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Abstract

A two-eye visual environment is used in training a network of BCM neurons. We study the
effect of misalignment between the synaptic density functions from the two eyes, on the formation
of orientation selectivity and ocular dominance in a lateral inhibition network. The visual
environment we use is composed of natural images. We show that for the BCM rule a natural
image environment with binocular cortical misalignment is sufficient for producing networks
with orientation selective cells and ocular dominance columns. This work is an extension of our
previous single cell misalignment model (Shouval et al., 1996).

1 Introduction

It is generally accepted that both orientation selectivity and ocular dominance of receptive fields in
the visual cortex of cats are dramatically influenced by the visual environment (for a comprehensive
review see, Frégnac and Imbert, 1984). Organization of the different properties of receptive fields
such as ocular dominance and orientation selectivity across the visual cortex is best observed by
optical imaging techniques (Bonhoeffer and Grinvald, 1991; Blasdel, 1992). It has been shown
that various plasticity models that use a simplified visual environment, have different effects on
the structure of receptive field organization in the visual cortex (Erwin et al., 1995). Different
models attempting to explain how cortical receptive fields evolve have been proposed over the years
(von der Malsburg, 1973; Nass and Cooper, 1975; Perez et al., 1975; Sejnowski, 1977; Bienenstock
et al., 1982; Linsker, 1986; Miller, 1994). Such models are composed of several components: the
exact nature of the learning rule, the representation of the visual environment and the architecture
of the network. Most of these models assume a simplified representation of the visual environment
(e.g. von der Malsburg, 1973), or replace the visual environment by a second order correlation
function (Miller, 1994).

Realistic representations of the visual environment have only recently been considered (Hancock
et al., 1992; Law and Cooper, 1994; Shouval et al., 1996; Olshausen and Field, 1996), and only in
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recent years have the statistics of natural images been studied and used for predicting receptive field
properties (Field, 1987; Field, 1989; Atick and Redlich, 1992; Bialek et al., 1991; Liu and Shouval,
1994; Shouval and Liu, 1996). Once actual visual scenes are used, it is possible to more realistically
represent two-eye input, and account for the fact that the two eyes are not looking at exactly the
same visual scene. For example, Li and Atick (1994) have used natural images to extract detailed
two-eye power spectra from stereo images and used these results to predict properties of cortical
receptive fields.

We have recently shown (Shouval et al., 1996) that single cell BCM neurons, trained in a
binocular natural image environment can develop both orientation selectivity and varying degrees
of ocular dominance. We have also shown in that study that PCA (Oja, 1982) neurons can not
develop ocular dominance. This is a result of the invariance of the two-eye correlation function to
a two-eye parity transformation.

In this paper we extend the single cell study to networks of interconnected neurons. The network
interactions have two types of effects:

(a) They can alter properties of single cell receptive fields.

(b) They produce an organization of receptive fields across the cortex.

We study these two effects on BCM networks. The network setup does not alter the single cell
results of a PCA learning rule (Oja, 1982), namely, the fact that cells remain binocular!.

Sparse coding which has been advocated by Barlow for many years (Barlow, 1961) has recently
been discussed in the context of visual cortical plasticity (Foldidk, 1990; Fyfe and Baddeley, 1995;
Olshausen and Field, 1996). Following theoretical predictions (Intrator and Cooper, 1992), we
demonstrate that a network of BCM neurons achieves sparse coding without explicitly attempting
to maximize the spareness.

2 Methodology

The BCM theory (Bienenstock et al., 1982) was introduced to account for the dependence of
orientation selectivity on the visual environment. We have used a variation, due to Intrator and
Cooper (1992), of a nonlinear neuron with a non-symmetric sigmoidal transfer function. Using
their notation, synaptic modification of a single linear neuron is given by:

(%) = ne(e(x), Om(x))d;, (1)

where the neuronal activity is given by ¢, ¢(¢(x), Op(x)) = ¢(x) (¢(x) — Opr(x)), x denotes the
coordinates of the neuron within the network, m; are the synaptic weights, d; the inputs and Oy
is the modification threshold. This modification threshold is a nonlinear function of some time
averaged measure of cell activity. It can be replaced by the spatial average (under stationarity
assumption) and is thus given by

On(x) = E[c*(x)], (2)

where F denotes the expectation over the visual environment.

!This result can be shown to follow from an extension of the two-eye parity method to linear networks (Shouval
et al., 1996).



Binocular Model

i Visual pathway

Figure 1: Schematic diagram of the two eye model, including the visual input preprocessing. Dif-
ferent cells in this network receive the same partially overlapping inputs. The receptive field radius
is denoted by @ and the shift between the receptive fields (of both eyes) is denoted by s.

In the lateral inhibition network ¢ depends on the inputs, the synaptic weights and also on the
activity of it’s neighbors. The activity is given by?

c(z)=0 (Z I(x — x")o(m(z') - d)) (3)

Where I is a lateral interaction matrix for which we used a balanced DOG and is given by
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Where op and o are the length scales of the excitation and inhibition respectively. The transfer
function ¢ is non symmetric around 0 to account for the fact that cortical neurons show a low
spontaneous activity, and can thus fire at a much higher rate relative to the spontaneous rate, but
can go only slightly below it®. In this work we have used a simplified version of the full gradient
in which the lateral inhibition affects only the cell activity. Thus the network dynamics is given by
Fquations 1,2,3.

We have used the visual environment described in detail in our single cell study (Shouval et al.,
1996). It is composed of a set of 24 natural images scanned at a 256 X 256 pixel resolution. We have
avoided man-made objects, because they have many sharp edges, and straight lines, which make
it easier to achieve oriented receptive fields. We have modeled the effect of the center surround
retinal and LGN projections, by convolving the images with a difference of Gaussians (DOG) filter,

2We have also used the type of lateral network described in Intrator and Cooper (1992) with the same I and found
no qualitative difference in the results.
?The actual sigma used in the simulations is (e¢* — e~%)/(0.05¢” 4 5¢~%).



with a center radius of one pixel (¢ = 1.0) and a surround radius of three (g2 = 3). As illustrated
in Figure 1, the input vectors from both eyes are chosen as small, partially overlapping, circular
regions of the preprocessed natural images; these converge on the same cortical cell.

3 Results and discussion

We have extended our single cell results (Shouval et al., 1996) to networks of inter-connected
neurons. The networks have been trained with a natural scene environment that was preprocessed
with a DOG filter. The two eyes were exposed to small partially overlapping portions of these
images.  Figure 2 depicts results of a typical network. The resulting receptive fields (partially
shown on the RHS of the top panel) are very similar to those obtained for single cells (Law and
Cooper, 1994; Shouval et al., 1996). They are orientation selective and show various degrees of
ocular dominance. The degree of ocular dominance depends on the overlap between the receptive
fields of the two eyes — larger overlaps produce more binocular cells (Figure 3).

The activity histograms are displayed in the two panels at the bottom of Figure 2. The histogram
on the left of the second panel represents the activity histogram composed of all the neurons in the
network. The other histograms are of several single cells in the network. All histograms indicate
sparse activity of the network as a whole and of each of the cells.

Sparse neuronal representation can be roughly characterized by neuronal activity which is inac-
tive most of the time, namely has a distribution of activity which is highly peaked at zero and has
heavy tails*. For this reason sparse activity is associated with a kurtotic activity distribution. We
emphasize that in the BCM network case, sparse coding is an outcome of the dynamics of BCM
learning and emerges despite the lack of an explicit "sparseness term” in the learning rule. Tt will
be interesting to compare the resulting code with methods that maximize sparsity or kurtosis as a
goal for neuronal coding and feature detection (F'6ldidk, 1990; Fyfe and Baddeley, 1995; Olshausen
and Field, 1996).

The entire network of BCM neurons shows an organization of Ocular Dominance bands and Ori-
entation Selectivity bands in a form reminiscent to experimental results (Bonhoeffer and Grinvald,
1991). The relationship between these bands depends on the details of the lateral interaction term
(I). As can be seen in Figure 3, it is possible to change the parameters of the lateral interaction
in order to achieve cortical maps which exhibit a greater or a smaller resemblance to experimental
cortical maps. We do not attempt to explore the full details of the lateral interaction here, since
we believe that cortical maps are influenced by many other factors such as innate preferences to
certain orientations, the more complex three dimensional anatomy of the cortex, the shape of the
boundary of the cortical region and the details of the imaging techniques used to obtain the maps.

The organization of receptive fields across the cortex, presented above, includes many of the
components required from a cortical map. It has both ocular dominance columns and varying
orientation preferences. The orientation map has both linear regions and non-linear regions in
which sharp transitions in orientation preference occur. This organization depends critically on the
parameters of the lateral interaction term. As far as we know this is the first network model,
trained in a natural image environment, which develops concurrently both ocular dominance and
orientation selectivity. We do not know of any simplified environment that is appropriate for
models which depend on statistics of higher order than two and thus, have chosen to study natural

*When the cell takes mostly positive values, the heavy tail is one-sided.



image environment. Recent models such as Olshausen and Field (1996) develop orientation selective
neurons from a natural image environment, however do not attempt to model the binocular aspects
of cortical cells or the organization of these receptive fields across the cortical sheet.
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Spatial organization of receptive fields: Orientation selectivity and ocular dominance
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Figure 2: Top left panel represents combined Ocular Dominance and Orientation maps extracted
by a network of 24 by 24 neurons with receptive fields of diameter 20 and a shift of 15 pixels
between the two eyes. For this network o = 1 and o7 = 5. The orientation of the bars shows the
preferred orientation of the cells, it’s length represents the degree of orientation selectivity and the
gray scale of the background represents Ocular Dominance. On the RHS of the top panel, receptive
fields from the 4 by 4 region of the network that is enclosed in the black box, are displayed (left
and right eye respectively). On the middle panel (left) a histogram of the activity of all neurons in
the network is displayed. The three other histograms are of typical single cells in this network. It
is evident that the response is sparse; most neurons have a large response only a small fraction of
the time and small response most of the time.



Figure 3: The effect of changing the parameters on network organization. On the left the effect of
changing the overlap between the eyes is displayed. The displacement between the two eyes is 5
pixels, apart from that the parameters are identical to those in Figure 2. The Ocular Dominance
bands become much weaker in this case. On the right the effect of changing the lateral interaction
term [ is displayed, here o = 0.7 and o7 = 2, apart from that the parameters are identical to the
one in Figure 2. This has the effect of greatly reducing the continuity in the orientation and Ocular

Dominance.



