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The bias/variance dilemma is addressed in the context of neural networks. A bias 

constraint based on prior knowledge about the underlying distribution of the data is discussed 
as a means for reducing the overall error measure of a classifier. 

1. Introduction 

The problem of optimal learning in artificial neural networks is approached 
through a minimization of some averaged distance between the estimator and 
the target, on a training sample set. Under the commonly used mean squared 
error (MSE) distance the error can be decomposed into two terms: bias and 
variance (see below). 

Unfortunately, although the bias does go down through this minimization 
procedure, the variance may go up, thus reducing the overall performance of 
the estimator. This is due to the fact that the observations contain noise either 
in the input space X or in the regression space Y, and to the fact that only the 
empirical risk is minimized based on a small sample set. The problem pointed 
above should not be confused with the fact that the estimator based on 
empirical risk minimization is consistent, namely, in the limit when sample size 
becomes infinitely large, the estimator is unbiased. We are concerned with the 
problem of optimal estimation using a finite fixed sample size. 

Methods for controlling the variance of estimators are many. They can 
roughly be divided into two categories: The first contains those that are based 
on general principles or assumptions on the functional form of the desired 
estimator. They do not depend directly on the (unknown) data distribution. In 
the neural network framework they include methods such as weight decay and 
magnitude control of the weights [ 1,2], network pruning via weight elimination 
based on a simple threshold [3,4] or based on the Hessian matrix [5]. A 
different approach for reducing the effective number of weights is weight 
sharing, in which a single weight is shared among many connections in the 
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network [6,7]. An extension of this idea is the “soft weight sharing” which 
favors irregularities in the weight distribution in the form of multimodality [8]. 
All these methods make explicit assumptions about the structure of the weight 
space, but with no regard to the structure of the input space. The second 
category contains methods that have general assumptions about the underlying 
distribution and important structure in the data. Such methods include 
principal component constraints, in which one seeks an estimator which is 
decomposed out of functions biased towards projections onto the principal 
components of the covariance matrix of the data. Similarly, constraints can be 
added for seeking projections that maximize entropy [9]. The difference 
between the two categories may be easier to see if one observes that in the first 
category, if the bias minimization (through mean squared error or alike) is 
turned off, then the additional constraints will not find any meaningful 
information (projections) while in the second category, if the bias minimization 
is turned off, then meaningful directions such as the first principal components 
of the data can still be found. 

Bias constraints are at the heart of parametric estimation methods. For 
example, linear or logistic regression biases the dependency between the 
covariates and the data to be linear. Similarly, bias is introduced when a 
certain network architecture is used. In this paper we introduce bias constraints 
into a given feed-forward network architecture. Based on prior knowledge 
about the underlying distribution of the data, a specific bias constraint is 
discussed as a mean for reducing generalization error for classification. The 
application to neural networks of the general statistical framework from which 
the bias constraints are drawn - the exploratory projection pursuit framework 
[lo] - is discussed in more detail in [ll]. 

2. The bias/variance dilemma 

In this section we present the bias/variance decomposition of a non-paramet- 
ric estimator. For a thorough discussion of this problem in the context of 
neural networks, see Geman et al. [12]. 

The regression or classification problem is to estimate a function &(x) based 
on a fixed training set 53 = {(xi, y’), . . . , (xL, y”)}, using some measure of the 
estimation error on the training set. A good estimator will perform well not 
only on the training set but will also achieve good generalization properties, 
namely it will achieve small error on observation which was not included in the 
training set. 

Evaluation of the performance of the estimator is commonly done via the 
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mean squared error distance (MSE) by taking the expectation with respect to 
the (unknown) probability distribution P of y: 

E[(Y -.Mx))’ Ix, 91 ’ 

This can easily be decomposed into 

E](Y - fg(4)’ 1x7 gal= E[(Y - E[Y 1x1)’ 1 x> gal+ (A&) - E[Y 14)’ . 

The first term does not depend on the training data $3 or on the estimator 
&(x); it measures the amount of noise or variability of y given x. Hence f can 
be evaluated using 

u&4 - E[Y 14)” . 

The empirical mean squared error of f is then given by 

Es [U&) - E[Y I4’1~ 

where E9 represents expectation with respect to all possible training sets 9 of 
fixed size L. 

To further see the performance under MSE we decompose the error to bias 
and variance (see for example Geman et al. [12]) to get 

E, ](fa(4 - E]Y 1 xl)‘1 = 6% M&>l - E[Y I xl>’ 
+ 4 [U&3 - J% M&)1)*1 . 

The first rhs term is called the bias of the estimator and the second term is 
called variance. When training on the fixed training set 9, reducing the bias 
with respect to this set increases the variance of the estimator thus contributing 
to poor generalization performance. There is often a tradeoff between variance 
and bias. Typically variance is reduced by smoothing, however this may 
introduce bias since it may blur sharp peaks, etc. Bias is reduced by prior 
knowledge, and when this prior knowledge is also contributing to smoothing it 
is likely to reduce the overall MSE of the estimator. 

In the next section we discuss a general form for introducing bias into a 
fixed-architecture neural network. In addition we discuss a specific bias 
constraint useful for classification. 

2.1. Adding bias constraints to a back-propagation network 

As can be seen in fig. 1, a penalty term may be added to the energy 
functional minimized by error back propagation, for the purpose of measuring 
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Fig. 1. A hybrid EPPiPPR neural network (EPPNN). 

directly the goodness of the projections sought by the network. Since our main 
interest is in reducing overfitting for high dimensional problems, our underly- 
ing assumption is that the surface function to be estimated can be faithfully 
represented using a low dimensional composition of sigmoidal functions, in a 
feed-forward network in which the number of hidden units is much smaller 
than the number of input units. Therefore, it is sufficient to add the bias 
penalty term only to the hidden layer (see fig. 1). We call this network 
exploratory projection pursuit network, to stress the fact that the bias 
constraints are motivated by the exploratory projection pursuit framework 
[10,13]. The synaptic modification equations of the hidden units’ weights 
become 

dW-. 
II= -e 

at ( aqw, x) + @(w,, . . . 3 wn) 
dwij 8Wij 

+ (contribution of cost - complexity terms) . 

3. Projection index for classification: the unsupervised BCM neuron 

In this section we briefly describe an unsupervised learning algorithm which 
searches for multimodality in the projection space. As described in the 
previous section, the hybrid unsupervised/supervised learning network then 
combines the differential equations governing the unsupervised rule with those 
governing the supervised rule to minimize a combination of two costs: the one 
that comes from the teacher, and one that comes from the unsupervised (bias) 
constraint. 
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It is known from exploratory projection pursuit theory that search for 
structure in input space can be approached by a search for deviation from 
normal distribution of the projected space (the space generated by hidden unit 
activity in a feed-forward network). Furthermore, when input space is clus- 
tered, a search for deviation from normality can take the form of search for 
multi-modality, since when clustered data is projected in a direction that 
separates at least two clusters, it generates multi-modal projected distributions. 

It has been recently shown that a variant of the Bienenstock, Cooper and 
Munro neuron [14] performs exploratory projection pursuit using a projection 
index that measures multi-modality. Such neuron allows modeling and theoret- 
ical analysis of various visual deprivation experiments [ 151, and is in agreement 
with the vast experimental results on visual cortical plasticity [16]. A network 
implementation which can find several projections in parallel while retaining its 
computational efficiency, was found to be applicable for extracting features 
from very high dimensional vector spaces [17,18]. An approach of this type has 
been used in image compression, with a penalty aimed at minimizing the 
entropy of the projected distribution [9]. This penalty certainly measures 
deviation from normality, since entropy is maximized for a Gaussian dis- 
tribution. 

The neuronal activity (in the linear region) is given by c = m * d, where d is 
the input vector and m is the synaptic weight vector (including a bias). The 
essential properties of the BCM neuron are determined by a modification 
threshold 0, (which is a nonlinear function of the history of activity of the 
neuron) and a 4 function that determines the sign and amount of modification 
and depends on the current activity and the threshold 0,. The synaptic 
modification equations are given by 

dm- 

where in a simple form 0, = E[(m . d)*] and 4(c, 0,) = c(c - 0,). 
In the lateral inhibition network of nonlinear neurons (fig. 1) the activity of 

neuron k is given by ck = mk - d, where mk is the synaptic weight vector of 
neuron k. The inhibited actpty and threshold of the kth neuron is given by 
c”k=w(ck-qc. ,Zk c,) and 0, = E[c”:], for a monotone saturating function cr. 

The risk (projection index) for a single neuron is given by 

R(Wk) = -{+E[c”:] - $E*[E:]} . 

The total risk is the sum of each local risk. The resulting stochastic modi- 
fication equations for a synaptic vector mk (the negative gradient of the risk) in 
the network are given by 
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This network is actually a first order approximation to a lateral inhibition 
network (using a single step relaxation). Its properties and connection to a 
lateral inhibition network are discussed in [15]. In the context of the hybrid 
network, this is an additional penalty to the energy minimization of the 
supervised network. 

Some related statistical and computational issues of this projection index as 
well as some applications are discussed in [18]. 

4. Summary 

A framework for introducing additional bias into a neural network architec- 
ture was presented. It is based on a penalty that allows the incorporation of 
additional prior information regarding the underlying data distribution, or 
model. The general statistical framework of exploratory projection pursuit was 
mentioned as the underlying framework for the procedure, and a specific bias 
aimed at improving classification performance was presented. 
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