explained”
by the prototype.

2. Medium level
In [63] a Markov model with no hidden states was
used to model a word. The set of legal observations
derived from a word image is used to define the states
of the model. Experiments with two sets of obser-
vations – 8 strokes or 42 graphemes – were made.
Choosing the order of the Markov model was based
on statistical criteria, and was eventually found to
be 2. Therefore, each word model was trained and as-
signed transition probabilities considering all the pos-
sible triple combinations of observations. The a pri-
ori probability of a word was also taken into account.
Hence, the probability of a word Markov model Mi

given the observed sequence Q is evaluated as follows:

P (Mi|Q)

=
P (Q|Mi)P (Mi)

P (Q)

=
P (Mi)P (X1|Mi)P (X2|X1, Mi) . . .

P (X1)P (X2|X1)P (X3|X1, X2) . . .

× . . . P (X3|X1, X2, Mi)P (Xn|Xn−2, Xn−1, Mi)
. . . P (Xn|Xn−2, Xn−1)

3. High level
Guillevic et al., [38] have extracted seven types of
features from an input word image. Each feature is
associated with its relative position in the image (in
percents). In the training process, each lexicon word
goes through the same process but the feature loca-
tions are relative to the characters they belong to.
Thus, in the recognition process, for every lexicon
word, we translate positions of features in the in-
put image, that were given in percents, to charac-
ter locations of the word being compared and rate
the matching. The distance between an input feature
vector and a lexicon word feature vector is computed
as the minimum shift in feature locations needed in
order to match between the two.
A mixture of segmentation-free principles and a seg-
mentation algorithm takes place in the methods pre-
sented by Madhvanath et al. [53–56]. The produced
segments are used only to define the location of a
feature inside a word image. In the first case ([53]), a
concatenation of all features found results in a feature
vector used for comparison with references – using
Euclidean distance. A few supporting mechanisms
were supplemented; feature equivalence rules enabled
one to define interchangeable sets of features. Macro-
features, i.e., a combination of features, lead to the
recognition of a specific phrase with very high confi-
dence. In addition a new feature – point of return –
is included. However, this feature seems less robust
and more author-dependent. On the other hand if a
small lexicon of the order of ten words was engaged,
the ascender and descender features suffice to distin-
guish lexicon entries. In a more sophisticated method,
all features are sorted according to their type and
sub-sorted by their position from left to right [54–
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Table 1. A summary of segmentation-free methods

Representation level Specialized minimum edit-distance HMMs
Low [36,35] [65,23,55,57] [39,70,5–7,29,59,17]
Medium [63] [64]
High [38,53–56] [50,60,66,21] [32–34,30,31]

56]. When comparing the observations derived from
a word image with a similar reference of a lexicon
word, one attempts to find the best bipartite match-
ing between the two, using a dynamic-programming
algorithm. Clearly, only features of the same type
can be matched. In addition, features’ order should
be kept, i.e., edges of the resulting graph may not
cross. Moreover, there is another logical constraint
on the matching, that is, a pair of features cannot
be matched if the difference between their positions
exceeds a threshold. A possible bipartite match does
not have to be complete since some features might
have been missed and others may be spurious. Each
valid match is given a score depending on the posi-
tional difference between matched features but also
on the weight each feature type is associated with. In
addition, a match confidence may also be measured
by a similar interpolation over the confidence associ-
ated with each matched feature. A feature confidence
is given during its extraction from the image, repre-
senting the amount of certainty that a feature of this
type really exists in that position. In [56], letter mod-
els also specify optional features in order to model al-
ternative ways of writing the same letter. These fea-
tures, though given lower confidence, are very useful
in case of spurious or missing strokes. This method
utilizes common features like ascenders, descenders
etc., together with the word length in segments. In
addition, some a priori valuable facts, like the ex-
istence of an ascender (descender) at the beginning
(end) of a word, are handled as independent features.

3.2 Minimum edit-distance

Several methods rely on minimum edit-distance (a sim-
ple dynamic-programming approach which is described
in Sect. B in the appendix) for comparison in the differ-
ent levels of a word representation.

1. Low level
Since low-level features are usually measurable, any
matching between a pair of them may be considered
as a substitution with a penalty relative to the mu-
tual distance in the feature space.
– Parisse [65] used the upper and lower profiles of

the word image. A profile in this case means a
series of vectors describing the respective contour.

– Eliaz et al., [23], used polygonal approximations
of word images for comparison. The word’s skele-
ton is divided into fragments and each one of them
is compared to all fragments of a lexicon word
model that are relatively close when sharing the

same coordinates (all words were first normalized
to enable the computation of relative distance).
The similarity between a pair of fragments of the
input word image and a pre-stored model respec-
tively take into account the difference between the
properties of themselves. In addition, the similar-
ity between their neighborhoods, i.e., the minimal
edit-
distance between the two sets of fragments that
are close to the compared fragments in the image
and in the model respectively, are also part of the
calculation.

– In Madhvanath et al., [55,57], given an input cur-
sive word, all down-strokes were extracted. Medi-
um-level features resulting from classification of
these strokes into five discrete types – ascender,
descender, f-stroke, medium, and unknown – was
found unsatisfactory in [55]. Therefore, the ex-
tracted strokes were associated with their normal-
ized position above (below) the half-line (base-
line) in [57]. However, the descriptions of the lex-
icon words were still given in a discrete form. The
minimum edit-distance algorithm was performed
simultaneously for all the lexicon words that were
ordered in a trie.

2. Medium level
In Pacquet et al., [64], a set of seven possible primi-
tives (occlusions, different upper and lower strokes, or
connexions) resulting from a guiding point were de-
fined. The respective guiding points were intersection
points between strokes of the word and the interme-
diate base-line – the line that divides the body zone
between the base-line and the half-line into two strips
of equal height. The weights of the three editing oper-
ations (deletion, substitution, insertion) were fixed in
advance. However, in some exceptional cases, combi-
nations of primitives called shapes could be replaced
by ”similar shapes” without increasing the total edit-
distance. Eventually the distance calculated for each
reference was normalized by the length of the obser-
vation sequences compared.

3. High level
– In Leroux et al., [50], ascenders and descenders

derived from the primary contour were supported
by closed loops, i dots and disconnected t crosses
evidenced from secondary contour components.
According to the experiments performed, recog-
nition rate was not improved when the edit costs
were learned. However, the amount of lexicon ex-
amination was successfully limited based on a
rough estimation of the word length.
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– Moreau et al., [60] used an extended reference
codebook of the lexicon including many ortho-
graphic deviations, that usually appear due to
poor semantic meaning of the features involved.
Normalization of the edit cost was based upon a
rough estimation of the word length in letters.

– In Plessis et al., [66], an edit-distance between
symbolic description chains was one of the three
methods that were combined before final recog-
nition results were given. The authors decided to
use two separate encoding systems of each word –
depending on whether loops were taken into con-
sideration in the global feature list or were ig-
nored. The reason behind this distinction is the
huge variance in loop occurrence among different
writers.

– A higher level of implementation appears in a pa-
per dedicated to optimization of the minimal edit-
distance parameters [21], where an application
to handwritten word recognition was presented.
Given connected components derived from a word
image (in a fully connected word that would be
the whole image), the number of characters L
present in the component is estimated using the
width/ height ratio and the number of crossings
with the center line. Then L special characters are
inserted in the recognized character string. The
special characters reflect the presence/absence of
an upper stroke, lower stroke, or inner loop, in the
relevant part of the signal. The optimal lexicon
word was found using an improved edit-distance
between the string of special characters (includ-
ing real letters, if they were naturally segmented
from the rest of the word) and each possible word.
The paper presents a method for training and
optimizing the character substitution parameters,
and applies some additional rules (e.g., the substi-
tution of one character with two and vice versa).
This method is considered a higher-level method
as the comparison is performed between a
sequence of pseudo-characters and the real let-
ters of the word being estimated. It seems that
this method does not perform well on fully con-
nected words.

The above segmentation-free methods that calculate
minimum edit-distance between two sequences of obser-
vations or perform a specialized comparison technique,
appeared as holistic methods and were used only for a
small static lexicon environment. In that case a word ref-
erence is an interpolation of all training samples available
for the specific word. However, these methods might be
used in limited dynamic lexicons. This can be achieved
by creating an artificial observation sequence for each
lexicon word by concatenating the observations associ-
ated with each of its constituting letters. This requires
training samples in the letter level. The performance of
methods of this kind depends on the representation level
that the observations relate to. Thus methods that be-
long to the first category of the low-level observations,
contain a lot of information that belongs to ligatures and

therefore may not be suitable for letter-oriented. On the
other hand, the features that are considered in high-level
observations appear mostly in the letter area. For the
persistent user even the former observation class may be
adjusted to limited dynamic lexicons by using training
samples of letters derived from cursive words without
eliminating the ligature fragments that are attached to
it. Only [66] [21] [53] have followed the proposed scheme
and enabled the usage of dynamic (limited) lexicons.

3.3 HMMs

HMMs of segmentation-free methods share a common
structure and the same training scheme. The basis for
the following methods is a statistical estimation of the
edit-distance that is more sophisticated than the one pre-
sented above. This is achieved by an HMM that gives
higher probability to observation sequences that are “clo-
ser” to the training samples. “Close” in this case relates
to an edit-distance metric. The common method is a
combination of a specific structure of an HMM and an
appropriate training algorithm. The structure of a typ-
ical HMM consists of a sequential backbone path and
several branches that represent local alternatives. A null
transition from one state to the following, or a transi-
tion that skips the next state, represent a missing sym-
bol. The probabilities of the different symbols associated
with a backbone transition1 are relative to the penalty
of a symbol substitution. One or several symbols that
are expected to occur at this point should not be given
any cost. A self-loop or an additional state (introduc-
ing a double step transition between consecutive states)
stand for a symbol insertion. The training algorithm that
is adapted by all methods – the Baum-Welch (forward-
backward) algorithm [2,1] – maximizes the probability
of the training samples that were introduced to a specific
model.

HMMs of this kind were used in all three possible
cases of a lexicon size and nature. Most of the systems
were designed for limited and large lexicons. Hence, a
major part of the HMMs that were used are letter-orien-
ted. Moreover, we found no difference between letter sub-
HMMs that serve dynamic limited lexicons and those
that serve large lexicons. Therefore, we would like to
point out that despite the fact that each method was
tested only in a single context (dynamic limited or large
lexicon) they can all be used in either one of them if
placed in the suitable topology, i.e., a clique or sequen-
tial concatenation. The adaptation to small and static
lexicons is also very intuitive. In order to construct a sin-
gle chain of sub-HMMs, one should ignore the semantic
meaning of letters and utilize the same structure that
letter sub-HMMs were given. The length of the chain
should be chosen so as to represent best the training
samples.

The first examples of HMM-based segmentation-free
methods that we include relate to systems that perform

1 HMMs that realize segmentation-free methods do not at-
tach any meaning to specific transitions, with respect to char-
acter fractions.
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Fig. 5. The two alternatives of an elementary sub-HMM that
were used by Gilloux et al. The dashed line represents a null
transition

recognition in a small specific lexicon environment. All
methods by Guillevic et al., [39], Saon et al., [70], and
Gilloux et al., [32–34], represent a word model as a chain
of n identical sub-HMMs (see an example in Fig. 5),
where n is the most probable length of an observation
sequence obtained from the training samples. In Saon et
al., each sub-HMM includes a single state and 2 possible
transitions: normal left to right and self-loop. Guillevic
et al., added the possibility of skipping over the next
state. Both methods use low-level features derived di-
rectly from the word image. In Guillevic et al., a sliding
window was used to split the image into vertical zones,
that were then divided into 5 horizontal regions. The dis-
tributions of the 8 possible slopes that might be found in
a contour, were used to produce a low-level feature vec-
tor. In Saon et al., a fixed-size column of the word image
is used as a feature vector input to the HMM at each
stage. In order to compute the conditional pixel observa-
tion probability at each state, the developers considered
the image as a non-symmetric half-plane Markov chain.
In this case one should take into account only a subset of
the image pixels that support a pixel in a given column.

In Gilloux et al., the sub-HMM contains 2 states:
initial and additional, and 4 transitions that result in 3
possible paths starting in the initial state:

1. A null transition from the initial state to that of the
next sub-HMM [32]. This one was replaced by a nor-
mal transition that bypasses the following sub-HMM
in the chain in [33,34].

2. A normal transition from the initial state to the one
of the next sub-HMM.

3. A transition from the initial state to the additional
state and then to the initial state of the following
sub-HMM.

The fact that a fixed lexicon rather than a limited
but dynamically built one is used, was utilized to en-
able a more reliable a posteriori probability computa-
tion by estimating the a priori probability p(w) of each
word. The final recognition score of a word model is
therefore p(o|w) × p(w), found by the Viterbi algorithm
[85,26]. In other systems by Gilloux et al., [30,31,33,
34] the same elementary sub-HMMs were used to con-
struct letter models. All the above-mentioned methods
by Gilloux et al., used a segmentation algorithm to pro-
duce observations that were symbols describing each seg-
ment. Therefore, they belong to the methods that are
based on high-level features of a word representation,

Normal Transition

Null Transition

Fig. 6. The letter sub-HMM that was used by Cho et al.
Other letter sub-HMMs used in segmentation-free methods
are subsets of this model in different lengths

but could have been classified as segmentation-based in
the first place. However, we have decided to include them
in this section because the same HMMs could be used
in a segmentation-free method as well. Furthermore, the
structure and training technique of these methods is very
similar to other segmentation-free methods. More details
regarding the letter-oriented system will be given in the
segmentation-based section.

In the following is a short description of a few other
HMM-based, segmentation-free methods that were pub-
lished. Most of these methods use low-level features as
observations. Sometimes medium-level features are pre-
ferred, for example, the first method described next.

In Bunke et al., [5,6], observations are the edges of
the skeleton graph of the word image. The number of
states in a letter model is the minimum number of edges
(= observations) among all training samples. Only self-
loops and left-to-right transitions between consequent
states are allowed.

In Gillies [29] and Mohamed et al., [59], observations
are the columns of the word image, one pixel or con-
stant pixel wide. All letter sub-HMMs contain the same
number of states. For example, in [59] each letter model
has exactly 12 states. During training, each sample of a
letter is re-sampled to a fixed size of 24 columns, associ-
ating observations 2i-1 and 2i with state i. The standard
re-estimation formulae are used for further training and
probability estimation. In addition to the transitions al-
lowed by Gillies and Bunke et al., Mohamed and Gader
also allowed skipping of one state, i.e., one may jump
from state i to state i+2.

In Caesar et al., [7] all letter sub-HMMs consist of
four states. In addition to linear transitions (between
following states), self-loops and skipping one state also
exist. When applied in a large lexicon environment, the
HMM is evaluated by a modified Viterbi algorithm – for
the first letters of a word a breadth first algorithm is
used which is then dynamically switched to a best-first
search.

In Cho et al., [17], non-trivial sub-HMMs are asso-
ciated with each letter allowing self-loops, null transi-
tions between some of the consequent states, as well as
skipping over the next state (see an example in Fig. 6).
The length of each sub-HMM, i.e., the number of states,
is determined empirically by the training samples. Be-
sides letter sub-HMMs, ligature sub-HMMs were added
to model the inter-character strokes. Therefore, letter
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models need not take care of variations caused by dif-
ferent kinds of ligatures which are left to their specific
models to handle. However, ligature models accept null
ligatures as legal ones. The resulting word model can be
formally described as:

Word := Character · {Ligature′ · Character}∗

Ligature′ := Ligature|ε
When large lexicons are involved, one needs to preserve
the clique topology of the global HMM as far as letters
together with the word model described above are con-
cerned. Therefore, a circularly interconnected network
of letter and ligature sub-HMMs was built. Each letter
sub-HMM’s last state was connected with each ligature
sub-HMM’s first state and vice versa. Linguistic proba-
bilities can be combined with the recognition process as
the transition probabilities between letters. Illegal words
were avoided by pruning prefixes that had no ”future”.
The combination of this technique with the dynamic-
programming nature of the Viterbi algorithm may result
in a non-optimal solution. There was not any absolute
solution to this problem but some suggestions to increase
the probability to get close to the optimal solution such
as running a Viterbi algorithm backwards or as a combi-
nation of forward and backward searches were described.

4 Segmentation-based methods

In segmentation-based methods the recognition process
is based on an attempt to find the best complete bipartite
match between blocks of primitive segments and a word’s
letters. These primitive segments are created by some
segmentation algorithm, which might be imperfect, and
therefore cause over or under-segmentation. We refer to
this as a pre-segmentation stage.

The matching process of blocks of primitives and let-
ters is subject to various constraints. For example, a
complete bipartite match means an isomorphic trans-
formation from the set of primitive segment blocks to
the word’s letters. Obviously, the spatial order of the
primitive segment blocks from left to right should be
kept within the matched letters as well. Different blocks
of primitive segments should be disjoint and provide a
complete cover of all the primitive segments of the word.
The size of each block, i.e., the number of primitive seg-
ments it contains, must satisfy a pre-segmentation crite-
ria that determines the number of primitive segments a
character may be split into and the number of characters
that may share a primitive segment. Furthermore, some
methods refer to all possible values of primitive segment
number that a character may be split into, and initialize
durational statistics. For each character, the durational
statistics determine the probability that it would be seg-
mented into d primitive segments by the current seg-
mentation algorithm, for every legal value of d. These
statistics are first computed during training, and then
taken into account when a matching score is calculated.

In small static lexicons, there is no point in using
a segmentation-based method since words can be rec-

ognized more easily in the word level using distinguish-
ing holistic features that are very likely to appear in
a small set of words2. In this section we refer to the
segmentation-based field as if it relates to limited (but
dynamic) and large lexicons only.

The major advantage of all segmentation-based
methods is their flexibility with respect to the size and
nature of the lexicon. This is a direct result of these
methods being letter-oriented, i.e., they rely upon letter
models. Therefore, it is possible to extend the model-
discriminant approach, where the matching is done for
a single specific word at a time, to a path-discriminant
approach, where the current letter of a single word being
matched could be each one of the 26 letters.

The best match can be found by a straightforward
dynamic-programming algorithm (see Sect. 4.1), or by
other equivalent alternatives. One alternative is to find
the shortest path in a special graph in which each node
represents a pair of possible blocks of primitive segments
and letter interpretations, associated with their match-
ing score as a weight (see Sect. 4.2). Another alternative
is utilizing special HMMs in which the pair of segmenta-
tion and interpretation is associated with the underlying
states of the optimal path (see Sect. 4.3). Both methods
use the Viterbi algorithm [85,26] to compute the best
path required, hence the similarity to the straightforward
dynamic-
programming approach. Usually, one attempts to match
one or more characters with a block of primitive seg-
ments. However, some of the HMM-based methods im-
plement a different concept of estimating the most likely
character that might have generated the feature ex-
tracted from the current primitive segment. This implies
that the borders of a character are not determined ex-
plicitly before the evaluation phase. Moreover, estimat-
ing the probability of a feature given a possible charac-
ter, cannot utilize the same common OCR-like evalua-
tors that participate in methods of the former category.
The last category involves methods that rely on their
segmentation algorithm, and therefore match each single
primitive segment with a complete character. However,
as all available segmentation algorithms are imperfect,
each of these methods use additional processing to over-
come segmentation faults.

The following three sections are dedicated to the ab-
ovementioned alternatives respectively. In each section
we present both the limited lexicon and the large lexicon
versions of each approach. Examples will be discussed in
the relevant context. The last section presents some spe-
cific methods that handle large lexicons from a different
viewpoint. Table 2 summarizes all segmentation-based
methods according to the different categories they were

2 There was only one piece of evidence we ran into during
our survey of word recognition systems where a segmentation
algorithm was used in a small static lexicon environment.
Moreover, we found this single method by Gilloux et al., [32–
34], to have a lot in common with segmentation-free methods
despite the segmentation algorithm that it was integrated
with. Further discussion of this exception was given in the
previous section.
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Table 2. A summary of all segmentation-based methods according to the different
categories they were classified into

Dynamic-programming Shortest path HMMs Specialized methods
[27,28,43–46,49] [61,24,25] [30–34,86,87] [4,78,79,88,60,66]

[47,48,75,58] [10–13,15,14]
[40,41,9,72–74]

classified into. Table 3 presents all segmentation-based
methods according to categories and with respect to the
lexicon that was originally used in the experiments re-
ported.

4.1 Dynamic programming

Section C briefly reviews the general concepts of dynamic
programming. Numerous publications followed the
straightforward dynamic-programming approach. Below
we describe a few of them, emphasizing several variations
on the above approach. None of the methods mentioned
in this subsection allowed for a primitive segment to cor-
respond to more than one character. All systems but two
in this section used a dynamic limited lexicon, hence the
dynamic programming was executed for each word sep-
arately and the word associated with the overall best
matching score was selected.

In [27,28], a heuristic function Legal(segment(s)) dis-
qualifies some unions of primitive segments from being
evaluated if they are too complicated to represent a sin-
gle character. In addition, a more complicated dynamic-
programming algorithm that takes into account the com-
patibility between two possible consecutive characters
was also proposed.

In [43–46] the proposed evaluation function returns
the minimum distance between the block of primitive
segments given and the training samples of the requested
character. Therefore, dynamic programming seeks a glo-
bal minimum instead of a maximum. When the match-
ing between a character and a sequence of primitive seg-
ments is performed only for sequences that are within a
permissible window, unnecessary computations are elim-
inated and the alignment becomes more meaningful. The
size of the window depends on the durational statistics
of the character that it is being compared with (or the
segmentation criteria if the former is not available), and
other factors such as the number of characters in the
lexicon word and number of primitive segments in the
test image. In [44–46] a preliminary test to disqualify
impossible lexicon words in advance was used:

max seg =
Nc(i)∑
j=1

dur(lex entry[j]),

if (num seg of word > max seg) reject

where lex entry[j] represents the j-th character in the
current lexicon word. The upper bound of the segmen-
tation criteria, i.e., the maximum number of primitive

segments a character may be split into, can be used in-
stead of the durational statistics. Another preliminary
test was also proposed to disqualify lexicon words that
have more letters than the number of primitive segments
given. The potential of character durational statistics to
predict inadmissible segmentations was also utilized dur-
ing the dynamic-programming execution in [45]. Each
matching attempt between a character and a block of d
primitive segments also took into account the probabil-
ity of that character to last d primitive segments. The
later incorporation of the durational statistics with the
evaluation function seems to improve the recognition re-
sults.

The same method was used by Kimura et al. [49,
47,48,75]. In [47], a cost of splitting was integrated to
the objective function (value) to suppress unnatural seg-
mentations due to excessive split and merge. The total
splitting cost is defined by

Splitting cost =
n−1∑
i=1

Ri

R

where n is the number of characters, Ri is the total
length of splitting runs which are used to separate i th
and i + 1 th characters, and R is the summation of all
splitting runs generated in the pre-segmentation process.
The resulting objective function is combined, here as a
penalty, in the word likelihood calculation.

It is our view that it is possible to expand the model-
based dynamic-programming technique for working with
large lexicons. However, we found only two methods of
this kind in the literature. Shridhar et al., [75] and Man
et al., [58], did not constrain the k th character to be
a specific one but chose the most likely in the current
block of primitive segments. In this case, the evaluation
function (match) may be replaced by an ordinary OCR
module that outputs the most likely character and its
confidence given a partition of the word image. The same
array and dynamic-programming algorithm can be used
in this case as well, if the word length is estimated in
advance. The only difference was the semantic meaning
of the k th character that is a variable and not con-
stant. In order to overcome a mis-estimation of the word
length, Man et al., executed the algorithm for several
other close word lengths. The comparison between two
interpretations of different lengths was based on an en-
tropy calculation:

pi = qi/(q1 + q2 + . . . + qn)

Hn(p1, p2, . . . , pn) = −Σn
i=1pi ln(pi)
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Table 3. A summary of all segmentation-based methods according to categories and with
respect to the lexicon that was originally used in the experiments reported

Lexicon type Dynamic-programming Shortest path HMMs Specialized
methods

Small static [32–34]
Limited dynamic [27,28,43–46] [61,25] [30,31,33,34] [60,66]

[49,47,48,75] [86,87]
[9,72–74]

Large [58,81] [61,24] [13,15,14,40] [4,78,79,88]
[41,10–12]
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Fig. 7. The corresponding model-discriminant graph for a
three-letter word subject to a maximum of two segments per
character. The numbers correspond to the indices of respec-
tive segmentation points

where qi represents the degree of membership of each
hypothesized character, i.e., its confidence.

The authors are currently developing some new al-
gorithms that would allow extending the dynamic-pro-
gramming methods to large lexicons – see [81].

4.2 Shortest path variation

The simple dynamic-programming algorithm can be
mapped to a compatible graph in which finding the
shortest path from left to right using the Viterbi algo-
rithm [85,26] is isomorphic to running the general dy-
namic-programming technique directly on the group of
primitive segments. Such an approach was taken by Nohl
et al., [61]. In the limited lexicon version, i.e., when com-
puting the matching score of a single word, each interior
node in the graph corresponds to a possible image seg-
ment L-R and a particular character C within the word,
numbered (L-R,C), where L and R are preliminary seg-
mentation points that satisfy the segmentation criteria
as a couple. Each (directed) arc in the graph corresponds
to an allowed sequence of two image segments and their
possible interpretation, usually generated by the follow-
ing rule
(L − R, C) → (L′ − R′, C ′)

where L′ = R

and C ′ follows C in the respective word

...

...

...Start

1st

letter letter

2nd

0-1

’a’

1-2

1-2

0-1

’a’

’z’

’z’

1-3
’z’

1-3
’a’

Fig. 8. The corresponding path-discriminant graph for a
three-letter word subject to a maximum of two segments per
character. The numbers correspond to the indices of respec-
tive segmentation points

Two additional nodes appear in the graph: the ”Start”
node, which is the origin of arcs terminating on all nodes
corresponding to the first character of an interpretation,
and the ”End” node, which is the termination of arcs
from all nodes corresponding to the last character of an
interpretation. An example of a three-letter word using
a segmentation algorithm that does not split a character
into more than two segments is shown in Fig. 7. Every
legal segmentation of the word image has a correspond-
ing path in the graph (from ”Start” to ”End”) and vice
versa. We associate with each node (L-R,C) a score P
representing the probability that segment L-R should be
interpreted as character C. Thus, the score for any par-
ticular segmentation is the product of the scores {Pi}
associated with the nodes along the corresponding path.
The best segmentation, i.e., optimal path, is computed
using the Viterbi algorithm [85,26] to maximize

∏
i {Pi}.

The limited lexicon oriented method can be adapted
for a large lexicon environment, by switching to a path-
discriminant method. In this case instead of using a sep-
arate graph for each lexicon word, a single graph is used
where each path is associated with a possible word inter-
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pretation. The method relies on a similar segmentation-
recognition graph, in which each legal block of primitive
segments that can be interpreted as a character is repre-
sented by a state for each one of the possible characters,
i.e., usually 26 states. In this case, the term “legal block”
means that the block satisfies the segmentation criteria
used. The arcs of this graph are between all pairs of
states that represent consecutive blocks, i.e., two blocks
of primitive segments that share a common segmentation
point – one on its left and the other on its right. Each
state is associated with a recognition score proportional
to the matching score between the current block and the
plausible character. The resulting graph can be viewed
as the one used in the model-discriminant approach for
a specific word where each state was duplicated for each
possible character. Some arcs that were eliminated from
the model-discriminant graph may be returned. Elimi-
nation of arcs may occur when they give rise to paths
of length that differ from the constant path length. A
constant long path is required only in a graph that rep-
resents segmentation-recognition alternatives of a single
word. Fig. 8 presents a part of the single word graph
shown in Fig. 7 after the transformation from single to
multi-word handling. Each path through the graph cor-
responds to an allowed segmentation alternative and a
possible interpretation of the word image. The best scor-
ing path is the one that represents the most likely word
hypothesis.

Another graphical modeling of dynamic program-
ming was presented by Favata [24]. In the first stage, all
possible letter interpretations are determined by perfor-
ming basic character recognition for each possible block
of primitive segments and calculating a confidence for
each of the 26 letters. Each such block contains at most
N (N = 4) consecutive primitive segments. The system
keeps track of the results for each such block including
character confidences and left and right segmentation
points. In the second stage, Favata considers all possi-
ble word interpretations by generating all valid paths
through segmentation points. This is done by creating a
weighted directed graph G = (V, A), where V is the set
of segmentation points and each arc between two seg-
mentation points LP and RP corresponds to a letter in-
terpretation of a block between LP and RP. The weight
on the arc is the confidence of the letter. Clearly, there
might be up to 26 edges between a pair of nodes differing
by their weight and letter labels. An approximate match-
ing using beam search enables the integration of various
heuristics with the dynamic-programming algorithm for
finding the shortest path.

We find this graphical modeling a perfect solution to
dealing with complete cursive words in contrast to short
sequences of connected or touching characters. There-
fore, this may seem like an upgrade to the method pre-
sented by Favata et al., [25], where each plausible seg-
mentation-interpretation alternative was investigated
and ranked. However, we believe that combining the
graphical modeling from [24] with the additional proper-
ties used in [25] (like digram and trigram statistics gath-
ered from the lexicon) would make Favata’s results even
better. Employing certain spatial rules that reflect the

compatibility between letters and their surrounding let-
ters such as relative height would also be very nice to
have.

4.3 HMMs

In the context of HMMs we call segmentation-based al-
gorithms those algorithms that use significant segmen-
tation, and each transition is associated with an obser-
vation symbol that has a semantic meaning of a certain
fraction of the respective character. The resulting letter
sub-HMMs do not have self-loop transitions. In general
the number of possible paths through a letter model is
the minimum required in order to preserve all different
segmentation/symbol assignments of a letter. Since there
is no difference between letter sub-HMMs that serve dy-
namic limited lexicons and those that serve large lexi-
cons, we did not classify the methods with respect to
the lexicon that was used in the experiments reported.
However, we included special comments regarding the
lexicon used in cases where the method required some
lexicon sensitive adaptations.

Gilloux et al., [30,31,33,34] use the same elementary
sub-HMMs (see an example in Fig. 5) that were used in
their holistic method [32–34] defining them here as letter
models. When used as letter models in conjunction with
segmentation, the three possible paths from the initial
state of the current letter to the corresponding state of
the next letter become more meaningful. A path that
includes a null transition between two consecutive ini-
tial states of the current and following letters represents
under-segmentation. A path that includes a normal tran-
sition between the same states represents correct seg-
mentation with the common symbol or a different one.
A path that includes a transition from the initial state
to the additional state in the same letter, and then to
the initial state of the following one, represents an over-
segmentation scenario.

In order for their method to succeed, the associated
segmentation algorithm should not split a letter into
more than two primitive segments. Therefore, special let-
ters like w, m, and n, that tend not to satisfy this crite-
rion are represented as a concatenation of more than one
sub-HMM. Training was done according to the forward-
backward (Baum-Welch) algorithm [2,1], the same algo-
rithm that was used to train all HMM-based segmenta-
tion-free methods.

An upgrade to the previous system is presented in
El Yacoubi et al. [86,87]. Each transition (besides a null
one) turns into a double transition with a state between
the two. This supplement was used in order to model
the segmentation point (sp) type, as well as inter-letter
spaces.

Several HMM methods for segmentation-based word
recognition systems were developed by the CEDAR re-
search group at SUNY [13,15,14,40,41,10–12]. Their ini-
tial work developed robust letter sub-HMMs in order to
handle both over and under-segmentation cases [13,15,
14]. According to the segmentation algorithm each let-
ter may be decomposed into three parts at the most:
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L L LM R M R

Fig. 9. Combining two-letter sub-HMMs for handling both
over and under-segmentation (Chen et al.)

left, middle and right. On the other hand, two letters
may be joined together to appear in a single primitive
segment. The resulting HMM is built of three state letter
sub-HMMs, representing all possible locations of a seg-
mentation point. In addition, transitions between almost
every pair of states, whether they belong to the same let-
ter sub-HMM or to different letter models, are allowed
(see an example in Fig. 9). Each transition represents
a unique interpretation of a single primitive segment, as
a sequence of consecutive letter parts. The probability
associated with each transition (aij) is a multiplication
of all the following probabilities:

– The probability of the segmentation point represen-
ted by state i to occur.

– The probability that all the consecutive letter parts
included in the current primitive segment were not
separated.

– The probability of the two relevant letters to appear
in a raw, when working in case of inter-letter transi-
tions in an HMM having a clique topology for a large
lexicon environment.

Segmentation statistics are calculated during the train-
ing phase after performing the segmentation algorithm
on the training samples. Linguistic statistics that relate
to letters and pairs of letters occurrence frequency are
derived from the lexicon (if necessary). A similar inter-
polation is used to calculate initial state probability –
πi. Using this method, the initial state probability is
not trivial as in all previously mentioned HMMs even
if a model-discriminant is used, let alone an HMM of a
path-discriminant kind. Each one of the three states of a
letter, that may turn out to be the first letter, is a can-
didate to become the initial state of the optimal path.
Hence, when this method is used for a limited lexicon,
i.e., when using a model-discriminant HMM, there are
six alternatives as only the first two letters may be the
starting ones. However, in a large lexicon scenario, all
26 × 3 states have a potential for being initial states.

Unfortunately, although the approach seems to be
very promising theoretically and experimentally, train-
ing such a system is rather complicated and laborious,
especially when a large lexicon is used, as in the experi-
ments that were reported.

To overcome this complication, a new system was de-
veloped based on a variable duration HMM (VDHMM)
[10–12]. Each letter sub-HMM is cut to the minimum of
one state only, thus reducing the number of transitions
enormously. No interpolations are necessary to compute
all the probabilities involved (πi, γi, aij), since they de-
pend only on the lexicon. A new and robust segmenta-

1 12 3 4

Fig. 10. An alternative to a variable duration letter sub-
HMM

tion algorithm, which can split (almost) all the touch-
ing letters, but on the other hand may decompose one
letter into four primitive segments, was used. In previ-
ously mentioned HMM-based word recognition systems,
a transition between states covered only one primitive
segment. In this case, states are isomorphic to complete
letters, and each transition is associated with a variable
size block that contains between one to four consecu-
tive primitive segments. In other words, states are given
a new dimension of duration. Mathematically speaking,
each state is associated with an extra probabilistic pa-
rameter that expresses the probability of the letter it
represents to be split into d primitive segments:

D = {P (d|qi)}; where P (d|qi) = Pr{duration(qi) = d}
Furthermore, the induction step of the Viterbi algorithm
is updated as follows:

δt(j) = max
1≤i≤N

max
1≤d≤D

δt−d(i)aijP (d|qj)bj(Ot
t−d+1)

d

A different approach of handling this kind of HMM given
the same segmentation algorithm can be found in [40,41].
An adaptive length Viterbi algorithm was developed to
handle transitions of variable duration. At each step of
the Viterbi recursion, for each state, we choose the block
of primitive segments that has the maximum character
probability among all possible blocks at this stage. The
algorithm should overcome the fact that at any step,
different paths may have covered a different number of
primitive segments. So, some paths may terminate ear-
lier than others.

An interesting simulation (alternative) to a variable
duration HMM (VDHMM) using conventional HMM ba-
sics was proposed by Chen et al., [9] in order to create
a letter model (see an example in Fig. 10). Each letter
sub-HMM contains 4 states. Transitions are allowed be-
tween a state and either the following state or the first
state of the next letter. The resulting sub-HMM con-
tains 4 different paths from the first state of the current
letter to the first state of the next one, having 1, 2, 3,
or 4 transitions respectively. Using the same letter dura-
tion statistics as in [10–12], transition probabilities are
assigned in such a way that the probability that a path
contains d transitions is the same as the probability that
a letter contains d primitive segments.

A very similar letter sub-HMM was used by Senior
et al., [72–74]. However, in this system the input to
the HMM was a sequence of probability vectors repre-
senting the probability of the current frame taken from
the word image to be (a part of) each letter. Recur-
rent neural networks were used in order to estimate a
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letter probability. There was only one difference in the
letter sub-HMM topology, allowing a self-loop transition
in the last state. The self-loop enables letter paths longer
than 4 transitions with probabilities decreasing exponen-
tially. Using this kind of letter models showed significant
improvement in comparison with simple models of one
state only (and a self-loop), or models that force dif-
ferent minimum duration on different letters. The addi-
tional stage in the recognition process, i.e., transform-
ing a feature vector into a letter probability vector pre-
ceding the HMM phase, is actually a change in con-
cept. The resulting method becomes very similar to a
segmentation-based one although it does not perform
any meaningful segmentation. In [74], a combination of
model-discriminant HMMs and a path-discriminant
HMM was suggested. In this case, only some of the lexi-
con words are given a unique model. In the path-
discriminant model, each inter-letter transition was asso-
ciated with the probability of the relevant pair of letters
to appear in the lexicon. The final decision should take
into account both the highest scored word model and the
word interpretation resulting from the path-discriminant
stand-alone HMM.

4.4 Specialized methods

In this section we review a unique segmentation-based
method that was designed for a large lexicon environ-
ment. The dynamic programming that was used in all
previously mentioned methods to find an optimal seg-
mentation-recognition pair, was abandoned for the bene-
fit of a heuristic search through the domain of all possible
interpretations. The heuristic search used is a variation
of the famous A∗ algorithm. We finish this section with a
brief review of three methods that use pure segmentation
followed by a separate recognition module.

A widely known non-HMM approach was presented
by Bozinovic and Srihari [4] (see early versions in [78]
and [79]). This seems to be the first system to deal with
a large lexicon. We will refer to the top two levels which
are relevant here, the word and letter levels respectively.
In the word level an ordered list of hypotheses is main-
tained. Each hypothesis relates to a prefix of a lexicon
word and a sequence of consecutive primitive segments
starting at the leftmost primitive segment of the word
image. However, different hypotheses may relate to seg-
ment sequences of different lengths. The score of a hy-
pothesis is the average matching score between the re-
spective characters and the union of primitive segments
they claim to represent. At each step the current best hy-
pothesis is being expanded, and the list is resorted given
the new hypotheses that replaced the original ones. The
resulting new list is sent for word formation, or lexicon
lookup, where inadmissible hypotheses are pruned, and
the one with the highest rating is expanded and so on. An
expansion is the process of generating all possible single
characters that might have proceed the given hypothesis.
Following this is the establishment of new hypotheses as
the concatenation of the original one with each new char-
acter. The character generation task is the role of the let-

ter level. Given the rightmost SP (segmentation point)
that appears in the given hypothesis, we give possible
character interpretations to the symbols that appear in
the next primitive segment or in the union of the next
two or three primitive segments. The primitive segment
union alternatives are due to the fact that a character
may spread over three primitive segments at the most.

In contrast to all methods mentioned in this section,
the following three do not integrate pre-segmentation
within the recognition phase. In this case, one segmenta-
tion is executed prior to the recognition module. Meth-
ods of this kind can use either one of the following tech-
niques to overcome segmentation mistakes. When the
segmentation algorithm does not produce many alterna-
tives, one can execute the recognition module for each
possible segmentation, choosing the best interpretation
over all segmentation alternatives. This method was suc-
cessfully tested by Yanikoglu et al., in [88]. Another op-
tion independent of the first one is to use intensive post-
processing such as string-to-string correction. A string-
to-string correction technique is the letter-level version
of the popular minimum edit-distance algorithm that is
discussed in detail in the segmentation-free section and
in Sect. B in the appendix. However, when used in this
scenario, special operations such as substituting two let-
ters for one and vice versa are considered in order to
handle over and under-segmentation respectively. One
should note that post-processing of this type limits the
size of the lexicon since it requires each possible word
to be compared with the input. Examples of methods
that have utilized this post-processing can be found in
[60] and [66]. These methods are very rare because one
cannot rely on the segmentation algorithms that exist to-
day. Moreover, overcoming segmentation mistakes in the
post-processing is more limited than within the recogni-
tion algorithm. As a result, we chose not to give these
special methods further discussion in this paper.

5 Perception-oriented methods

In this section we present another approach to word
recognition. Although it is not as popular as the two
former approaches, we find this approach significant as
it seems to resemble a good working model, namely the
human reading scheme. However, there are only a few
methods that prefer this approach, perhaps because of
implementation issues. Unlike all different methods that
were discussed earlier, a perception-oriented method
does not work sequentially. Sequential recognition meth-
ods attempt to match an ordered list of observations/pri-
mitive segments with a word pattern (either specific or
variable) from left to right. When using perception-
oriented methods, efforts are made, in a bottom-up man-
ner, to identify letters anywhere in the observation se-
quence derived from a word image. Next, a decision pro-
cedure is run, resulting in an interpretation which con-
sists of the best non-overlapping set of letters, and the
most likely interpretation of possible gaps that were left
between them. In a similar way, a human reader doesn’t
search a word image from left to right in an attempt
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to match consecutive segments with possible characters.
Usually a human reader seeks for the most reliable char-
acters he/she can recognize. In the next stage he/she
tries to match the remaining gaps with candidates from
the lexicon that agree with the preliminary characters
that were already recognized ([83]). As a result of these
similarities, this approach is often called human-like
reading. Sometimes, when the final output of a method
of this type is only the letters that were recognized with
high confidence, it is classified as a key letter extraction
method.

A perception-oriented method is independent of pre-
vious operations. Therefore, the input to the recogni-
tion module can be either one of feature vectors associ-
ated with primitive segments, or observations derived di-
rectly from a word image. In other words, segmentation
is not obligatory. Moreover, perception-oriented meth-
ods do not require certain level of word representation
and can perform a match in any level of representation.
Except for one system, all the experiments using meth-
ods of this kind were carried out using small lexicons
only. However, we believe that these methods (as proven
by the exceptional case) are capable of handling large
lexicons as well.

In Edelman et al., [22], recognition is based on the
alignment of letter prototypes, given an image of a cur-
sive word. We perceive this method to be one of the
most successful word recognition methods in general and
in perception-oriented in particular. The main stages of
the recognition process are as follows:

– Anchor point extraction. This is performed by tracing
the vertical and horizontal extrema of the contour
and the line endings (including T-junctions).

– Stroke detection. Strokes are recognized by prototype
alignment, using affine transformations computed
from anchor-point correspondences.

– Letter hypothesization. Potential instances of each of
the 26 letters are detected. Every instance at this
stage has a score that reflects its closeness to the part
of the contour with which it is aligned. This score
takes into account the distance between the relevant
part of the contour and the respective prototype. The
amount of distortion undergone by the stroke’s pro-
totype and intrusion to forbidden zones defined by
each prototype reduce the score.

– Instance filtering. The previous stage frequently re-
sults in the detection of several overlapping instances
of the same letter. The set of all detected instances
of a letter is filtered to discard those that are clearly
superfluous, based on the concept of domination. A
character instance is said to dominate another one if
it has a higher score and the overlap between the two
is sufficiently large.

– Interpretation. At this stage, a best-first search is
used to assemble the interpretation string out of the
set of all detected letter instances. The algorithm
reminds the one used by Bozinovic et al., [4,78,79]
– both relate to the famous A∗ algorithm. At each
step, one expands the most promising node among
all those situated along the current expansion fron-

tier. The expansion is performed by a function that
returns all one letter continuations to the right of the
current string. Each one of the new expanded strings
is checked for validity. For example the distance be-
tween the additional letter and the rightmost letter
of the original string should not exceed a threshold.
The entire cycle is repeated a preset number of iter-
ations, after which all strings that reached the right
end of the word image are sorted.

– Application of lexical knowledge. The fast spell-check-
ing function available in the Symbolics Lisp environ-
ment is used in order to synthesize the lexical neigh-
borhood and statistical Englishness of a string.

In the method presented by Simon et al., [77,76],
”anchors” i.e., features that are reliable, are found in
the symbolic (feature) description chain of the word.
The symbolic description chain is produced, like in some
segmentation-based methods, by translating each feature
vector that might be found in a segment into a unique
symbol. Thus, one or more contiguous fields representing
one or more segments, determine the probability of the
existence of one or more characters at a certain location.
Then, the words from the lexicon that may agree with
the partial recognition are chosen as possible candidates.
In the next step, a dynamic matching is done between
the fields of the symbolic description chain that have not
yet been interpreted and the remaining characters of the
candidate word. A very similar process is described by
Cheriet et al., in [16]. In this case the letter evaluation
stage results in a special string of the form:

(A∗(a|b)∗)+

where A denotes a set of possible labels of the input
key letter, a and b denote the two types of segmenta-
tion points that may be produced by the segmentation
algorithm that was used. A can be a set of labels, say
A = {k1, . . . , km}, where m is the number of possible
interpretations of the input key letter.

In Cote et al., [19,20], a cyclic process is used to
choose and rate possible candidates. The bottom-up
route, i.e., filtering words according to observed features
that are compatible with letters at certain locations, is
very similar to the one described in the previous method.
Nevertheless, there are two significant modifications.
First, the interaction between the different levels – fea-
tures, letters, and words – is based on a perception
model, using excitatory activation of a neural type. A
discovered feature fires and activates all letters that may
relate to it. In a similar way letters activate words. A let-
ter (word) reacts to the sum of all of its excited neigh-
boring features (letters). The second difference with re-
spect to the first method, concerns the representation of
a letter position. In this case a possible letter position is
fuzzy and not accurate, thus enabling one to deal with
the ambiguity of letter location. The top-down process is
used to validate or reject active words, according to the
existence or absence, respectively, of features that are
required to create the missing letters. After a few cycles,
an ordered list of possible lexicon words is obtained.
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In Leroux et al., [50], a pre-segmentation stage pro-
duces segments that refer to possible letters. Then a pre-
recognition process filters out segments that either con-
tain nothing but noise or seem like very noisy letters.
Segments that look like a portion of a letter are aggre-
gated. The first phase of recognition consists of finding
whether a presumed letter is a member of a class of let-
ters as typified by primitive feature groups ligatures. The
second phase aims at ”breaking up” the classes using
geometric knowledge. This process yields either a let-
ter or a set of letters. The third phase consists of vali-
dating the membership class and assigning a confidence
value to the letter. In the final word recognition, if pos-
sible, only characters with a correct confidence value, an
evaluation of the word length, or any other structuring
element are used. Otherwise, we compute edit-distance
between a lattice of candidate letters and each of the
lexicon words.

Some classic segmentation-free methods that go
through some changes often become perception-oriented.
In general, most holistic word recognition methods can
be transformed to follow the perception principles. Given
a sequence of features derived from a word image, it is
possible to search for possible letter appearances using
letter templates. A letter template consists of a grammar
that heuristically determines the production rules that
describe valid mappings of feature sequences into letters.
The search for identifiable letters results in a temporary
string. This string contains the recognized letters, some
special characters that represent a group of letters that
cannot be distinguished, and gaps that did not match
any letter template. Then a string matching against all
the lexicon words is performed. The smaller the lexi-
con is, the fewer letters need to be identified. In the fol-
lowing are a few examples of holistic methods in their
perception-oriented form.

First, we refer to the holistic method of Parisse [65]
mentioned in the segmentation-free section (Sect. 3). Pa-
risse used a minimum edit-distance method that utilizes
word profiles for comparison. In this case, given a profile
of an unknown word image, all possible profiles of known
two-letter n-grams (a combination of any two letters),
are identified and scored. Finally, the highest scored n-
grams are retained. The direct comparison between com-
plete profiles was replaced with finding the best correla-
tion between the input image and a lexicon word, with
respect to the locations of the obtained n-grams.

Govindaraju et al., [37] used an ordered list of strokes
extracted from the skeleton of a given word image. The
strokes were ordered according to the presumed order
they were produced. A special mechanism that attempts
to discover the missing temporal information was used to
conclude the stroke order. Each letter prototype referred
to a possible stroke sequence that is likely to appear
whenever the letter is part of the cursive word.

6 Discussion

In this paper we have reviewed the field of offline cursive
word recognition. We have mainly dealt with the var-

ious methods that were proposed to realize the core of
recognition in a word recognition system. These methods
were discussed in view of the two most important prop-
erties of such a system: the size and nature of the lexi-
con involved, and whether or not a segmentation stage is
present. We have found it useful to classify the field into
three categories: segmentation-free, segmentation-based,
and perception-oriented.

Segmentation-free methods compare a sequence of
observations derived from a word image with similar ref-
erences of words in the lexicon. A very popular technique
to find the most likely interpretation is the minimum
edit-distance algorithm, that is implemented by classic
dynamic-programming tools as well as unique HMMs.
Due to the well-known Baum-Welch algorithm, the
HMMs are more easily trained and adapted than sim-
ple dynamic-programming methods based on minimum
edit-distance.

Segmentation-based methods look for the best match
between consecutive sequences of primitive segments and
letters of a possible word. One can use either dynamic
programming, graphical models, or HMMs to find the
optimal solution. These methods should be used care-
fully as they strongly depend on the segmentation algo-
rithm.

The last category, the perception-oriented approach,
relates to methods that perform a human-like reading
technique. In this case anchor features found all-over the
word are used to boot-strap a few candidates for a final
evaluation phase. This category was found to be unique
and independent of segmentation issues and therefore
deserves a special class by its own.

It is our view that the field is not mature enough to
enable a comparison of methods. Consequently, we have
decided not to describe experimental results achieved by
the various systems. One can justify the fact that com-
parison is inadmissible at the this stage by the following
reasons. First, many methods used proprietary databases
or tested their systems on small lexicons despite their po-
tential to handle larger ones. Second, performance of a
system depends on many factors besides the recognition
algorithm used. A complete word recognition system is
more complicated and relies on several modules such as
preprocessing, post-processing, segmentation, character
recognition, etc. In addition, the chosen feature set also
contributes in a major way to the final performance. Fi-
nally, some methods we reviewed were not investigated
and tested up to their limit. These methods went through
preliminary experiments only.

In what follows, we briefly discuss some of our more
important observations regarding the offline cursive word
recognition field. We also include some observations that
can be used in order to select or design a system for vari-
ous needs. Several parameters should be considered when
one is about to evaluate a method. Among them are:
the lexicon capabilities (with respect to size and nature),
recognition rate, average processing time per word, com-
plexity of programming and training, amount of training
data required, portability, etc. Usually the most impor-
tant constraint determined by the application level is the
lexicon involved. However, in real-time applications, the
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average processing time per word is the most important
issue. Obviously, the recognition rate would be a trade-
off between all the above mentioned factors.

One of the most important factors that determine
the recognition rate achieved by a system is the feature
set involved. It is our view that most of the problems
in word recognition, especially in a large lexicon envi-
ronment, emerge from a wrong feature selection. At the
moment it seems that there is no feature set that can
be considered optimal. While high-level features are lim-
ited, i.e., they cannot distinguish among similar words,
low-level features are very sensitive to noise in addition
to their tendency to be writer dependent.

Another significant issue that one should consider is
training. One should train a system with real data, i.e.,
holistic models should be trained with samples of the rel-
evant word. Letter-based models should be trained with
samples of the respective letters extracted from images
of cursive words. This is very important because the lig-
atures that are often integrated with letters of a cursive
word may influence its interpretation. In many cases,
an extended training phase, i.e., more samples of cur-
sive words/letters, would improve performance. Unfor-
tunately, there has not been a breakthrough yet, after
which recognition improvement could only be asymp-
totic without gaining a major progress.

Although we did not treat other modules besides the
core recognition, we have observed that the state of the
art word recognition system is a combination of mod-
ules of different developers and not a single system men-
tioned. Fortunately, such a combination is feasible since
most modules are independent of the preceding or fol-
lowing ones. Moreover, it is very popular nowadays to
integrate several recognition algorithms in a single sys-
tem. When several methods are used in parallel, the fi-
nal decision can be made by a weighted calculation over
their answers. In other cases, the methods are merged
in hierarchy, resulting in a situation where one method
performs as a lexicon reducer, letting the more powerful
method(s) concentrate on the most likely words. Both
combinations if used with independent methods can im-
prove the recognition rate. A hierarchical combination
may also save computation time.

It seems that the problem of word recognition in the
case of small and static lexicons is essentially solved.
The improvements that are still needed can be achieved
through optimization of already existing methods. How-
ever, this is definitely not the case for limited and large
lexicons. We would like to point out that we may be close
to the limits of stand-alone word recognition, and efforts
should be made to improve post-processing techniques
that will take advantage of syntax, context, and other
external parameters.
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Appendix

A Hidden Markov Models (HMMs)

This section briefly reviews HMMs and the aspects rele-
vant to the word recognition methods that are mentioned
in Sects. 3,4. The interested reader should refer to Ra-
biner et al., [69,68,67] for a complete explanation. Given
a set of states q1, . . . , qS and a codebook of observations
v1, . . . , vO, a first-order HMM can be described by the
parameter λ = (Π, A, Γ, B), where

the initial state probability Π = {πi},

where πi = Pr(qi at t = 1)
the state transition probability A = {aij},

where aij = Pr(qj at t + 1|qi at t)
the last state probability Γ = {γi},

where γi = Pr(qi at t = T )
the observation probability B = {bj(k)},

where bj(k) = Pr(vk at t|qj at t)

There are two kinds of HMMs: discrete or continuous
density. In a discrete HMM, observations are associated
with a symbol probability of the nearest symbol in the
codebook, while in a continuous density HMM, the ob-
servation probability is calculated as a mixture of Gaus-
sians that refer to the codebook symbols. We chose not
to mention which kind of HMM (discrete or continuous
density) was used in any of the methods since it has no
effect on the nature of the method that was used and
can be considered as arbitrary.

HMMs gained their popularity in classification prob-
lems in general and cursive word recognition in particu-
lar because they are most suitable to model the variance
that usually appears in symbolic description chains of
objects. They can be easily designed to handle a combi-
nation of a symbol deletion, substitution with another or
an extra symbol insertion that may change the predicted
description entirely.

HMMs are often used in word recognition systems as
word models. When small or limited lexicons are used,
the model-discriminant method is preferred. In this case,
each model is associated with a separate HMM that at-
tempts to estimate the likelihood of the observation se-
quence to represent the particular word. Moreover, in an
HMM of this kind, (using either one of segmentation-free
or segmentation-based approaches) each word model is
a concatenation of the relevant letter sub-HMMs as il-
lustrated in Fig. 2. Both initial and last state probabil-
ities are degenerated because a path must start on the
leftmost state and end on the rightmost one. The a pos-
teriori probability of a model is the highest probability
of a path through it, found by the Viterbi algorithm [85,
26]. Because of the nature of handwriting that dictates
a left to right movement, there are no backwards tran-
sitions in a sub-HMM representing a letter. It is very

important to distinguish between word model creation
phase that can be letter-oriented, and recognition phase
that can utilize such a model using a segmentation-free,
i.e., complete word oriented method. On the other hand,
an HMM-based method for large lexicons uses one HMM
called path-discriminant HMM. This single model is used
for the whole lexicon, and different paths, i.e., state se-
quences are used to distinguish one word from the others.
An example of a single HMM that can handle large lex-
icons is presented in Fig. 3. In general, an HMM of this
kind can be described as a graph with a clique topol-
ogy, where each node represents a letter sub-HMM and
the arcs represent transitions between them. Using 26
nodes, one for each letter, assures that each legal word
is isomorphic to a path. However, each path is a family
of paths because each node along the path is actually
a sub-HMM itself. The output of the recognition pro-
cess is the word associated with the path of maximum
probability over all possible paths with respect to the
observation sequence, i.e., a path I∗ = i∗1i

∗
2 . . . i∗T , that

satisfies:
Pr(O, I∗|λ)
= max

I
[Pr(O, I|λ)]

= max
i1,i2...iT

[πi1bi1(o1) ×
T∏

t=2

ait−1it
bit

(ot) × γiT
]

Usually the Viterbi algorithm [85,26] is used to find this
optimal path.

B Minimum edit-distance

Given a sequence of observations derived from an input
word image and a database of similar descriptions of all
possible words, one usually attempts to find a stored
description that has the minimum edit-distance with re-
spect to the input. Usually, Levenshtein’s metric concept
([51]) is used. The minimum edit-distance between two
chains of symbols denoted by o1 . . . om and r1 . . . rn is
the cheapest cost one needs to pay in order to transform
one chain to the other using the operations of symbol
deletion, substitution, or insertion of an extra one. This
problem has a well-known dynamic-programming solu-
tion:
d(o1 . . . om, r1 . . . rn)

= min




d(o1 . . . om−1, r1 . . . rn−1) + sub(om, rn)
d(o1 . . . om−1, r1 . . . rn) + ins(om)
d(o1 . . . om, r1 . . . rn−1) + del(rn)

where del(rn), sub(om, rn), ins(om) are the cost param-
eters for the three above-mentioned operations respec-
tively. A cost parameter may be constant or a function
of the symbol.

C Dynamic programming

The essence of most segmentation-based recognition
methods is a dynamic-programming technique for calcu-
lating the best matching score between a word C1C2 . . .
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Fig. 11. A graphical illustration of the dynamic-
programming algorithm used for finding the best match be-
tween a three-letter word and a sequence of five primitive
segments. The dashed lines represent paths in which a sin-
gle segment contains two characters, and therefore will be
considered only if the segmentation criteria tolerates such al-
ternatives

CNc and an image represented by a sequence of primitive
segments S1S2 . . . SNs :
value(Nc, Ns)
= max

k
{value(Nc − 1, k) + match(Sk+1,Ns , CNc)

| Nc − 1 ≤ k < Ns}
where match (segment(s),character) is an evaluation
function that estimates the correlation between a union
of primitive segments and the respective character, and
Sl,m is the sequence of primitive segments from the lth
to the mth. The assumption that each primitive segment
contains at most one character can be relaxed. If for ex-
ample, we allow for a primitive segment to correspond
to two characters, we need to update the maximization
above by checking additionally the following expression:

value(Nc − 2, Ns − 1) + match(SNs,Ns
, CNc−1CNc

)

This requires additional training of the evaluation func-
tion so it can handle a pair of characters in a single
primitive segment.

A graphical illustration of the dynamic-programming
approach is shown in Fig. 11.

In order to find the best matching score of a single
word, an array A(Nc, Ns) is formed, where Nc and Ns

are the number of characters and primitive segments re-
spectively. The node A(i, j) holds the value of the best
match between the first i characters in the string and
the first j primitive segments. The induction step is com-
puted according to the above-mentioned formula. After
the dynamic-programming phase is finished, the optimal
segmentation that is associated with the highest score
can be restored by back tracing.
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