
Communicated by Geoffrey Hinton 

Feature Extraction Using an Unsupervised Neural Network 

Nathan Intrator 
Center for Neural Science, Brown University 
Providence, NO291 2 USA 

A novel unsupervised neural network for dimensionality reduction 
that seeks directions emphasizing multimodality is presented, and its 
connection to exploratory projection pursuit methods is discussed. This 
leads to a new statistical insight into the synaptic modification equa- 
tions governing learning in Bienenstock, Cooper, and Munro (BCM) 
neurons (1982). The importance of a dimensionality reduction prin- 
ciple based solely on distinguishing features is demonstrated using a 
phoneme recognition experiment. The extracted features are compared 
with features extracted using a backpropagation network. 

1 Introduction 

When a classification of high-dimensional vectors is sought, the curse 
of dimensionality (Bellman 1961) becomes the main factor affecting the 
classification performance. The curse of dimensionality is due to the in- 
herent sparsity of high-dimensional spaces, implying that, in the absence 
of simplifying assumptions, the amount of training data needed to get 
reasonably low variance estimators is ridiculously high. This has led 
many researchers in recent years to construct methods that specifically 
avoid this problem (see Geman et al. 1991 for review in the context of 
neural networks). One approach is to assume that important structure 
in the data actually lies in a much smaller dimensional space, and there- 
fore try to reduce the dimensionality before attempting the classification. 
This approach can be successful if the dimensionality reduction/ feature 
extraction method loses as little relevant information as possible in the 
transformation from the high-dimensional space to the low-dimensional 
one. 

Performing supervised feature extraction using the class labels is sen- 
sitive to the dimensionality in a similar manner to a high-dimensional 
classifier, and may result in a strong bias to the training data leading 
to poor generalization properties of the resulting classifier (Barron and 
Barron 1988). 

A general class of unsupervised dimensionality reduction methods, 
called exploratory projection pursuit, is based on seeking interesting pro- 
jections of high-dimensional data points (Kruskal 1972; Friedman and 
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Tukey 1974; Friedman 1987; Huber 1985, for review). The notion of 
interesting projections is motivated by an observation made by Diaconis 
and Freedman (1984) that for most high-dimensional clouds, most low- 
dimensional projections are approximately normal. This finding suggests 
that important information in the data is conveyed in those directions 
whose single-dimensional projected distribution is far from gaussian. 
Various projection indices differ on the assumptions about the nature 
of deviation from normality, and in their computational efficiency. Fried- 
man (1987) argues that the most computationally efficient measures are 
based on polynomial moments. However, polynomial moments heav- 
ily emphasize departure from normality in the tails of the distribution 
(Huber 1985). Moreover, although many synaptic plasticity models are 
based on second-order statistics and lead to extraction of the principal 
components (Sejnowski 1977; von der Malsburg 1973; q a  1982; Miller 
1988; Linsker 1988), second-order polynomials are not sufficient to char- 
acterize the important features of a distribution (see examples in Duda 
and Hart 1973, p. 212). This suggests that in order to use polynomi- 
als for measuring deviation from normality, higher order polynomials 
are required, and care should be taken to avoid their oversensitivity to 
outliers. In this paper, the observation that high-dimensional clusters 
translate to multimodal low-dimensional projections is used for defining 
a measure of multimodality for seeking interesting projections. In some 
special cases, where the data are known in advance to be bimodal, it 
is relatively straightforward to define a good projection index (Hinton 
and Nowlan 1990), however, when the structure is not known in ad- 
vance, defining a general multimodal measure of the projected data is 
not straightforward, and will be discussed in this paper. 

There are cases in which it is desirable to make the projection in- 
dex invariant under certain transformations, and maybe even remove 
second-order structure (see Huber 1985 for desirable invariant properties 
of projection indices). In those cases it is possible to make such trans- 
formations beforehand (Friedman 1987), and then assume that the data 
possess these invariant properties. 

2 Feature Extraction Using ANN 

In this section, the intuitive idea presented above is used to form a sta- 
tistically plausible objective function whose minimization will find those 
projections having a single-dimensional projected distribution that is far 
from gaussian. This is done using'a loss function that has an expected 
value that leads to the desired projection index. Mathematical details are 
given in Intrator (1990). 

Before presenting our version of the loss function, we review some 
necessary notation and assumptions. Consider a neuron with input vec- 
tor x = ( X I  ,..., xN), synaptic weight vector m = (ml ,... , m ~ ) ,  both in 
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RN, and activity (in the linear region) c = x . m. Define the threshold 
0, = E [ ( x  - m)’], and the functions $(c, 0,) = c2 - (2/3)~0m, 4(c, 0,) = 
c2 - (4/3)c0,. The 4 function has been suggested as a biologically plau- 
sible synaptic modification function to explain visual cortical plasticity 
(Bienenstock et al. 1982). 0, is a dynamic threshold that will be shown 
later to have an effect on the sign of the synaptic modification. The input 
x ,  which is a stochastic process, is assumed to be of Type I1 p mixing,’ 
bounded, and piecewise constant. These assumptions are plausible, since 
they represent the closest continuous approximation to the usual training 
algorithms, in which training patterns are presented at random. The p 
mixing property allows for some time dependency in the presentation of 
the training patterns. These assumptions are needed for the approxima- 
tion of the resulting deterministic gradient descent by a stochastic one 
(Intrator and Cooper 1991). For this reason we use a learning rate p that 
has to decay in time so that this approximation is valid. 

We want to base the projection index on polynomial moments of low 
order, and to use the fact that a projection that leads to a bimodal distri- 
bution is already interesting, and any additional mode in the projected 
distribution should make the projection even more interesting. With this 
in mind, consider the following family of loss functions that depends on 
the synaptic weight vector m and on the input x ;  

The motivation for this loss function can be seen in Figure I, which 
represents the $ function and the associated loss function Lm(c). For 
simplicity the loss for a fixed threshold 0, and synaptic vector m can be 
written as Lm(c)  = - ( p / 3 ) c 2 ( c  - em), where c = ( x  . m).  

The graph of the loss function shows that for any fixed m and Om, the 
loss is small for a given input x ,  when either c = x . m is close to zero, or 
when x . m  is larger than 0,. Moreover, the loss function remains negative 
for ( x  . m) > Om, therefore any kind of distribution at the right-hand side 
of 0, is possible, and the preferred ones are those that are concentrated 
further from 0,. 

It remains to be shown why it is not possible that a minimizer of 
the average loss will be such that all the mass of the distribution will 
be concentrated on one side of 0,. This can not happen because the 
threshold 0, is dynamic and depends on the projections in a nonlinear 
way, namely, 0, = E ( x . ~ ) ~ .  This implies that 0, will always move itself 
to a position such that the distribution will never be concentrated at only 
one of its sides. 

The risk (expected value of the loss) is given by 
P 
3 Rm = -- { E [ ( x  * W I ) ~ ]  - E ’ [ ( x .  m)’]} 

‘The (p mixing property specifies the dependency of the future of the process on its 
past. 
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Figure 1: The function (b and the loss functions for a fixed rn and 0,. 

Since the risk is continuously differentiable, its minimization can be 
achieved via a gradient descent method with respect to m, namely 

The resulting differential equations give a modified version of the law 
governing synaptic weight modification in the BCM theory for learning 
and memory (Bienenstock et al. 1982). This theory was presented to 
account for various experimental results in visual cortical plasticity. The 
modification lies in the way the threshold 0, is calculated. In the original 
form this threshold was 0, = EP(c) for p > 1, while in the current form 
0, = E(cP) for p > 1. The latter takes into account the variance of the 
activity (for p = 2) and therefore is always positive; this ensures stability 
even when the average of the inputs is zero. The biological relevance of 
the theory has been extensively studied (Bear et al. 1987; Bear and Cooper 
1988) and it was shown that the theory is in agreement with the classical 
deprivation experiments (Clothiaux et al. 1991). 

The fact that the distribution has part of its mass on both sides of 0, 
makes this loss a plausible projection index that seeks multimodalities. 
However, we still need to reduce the sensitivity of the projection index 
to outliers, and for full generality, allow any projected distribution to be 
shifted so that the part of the distribution that satisfies c < 0, will have its 
mode at zero. The oversensitivity to outliers is addressed by considering 
a nonlinear neuron in which the neuron’s activity is defined to be c = 
a(x.m),  where a usually represents a smooth sigmoidal function. A more 
general definition that would allow symmetry breaking of the projected 
distributions, as well as provide a solution to the second problem raised 
above, and will still be consistent with the statistical formulation, is c = 
o ( x . m  -a) ,  for an arbitrary threshold a. The threshold a can be found by 
using gradient descent as well. For the nonlinear neuron, 0, is defined 
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to be 0, = E[a*(x. m)] .  The loss function is given by 

The gradient of the risk becomes 

-V,Rm = p E[d (u(x m),  0,) u’x] 

where u’ represents the derivative of u at the point ( x  . m).  Note that 
the multiplication by u’ reduces sensitivity to outliers of the differential 
equation since for outliers u‘ is close to zero. The gradient descent is 
valid, provided that the risk is bounded from below. 

Based on this formulation, a network of Q identical nodes may be 
constructed. All the neurons in this network receive the same input and 
inhibit each other, so as to extract several features in parallel. The relation 
between this network and the network studied by Cooper and Scofield 
(1988) is discussed in Intrator and Cooper (1991). The activity of neuron 
k in the network is defined as ck = u ( x .  ?nk - nk), where mk is the synaptic 
weight vector of neuron k, and Nk is its threshold. The inhibited activity 
and threshold of the kth neuron are given by ck = ck - 77 &#k Cj, @,, = 
E [ c i ] .  A more general inhibitory pattern such as a Mexican hat is possible 
with minor changes in the mathematical details. 

We omit the derivation of the synaptic modification equations, and 
present only the resulting stochastic modification equations for a synaptic 
vector mk in a lateral inhibition network of nonlinear neurons: 

hk = / L  [$ (ck ,  bk, )d (sk)  - 7 $(z j ,  @,i)d(?f)]x 
i#k 

The lateral inhibition network performs a direct search of Q-dimen- 
sional projections in parallel, and therefore may find a richer structure 
that a step wise approach may miss (see example 14.1 in Huber 1985). 

3 Comparison with Other Feature Extraction Methods 

The above feature extraction method has been applied so far to various 
high-dimensional classification problems: extracting rotation invariant 
features from 3D wire-like objects (Intrator and Gold 1991) based on a 
set of sophisticated psychophysical experiments (Edelman and Bulthoff 
1991); feature extraction from the TIMIT speech data base using Lyon’s 
Cochlea model (Intrator and Tajchman 1991). The dimensionality of the 
feature extraction problem for these experiments was 3969 and 5500 di- 
mensions, respectively. It is surprising that a very moderate amount of 
training data was needed for extracting robust features as will be shown 
below. In this section we briefly describe a linguistically motivated fea- 
ture extraction experiment from stop consonants. We compare classifi- 
cation performance of the proposed method to a network that performs 
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Figure 2: Low-dimensional classifier is trained on features extracted from the 
high-dimensional data. Training of the feature extraction network stops when 
the misclassification rate drops below a predetermined threshold on either the 
same training data (cross-validatory test) or on different testing data. 

dimensionality reduction based on minimization of misclassification er- 
ror (using backpropagation with MSE criterion). In the latter we regard 
the hidden unit representation as a new reduced feature representation 
of the input space. Classification on the new feature space was done 
using backpropagation.2 

The unsupervised feature extraction/classification method is presented 
in Figure 2. The pixel images corresponding to speech data, are shown 
in Figure 3. Similar approaches using the RCE and backpropagation 
network have been carried out by Reilly et al. (1988). 

The following describes the linguistic motivation of the experiment. 
Consider the six stop consonants [p,k,t,b,g,dl, which have been a subject 
of recent research in evaluating neural networks for phoneme recognition 
(see review in Lippmann 1989). According to phonetic feature theory, 
these stops possess several common features, but only two distinguishing 
phonetic features, place of articulation and voicing (see Lieberman and 
Blumstein 1988, for a review and related references on phonetic feature 
theory). This theory suggests an experiment in which features extracted 
from unvoiced stops can be used to distinguish place of articulation in 
voiced stops as well. It is of interest if these features can be found from 
a single speaker, how sensitive they are to voicing and whether they are 
speaker invariant. 

The speech data consists of 20 consecutive time windows of 32 msec 
with 30 msec overlap, aligned to the beginning of the burst. In each time 
window, a set of 22 energy levels is computed. These energy levels cor- 

%e Intrator (1990) for comparison with principal components feature extraction and 
with k-NN as a classifier. 
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Figure 3: An average of the six stop consonants followed by the vowel [a]. 
Their order from left to right [pa] [ba] [ka] [gal ita] [da]. Time increases from 
the burst release on the X axis, and frequency increases on the Y axis. Brighter 
areas correspond to stronger energy. 

respond to Zwicker critical band filters (Zwicker 1961). The consonant- 
vowel (CV) pairs were pronounced in isolation by native American speak- 
ers (two male BSS and LTN, and one female JES.) Additional details on 
biological motivation for the preprocessing, and linguistic motivation re- 
lated to child language acquisition can be found in Seebach (1990). An 
average (over 25 tokens) of the six stop consonants followed by the vowel 
[a] is presented in Figure 3. All the images are smoothed using a moving 
average. One can see some similarities between the voiced and unvoiced 
stops especially in the upper left corner of the image (high frequencies 
beginning of the burst) and the radical difference between them in the 
low frequencies. 

In the experiments reported here, five features were extracted from 
the 440 dimension original space. Although the dimensionality reduction 
methods were trained only with the unvoiced tokens of a single speaker, 
the classifier was trained on (five-dimensional) voiced and unvoiced data 
from the other speakers as well. 

The classification results, which are summarized in Table 1, show 
that the backpropagation network does well in finding structure useful 
for classification of the trained data, but this structure is more sensitive to 
voicing. Classification results using a BCM network suggest that for this 
specific task structure that is less sensitive to voicing can be extracted, 
even though voicing has significant effects on the speech signal itself. 
The results also suggest that these features are more speaker invariant. 

The difference in performance between the two feature extractors may 
be partially explained by looking at the synaptic weight vectors (images) 
extracted by both methods (Fig. 4): For the backpropagation feature ex- 
traction it can be seen that although five units were used, less features 
were extracted. One of the main distinctions between the unvoiced stops 
in the training set is the high frequency burst at the beginning of the 
consonant (the upper left corner). The backpropagation method concen- 
trated mainly on this feature, probably because it is sufficient to base the 
recognition of the training set on this feature, and the fact that training 



Feature Extraction Using an Unsupervised Neural Network 105 

Table 1: Percentage of Correct Classification of Place of Articulation in Voiced 
and Unvoiced Stops. 

Place of articulation classification (B-P) 

B-P (%) BCM (%) 

BSS /p,k,t/ 100 100 
BSS /b,g,d/ 83.4 94.7 
LTN /p,k,t/ 95.6 97.7 

JES (both) 88.0 99.4 
LTN /b,g,d/ 78.3 93.2 

Figure 4: Synaptic weight images of the five hidden units of backpropagation 
(top), and the five BCM neurons (bottom). 

stops when misclassification error falls to zero. On the other hand, the 
BCM method does not try to reduce the misclassification error and is 
able to find a richer, linguistically meaningful structure, containing burst 
locations and format tracking of the three different stops that allowed a 
better generalization to other speakers and to voiced stops. 

The network and its training paradigm present a different approach 
to speaker independent speech recognition. In this approach the speaker 
variability problem is addressed by training a network that concentrates 
mainly on the distinguishing features of a single speaker, as opposed 
to training a network that concentrates on both the distinguishing and 
common features, on multispeaker data. 
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