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We study several statistically and biologically motivated learning rules
using the same visual environment: one made up of natural scenes and
the same single-cell neuronal architecture. This allows us to concen-
trate on the feature extraction and neuronal coding properties of these
rules. Included in these rules are kurtosis and skewness maximization,
the quadratic form of the Bienenstock-Cooper-Munro (BCM) learning
rule, and single-cell independent component analysis. Using a structure
removal method, we demonstrate that receptive fields developed using
these rules depend on a small portion of the distribution. We find that the
quadratic form of the BCM rule behaves in a manner similar to a kurto-
sis maximization rule when the distribution contains kurtotic directions,
although the BCM maodification equations are computationally simpler.

1 Introduction

Recently several learning rules that develop simple cell-like receptive fields
in a natural image environment have been proposed (Law & Cooper, 1994;
Olshausen & Field, 1996; Bell & Sejnowski, 1997). The details of these rules
are different, as is their computational reasoning; however, all depend on
statistics of order higher than two, and all produce sparse distributions.

In a sparse distribution, most of the mass of the distribution is concen-
trated around zero, and the rest of the distribution extends much farther
out. In other words, a neuron that has sparse response responds strongly to
asmall subset of patterns in the input environment and weakly to all others.
Bimodal distributions, for which the mode at zero has significantly more
mass then the nonzero mode, and exponential distributions are examples
of sparse distributions, whereas gaussian and uniform distributions are not
considered sparse. It is known that many projections of the distribution of
natural images have long-tailed, or exponential, distributions (Daugman,
1988; Field, 1994). It has been argued that local linear transformations such
as Gabor filters or center-surround produce exponential-tailed histograms
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(Ruderman, 1994). Reasons given vary from the specific arrangements of
the Fourier phases of natural images (Field, 1994) to the existence of edges.
Since the exponential distribution is optimal from the viewpoint of infor-
mation theory under the assumption of positive and fixed average activity
(Ruderman, 1994; Levy & Baxter, 1996; Intrator, 1996; Baddeley, 1996), itis a
natural candidate for detailed study in conjunction with neuronal learning
rules.

In what follows we investigate several specific modification functions
that have the general properties of BCM synaptic modification functions (Bi-
enenstock, Cooper, & Munro, 1982) and study their feature extraction prop-
erties in a natural scene environment. BCM synaptic modification functions
are characterized by a negative region for small postsynaptic depolariza-
tion, a positive region for large postsynaptic depolarization, and a threshold
that moves and switches between the Hebbian and anti-Hebbian regions.
Several of the rules we consider are derived from standard statistical mea-
sures (Kendall & Stuart, 1977), such as skewness and kurtosis, based on
polynomial moments. We compare these with the quadratic form of BCM
(Intrator & Cooper, 1992), though this is not the only form that could be
used. By subjecting all of the learning rules to the same input statistics and
retina/lateral geniculate nucleus (LGN) preprocessing and by studying in
detail the single-neuron case, we eliminate possible network-lateral interac-
tion effects and can examine the properties of the learning rules themselves.

We start with a motivation for the learning rules used in this study and
then present the initial results. We then explore some of the similarities and
differences between the rules and the receptive fields they form. Finally, we
introduce a procedure for directly measuring the sparsity of the representa-
tion a neuron learns; this gives us another way to compare the learning rules
and a more quantitative measure of the concept of sparse representations.

2 Motivation

We use two methods for motivating the use of the particular rules. One
comes from projection pursuit (Friedman, 1987), where we use an energy
function to find directions where the projections of the data are nongaussian
(Huber, 1985, for review); the other is independent component analysis
(ICA) (Comon, 1994), where one seeks directions where the projections are
statistically independent. These methods are related, but they provide two
different approaches to this work.

2.1 Exploratory Projection Pursuit and Feature Extraction. Diaconis
and Freedman (1984) show that for most high-dimensional clouds (of points),
most low-dimensional projections are approximately gaussian. This finding
suggests that important information in the data is conveyed in those direc-
tions whose single-dimensional projected distribution is far from gaussian.
There is, however, some indication (Zetzsche, 1997), that for natural images,
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random local projections yield somewhat longer-tailed distributions than
gaussian. We can still justify this approach, because interesting structure
can still be found in non-random directions that yield projections farther
from gaussian.

Intrator (1990) has shown that a BCM neuron can find structure in the
input distribution that exhibits deviation from gaussian distribution in the
form of multimodality in the projected distributions. This type of devia-
tion, which is measured by the first three moments of the distribution, is
particularly useful for finding clusters in high-dimensional data through
the search for multimodality in the projected distribution rather than in the
original high-dimensional space. It is thus useful for classification or recog-
nition tasks. In the natural scene environment, however, the structure does
not seem to be contained in clusters: projection indices that seek clusters
never find them. In this work we show that the BCM neuron can still find
interesting structure in nonclustered data.

The most common measures for deviation from gaussian distribution
are skewness and kurtosis, which are functions of the first three and four
moments of the distribution, respectively. Rules based on these statistical
measures satisfy the BCM conditions proposed by Bienenstock et al. (1982),
including a threshold-based stabilization. The details of these rules and
some of the qualitative features of the stabilization are different, however.
Some of these differences are seemingly important, while others seem not
to affect the results significantly. In addition, there are some learning rules,
such as the ICA rule of Bell and Sejnowski (1997) and the sparse coding
algorithm of Olshausen and Field (1996), which have been used with natural
scene inputs to produce oriented receptive fields. We do not include these
in our comparison because the learning is not based on the activity and
weights of a single neuron, and thus detract from our immediate goal of
comparing rules with the same input structure and neuronal architecture.

2.2 Independent Component Analysis. Recently it has been claimed
that the independent components of natural scenes are the edges found in
simple cells (Bell & Sejnowski, 1997). This was achieved through the maxi-
mization of the mutual entropy of a set of mixed signals. Others (Hyvarinen
& Oja, 1997) have claimed that maximizing kurtosis, with the proper con-
straints, can also lead to the separation of mixed signals into independent
components. Thisalternate connection between kurtosis and receptive fields
leads us into a discussion of ICA.

ICA is a statistical signal processing technique whose goal is to express a
set of random variables as linear combinations of statistically independent
variables. We observe k scalar variables (di, do, ..., d)T = d, which are
assumed to be linear combinations of n unknown statistically independent
variables (s, s, ..., Sn)". We can express this mixing of the sources s as

d = As, 2.1)
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where A is an unknown k x n mixing matrix. The problem of ICA is to
estimate both the mixing matrix A and the sources s using only the obser-
vation of the mixtures d;. Using the feature extraction properties of ICA,
the columns of A represent features, and s; represent the amplitude of each
feature in the observed mixtures d. These are the features in which we are
interested.

In order to perform ICA, we first make a linear transformation of the
observed mixtures

¢ = Md. 2.2)

These linearly transformed variables would be the outputs of the neurons
in a neural network implementation, and M, the unmixing matrix or matrix
of features, would be the weights. Two recent methods for performing ICA
(Bell & Sejnowski, 1995; Amari, Cichocki, & Yang, 1996) involve maximiz-
ing the entropy of a nonlinear function of the transformed mixtures, o (c),
and minimizing the mutual information of o (¢) with respect to the transfor-
mation matrix, M, so that the components of ¢ (c) are independent. These
methods are, by their definition, multineuron algorithms and therefore do
not fit well into the framework of this study.

The search for independent components relies on the fact that a linear
mixture of two nongaussian distributions will become more gaussian than
either of them. Thus, by seeking projections ¢ = (d - m) that maximize de-
viations from gaussian distribution, we recover the original (independent)
signals. This explains the connection of ICA to the framework of exploratory
projection pursuit (Friedman & Tukey, 1974; Friedman, 1987). In particular
it holds for the kurtosis projection index, since a linear mixture will be less
kurtotic than its original components.

Kurtosis and skewness have also been used for ICA as approximations
of the negative entropy (Jones & Sibson, 1987). It remains to be seen if the
basic assumption used in ICA, that the signals are made up of independent
sources, is valid. The fact that different ICA algorithms, such as kurtosis
and skewness maximization, yield different receptive fields could be an
indication that the assumption is not completely valid.

3 Synaptic Modification Rules

In this section we outline the derivation for the learning rules in this study;,
using either the method from Projection Pursuit or ICA. Neural activity is
assumed to be a positive quantity, so for biological plausibility, we denote
by c the rectified activity o (d - m) and assume that the sigmoid is a smooth,
monotone function with a positive output (a slight negative output is also
allowed). o’ denotes the derivative of the sigmoidal. The rectification is
required for all rules that depend on odd moments because these vanish in
a symmetric distribution such as that produced by natural scenes. We also
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demonstrate later that the rectification makes little difference on learning
rules that depend on even moments.
We study the following measures:

Skewness 1. This measures the deviation from symmetry (Kendall & Stu-
art, 1977, for review) and is of the form

Sy = E[c®]/E>*[¢?]. (3.1)

A maximization of this measure via gradient ascent gives
1 3 21\
VS = oot [c <c — E[)/E[c ])0 d]
- #E [c (c - E[c3]/®M> o’d], (3.2)
where Oy, is defined as E[c?].
Skewness 2. Another skewness measure is given by

S, = E[c®] — E*°[¢?]. (3.3)

This measure requires a stabilization mechanism, because it is not invariant
under constant multiples of the activity c. We stabilize the rule by requiring
that the vector of weights, which is denoted by m, has a fixed norm, say,
[Im|| = 1. The gradient of this measure is

VS, = 3E [cz - c\/E[cz]] —3E [c (c - J@M) a/d] , (3.4)
subject to the constraint |m| = 1.

Kurtosis1. Kurtosis measuresdeviationfromgaussiandistribution mainly
in the tails of the distribution. It has the form

Ky = E[c*]/E?[¢?] — 3. (3.5)

This measure has a gradient of the form

VK; = @iMZE [c (c2 _ E[c4]/E[c2]> o/d]

1t JE [c (c2 - E[c“]/@M) o/d] . (3.6)

®
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Kurtosis 2. As before, there is a similar form that requires some stabiliza-
tion:

Ky = E[c*] — 3E2[¢?]. (3.7)
This measure has a gradient of the form
VK, = 4E [(c3 - 3cE[c2]) a/d]
— 4E [c(c2 — 3®M)o’d] . Im)=1. (3.8)

In all the above, the maximization of the measure can be used as a goal
for projection seeking. The variable ¢ can be thought of as a (nonlinear)
projection of the input distribution onto a certain vector of weights, and the
maximization then defines a learning rule for this vector of weights. The
multiplicative forms of both kurtosis and skewness do not require an extra
stabilization constraint.

Kurtosis 2 and ICA. It has been shown (Hyvarinen & Oja, 1996) that kur-
tosis, defined as

Kz = E[c*] - 382[¢?],

can be used for ICA. This can be seen by using the property of this kurto-
sis measure, Ko(x1 + X2) = Ka(X1) + Ka(x2) for independent variables and
defining z = ATm. We then get

n
Ko(m-d) = Ko(m'd) = Ko(m'TAs) = Ka(z's) = sz“Kz(sj). (3.9)
i=1

The extremal points of equation 3.9 with respect to z under the constraint
E[(m-d)?] = 1 occur when one component z; of z is +1 and all the rest
are zero (Delfosse & Loubaton, 1995). In other words, finding the extremal
points of kurtosis leads to projections where m - d = m'd = z's equals, up
to a sign, a single component s; of s. Thus, finding the extrema of kurtosis
of the projections enables the estimation of the independent components
individually, rather than all at once, as is done by other ICA rules. A full
ICA code could be developed by introducing a lateral inhibition network,
for example, but we restrict ourselves to the single neuron case here for
simplicity.

Maximizing K, under the constraint E [(m - d)?] = 1, and defining the
covariance matrix of the inputs C = E [ddT], yields the following learning
rule:

m = (C’lE [d(m - d)®] - 3m) . (3.10)

>IN
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This equation leads to an iterative fixed-point algorithm, which converges
very quickly and works for both single-cell and network implementations
(Hyvarinen & Oja, 1996).

QuadraticBCM. ThequadraticBCM (QBCM) measure as givenin Intrator
and Cooper (1992) is of the form

1 1
QBCM = §E[c3] - ZEZ[CZ]. (3.12)
Maximizing this form using gradient ascent gives the learning rule:
VQBCM = E [02 - cE[cZ]] — E[c(c — Om)o’d]. (3.12)
Unlike the measures S; and K, above, the QBCM rule does not require any
additional stabilization. This turns out to be an important property, since
additional information can then be transmitted using the resulting norm of

the weight vector m (Intrator, 1996).

4 Methods

We use 13 x 13 circular patches from 12 images of natural scenes as the visual
environment. Two different types of preprocessing of the images are used
for each of the learning rules. The first is a difference of gaussians (DOG)
filter, which is commonly used to model the processing done in the retina
(Law & Cooper, 1994). The second is a whitening filter, used to eliminate
the second-order correlations (Oja, 1995; Bell & Sejnowski, 1995). Whitening
the data in this way allows one to use learning rules that are dependent on
higher moments of the data but are particularly sensitive to the second
moment.

At each iteration of the learning, a patch is taken from the preprocessed
(either DOGed or whitened) images and presented to the neuron. The mo-
ments of the output, ¢, are calculated iteratively using

t
E[c"()] = E / (e~ gt
T J-oo
In the cases where the learning rule is underconstrained (i.e., K, and S;) we
also normalize the weights at each iteration.

For Oja’s fixed-point algorithm, the learning was done in batches of 1000
patterns over which the expectation values were performed. However, the
covariance matrix was calculated over the entire set of input patterns.

5 Results

5.1 Receptive Fields. The resulting receptive fields (RFs) formed are
shown in Figures 1 and 2 for both the DOGed and whitened images, respec-
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tively. Each RF shown was achieved using different random initial condi-
tions for the weights. Every learning rule developed oriented RFs, though
some were more sensitive to the preprocessing than others. The additive
versions of kurtosis and skewness, K, and S,, respectively, developed sig-
nificantly different RFs in the whitened environment compared with the
DOGged environment. The RFs in the whitened environment had higher
spatial frequency and sampled from more orientations than the RFs in the
DOGed environment. This behavior, as well as the resemblance of the RFs
in the DOGed environment to those obtained from PCA (Shouval & Liu,
1996), suggest that these measures have a strong dependence on the second
moment.

The multiplicative versions of kurtosis and skewness, K; and S; respec-
tively, as well as QBCM, sampled from many orientations regardless of the
preprocessing. The multiplicative skewness rule, S;, gives RFs with lower
spatial frequencies than either QBCM or the multiplicative kurtosis rule.
This also disappears with the whitened inputs, which implies that the spa-
tial frequency of the RFs is related to the strength of the dependence of the
learning rule on the second moment. Example RFs using Oja’s fixed-point
ICA algorithm are also shown in Figure 2; not surprisingly, they look quali-
tatively similar to those found using the stochastic maximization of additive
kurtosis, Ko.

The log of the output distributions for all of the rules has the double linear
form, which implies a double exponential distribution. This distribution is
one that we would consider sparse, but it would be difficult to compare
the sparseness of the distributions merely on the appearance of the output
distribution alone. In order to determine the sparseness of the code, we
introduce a method for measuring it directly.

5.2 Structure Removal: Sensitivity to Outliers. Learning rules that are
dependent on large polynomial moments, such as QBCM and kurtosis, tend
to be sensitive to the tails of the distribution. This property implies that neu-
rons are highly responsive and sensitive to the outliers, and consequently
leads to a sparse coding of the input signal. Oversensitivity to outliers is
considered to be undesirable in the statistical literature. However, in the
case of a sparse code, the outliers, or the rare and interesting events, are
what is important. The degree to which the neurons form a sparse code
determines how much of the input distribution is required for maintaining
the RF. This can be done in a straightforward and systematic fashion.

The procedure involves simply eliminating from the environment those
patterns for which the neuron responds strongly. An example RF and some
of the patterns that give that neuron strong responses are shown in Figure 3.
These patterns tend to be the high-contrast edges and are thus the structure
found in the image. The percentage of patterns that needs to be removed in
order to cause a change in the RF gives a direct measure of the sparsity of
the coding. The process of training a neuron, eliminating patterns that yield



Receptive Field Formation in Natural Scene Environments 1805

Output Distribution

smiams N
JANEEE _/\
Smmmme (AN
“uEsRE A\
TEEEUN

Figure 1: Receptive fields using DOGed image input obtained from learning
rules maximizing (from top to bottom) the QBCM objective function, kurtosis
(multiplicative), kurtosis (additive), skewness (multiplicative), and skewness
(additive). Shown are five examples (left to right) from each learning rule, as
well as the log of the normalized output distribution, before the application of
the rectifying sigmoid.

high response, and retraining can be done recursively to remove structure
sequentially from the input environment and to pick out the most salient
features in the environment. The results are shown in Figure 4.

For QBCM and kurtosis, one need only eliminate less than one half of
a percent of the input patterns to change the RF significantly. The changes
that one can observe are orientation, phase, and spatial frequency changes.
This is a very small percentage of the environment, which suggests that the
neuron is coding the information in a very sparse manner. For the skewness
maximization rule, more than 5% are needed to alter the RF properties,
which implies a far less sparse coding.

To make this more precise, we introduce a normalized difference measure
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Figure 2: Receptive fields using whitened image input, obtained from learning
rules maximizing (from top to bottom) the QBCM objective function, kurtosis
(multiplicative), kurtosis (additive), skew (multiplicative), skewness (additive),
and Oja’s ICA rule based on the additive kurtosis measure. Shown are five ex-
amples (left to right) from each learning rule, as well as the log of the normalized
output distribution, before the application of the rectifying sigmoid.

between two different RFs. If we take two weight vectors, m; and mjy, then
the normalized difference between them is defined as

1 s N2
pD=-= (ml M1 _ M2 m2> (5.1)
4 M1l Ima ||
1
= 5(1 — Cos ), (5.2)

where « is the angle between the two vectors and m; is the mean of the
elements of the vector i. This measure is not sensitive to scale differences,
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Figure 3: Patterns that yield high responses of a model neuron. The example
receptive field is shown on the left. Some of the patterns that yield the strongest
one-half percent of responses are labeled on the image on the right. These pat-
terns are primarily the high-contrast edges.

because the vectors are divided by their norm, and it is not sensitive to
scalar offset differences, because the mean of the vectors is subtracted. The
measure has a value of zero for identical vectors, and a maximum value of
one for orthogonal vectors.

Shown in Figure 5 is the normalized difference as a function of the per-
centage eliminated, for the different learning rules. Differences can be seen
with as little as a tenth of a percent, but only changes of around a half-percent
or above are visible as significant orientation, phase, or spatial frequency
changes. Although both skewness and QBCM depend primarily on the third
moment, QBCM behaves more like kurtosis with regard to projections from
natural images.

Similar changes occur for both the BCM and kurtosis learning rules,
and most likely occur under other rules that seek kurtotic projections. It
is important to note, however, that patterns must be eliminated from both
sides of the distribution for any rule that does not use the rectifying sigmoid
because the strong negative responses carry as much structure as the strong
positive ones. Such responses are not biologically plausible, so they would
not be part of the encoding process in real neurons.

It is also interesting to observe that the RF found after structure removal
is initially of the same orientation, but of different spatial phase or pos-
sibly different position. Once enough input patterns are removed, the RF
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Figure 4. Receptive fields resulting from structure removal using the QBCM
rule, the rule maximizing the multiplicative form of kurtosis and skewness. The
RF on the far left for each rule was obtained in the normal input environment.
The next RF to the right was obtained in a reduced input environment, whose
patterns were deleted that yielded the strongest 1% of responses from the RF
to the left. This process was continued for each RF from left to right, yielding a
final removal of about 5% of the input patterns.

becomes oriented in a different direction. If the process is continued, all of
the orientations and spatial locations would be obtained.

An objection may be made that the RFs formed are caused almost en-
tirely by the application of the rectifying sigmoid. For odd-powered learning
rules, the sigmoid is necessary to obtain oriented RFs because the distribu-
tions are approximately symmetric. This sigmoid is not needed for rules
dependent on only the even-powered moments, such as kurtosis. Figure 6
demonstrates that the removal of the sigmoid and the removal of the mean
from the moments calculations do not substantially affect the resulting RFs
of the kurtosis rules.

The choice of 13 x 13 pixel RFs was biologically motivated and compu-
tationally less demanding than larger RFs formation. Figure 7 shows some
21 x 21 pixel RFs; itis clear that little difference is observed. One may notice
that the length of the RF is larger than the lengths of the RFs found using
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Figure 5: Normalized difference between RFs as a function of the percentage
deleted in structure removal. The RFs were normalized, and mean zero, in order
to neglect magnitude and additive constant changes. The maximum possible
value of the difference is 1.

Olshausen and Field’s or Bell and Sejnowski’s algorithms. It is likely that
events causing such elongated RFs are very rare, and thus lead to higher kur-
tosis. When additional constraints are imposed, such as finding a complete
code, one ends up with less specialized RFs and, thus, less elongated RFs.

6 Discussion

This study compares several learning rules that have some statistical or
biological motivation, or both. (For a related study discussing projection
pursuit and BCM, see Press and Lee, 1997.) We have used natural scenes
to gain some more insight about the statistics underlying natural images.
There are several outcomes from this study:

e All rules used found kurtotic distributions. This should not come as
a surprise because there are suggestions that a large family of linear
filters can find kurtotic distributions (Ruderman, 1994).
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Figure 6: Receptive fields using DOGed image input, obtained from learning
rules maximizing (from top to bottom) multiplicative form kurtosis with recti-
fied outputs, nonrectified outputs, and nonrectified outputs with centered mo-
ments respectively, and additive form kurtosis with rectified outputs, nonrec-
tified outputs, and nonrectified outputs with centered moments, respectively.
Shown are five examples (left to right) from each learning rule and the corre-
sponding output distribution.

e The single-cell ICA rule we considered used the subtractive form of
kurtosis as a measure for deviation from gaussian distributions and
achieved RFs qualitatively similar to other rules discussed.

e The QBCM and the multiplicative version of kurtosis are less sensitive
to the second moments of the distribution and produce oriented RFs
even when the data are not whitened. This is clear from the results
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Figure 7: RFs using DOGed image input, obtained from the QBCM learning
rule and the rule maximizing the multiplicative form of kurtosis.

about DOG-processed versus whitened inputs. The reduced sensitivity
follows from the built-in second-order normalization that these rules
have, kurtosis via division and BCM via subtraction. The subtractive
version of kurtosis is sensitive and produces oriented RF only after
sphering the data (Friedman, 1987; Field, 1994).

e Both QBCM and kurtosis are sensitive to the tails of the distribution.
In fact,the RF changes due to elimination of the upper 1/2% portion
of the distribution (see Figure 4). The change in RF is gradual. At
first, removal of some of the inputs results in RFs that have the same
orientation but a different phase, once more patterns from the upper
portion of the distribution are removed, different RF orientations are
found. This finding gives some indication of the kind of inputs the cell
is most selective to (values below its highest 99% selectivity); these are
inputs with same orientation but different phase (different locality of
RF). The sensitivity to small portions of the distribution represents the
other side of the coin of sparse coding. It should be studied further as
it may reflect some fundamental instability of the kurtotic approaches.

e The skewness rules can also find oriented RFs. Their sensitivity to the
upper parts of the distribution is not so dramatic, and thus the RFs
do not change much when a few percent of the upper distribution are
removed.

e Kurtotic rules can find high kurtosis in either symmetric or rectified
distributions. This is not the case for QBCM rule, which requires rec-
tified distributions.
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e QBCM learning rule, which has been advocated as a projection index
for finding multimodality in high-dimensional distribution, can find
projections emphasizing high kurtosis when no cluster structure is
present in the data. We have preliminary indications that the converse
is not true: kurtosis measure does not perform well under distributions
that are bi- or multimodal. This will be shown elsewhere.
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