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Abstract

We provide several enhancements to our previously introduced algorithm for a sequential construction
of a hybrid network of radial and perceptron hidden units [6]. At each stage, the algorithm sub-divides
the input space in order to reduce the entropy of the data conditioned on the clusters. The algorithm
determines if a radial or a perceptron unit is required at a given region of input space, by using the local
likelihood of the model under each unit type. Given an error target, the algorithm also determines the
number of hidden units. This results in a final architecture which is often much smaller than an RBF
network or an MLP. A benchmark on six classification problems is given. The most striking performance
improvement is achieved on the vowel data set [8].
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1 Introduction

The construction of a network architecture which contains units of different types at the same hidden layer
is not commonly done. One reason is that such construction makes model selection more challenging, as it
requires the determination of each unit type in addition to the determination of the network size. A more
common approach to achieving higher architecture flexibility is via the use of more flexible units [27, 16].
The potential problem of such a construction is over-flexibility which leads to overfitting.

We have introduced a training methodology for a hybrid MLP/RBF network [6]. This architecture,
produced better classification and regression results when compared with advanced Radial Basis Functions
(RBF) methods or with Multi Layer Perceptron (MLP) architectures. In this work, we further introduce a
novel training methodology, which evaluates the need for additional hidden units, chooses optimally their
nature – MLP or RBF – and determines their optimal initial weight values. The determination of additional
hidden units is based on an incremental strategy which searches for regions in input space for which the
input/output function approximation leads to highest residual (error in case of classification). This approach,
coupled with optimal determination of initial weight values for the additional hidden units, constructs a
computationally efficient training algorithm which appears to scale up with the complexity of the data,
better than regular MLP or RBF methods. The algorithm proposed here can be used for model selection
in different architectures as well, e.g., thin spline units for RBFs. The convergence properties of the hybrid
architecture are assured by the convergence properties of each of its components and the fact that there is a
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global gradient descent used during the training procedure. The efficiency of the architecture is demonstrated
empirically by the small size of the resulting network and its superior generalization performance.

2 Motivation for incremental methods and hybrid networks

There are different ways to decompose a function into a set of basis functions. The challenging task is to
use a complete set which converges fast to the desired function (chosen from a sufficiently wide family of
functions.) For example, while it is well known that MLP with as little as a single hidden layer is a universal
approximator, namely, it can approximate any L2 function, it is also known that the approximation may be
very greedy.

Analyzing cases where convergence of the architecture (as a function of number of hidden units) is
slow [2], reveals that often there is at least one region in input space where an attempt is being made to
approximate a function that is radially symmetric (such as a donut) with projection units or vice versa. This
suggests that an incremental architecture which chooses the appropriate hidden unit for different regions
in input space can lead to a far smaller architecture. Earlier approaches, attempted to construct a small
network approximation to the desired function at different regions of input space. This approach which was
called “divide and conquer”, has been studied since the eighties in the machine learning and connectionists
community. Rather than reviewing the vast literature on that, we shall point out some approaches which
indicate some of the highlights that had motivated our work. Work on trees is reviewed in [3] where the
goal is to reach a good division of the input space and use a very simple architecture at the terminating
nodes. That work suggested some criteria for splitting the input space and provided a cost complexity
method for comparing the performance of architectures with different size. An approach which constructs
more sophisticated architectures at the terminating nodes was proposed in [30, 24], where a gating network
performs the division of the input space and small neural networks perform the function approximation at
each region separately. Nowlans’ experiments with such architecture led him to the conclusion that it is
better to have different types of architectures for the gating network and for the networks that perform
the function approximation at the different regions [30]. He suggested to use RBF for the gating network,
and MLP for the function approximation, and thus constructed the first hybrid architecture between MLP
and RBF. A tree approach with neural networks as terminating nodes was proposed by [25]. The boosting
algorithm [12] is another variant of the space division approach, where the division is done based on the error
performance of the given architecture. In contrast to previous work, this approach takes into accounts the
geometric structure of the input data only indirectly. A remote family of architectures where the function
approximation is constructed incrementally is the projection pursuit [19] and the additive models [20, 21].

If one accepts the idea of constructing a local simple architecture for different regions in input space,
then the question becomes, which architecture family should be used. The local architecture should be as
simple as possible in order to avoid over-fitting to the smaller portion of regional training data. Motivated
by theoretical work that have studied the duality between projection-based approximation and radial kernel
methods [11], we have decided to use RBF or perceptron units. Donoho’s work [11] has shown that a function
can be decomposed into two parts, the radial part and the ridge (projection based) part and that the two
parts are mutually exclusive. It is difficult however, to separate the radial portion of a function from its
projection based portion before they are estimated, but a sequential approach which decides on the fly, which
unit to use for different regions in input space, has a potential to find a useful subdivision.

The most relevant statistical framework to our proposal is Generalized Additive Models (GAM) [20, 21].
In that framework, the hidden units (the components of the additive model) have some parametric form,
usually polynomial, which is estimated from the data. While this model has nice statistical properties [36],
the additional degrees of freedom, require strong regularization to avoid over-fitting. Higher order networks
have at least quadratic terms in addition to the linear term of the projections [27] as a special case of GAM.
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While they present a powerful extension of MLPs, and can form local or global features, they do so at the
cost of squaring the number of input weights to the hidden nodes. Flake [16] has suggested an architecture
similar to GAM where each hidden unit has a parametric activation function which can change from a



S. Cohen and N. Intrator: Automatic model selection in a hybrid perceptron/radial network 3

projection based to a radial function in a continuous way [16]. This architecture uses a squared activation
function, thus called Squared MLP (SMLP) and only doubles the input dimension of the input patterns.

Our proposed hybrid extends both MLP and RBF networks by combining RBF and Perceptron units
in the same hidden layer. Unlike the previously described methods, this does not increase the number of
parameters in the model, at the cost of predetermining the number of RBF and Perceptron units in the
network. Due to the structure of the hidden units, the hybrid network is useful especially in cases where
the data includes some regions that contain hill-plateau and other regions that contain Gaussian bumps.

The hybrid architecture [6], which we call Perceptron Radial Basis Net (PRBFN), automatically finds the
relevant functional parts from the data concurrently, thus avoiding possible local minima that results from
sequential methods. The first training step in the previous approach [6] was to cluster the data. In the next
step, we tested two hypotheses for each cluster. If a cluster was far from radial Gaussian we rejected this
hypothesis and accepted the null hypothesis. However, we had to use a threshold for rejecting the normal
distribution hypothesis. When it was decided that a data cluster is likely to be normal, an RBF unit was
used and otherwise a Perceptron (projection) unit was used. The last step was to train the hybrid network
with full gradient descent on the full parameters.

In this work, we adapt a CART-like method for input space separation [3]. This is used to find regions in
input space where error is high and an additional unit, either an RBF or an MLP can help reduce the error.
We then introduce a local objective function and local likelihood ratio to improve the selection algorithm
between RBF or perceptron units for a given region. Next, we introduce a stopping rule based on the data
for addition of hidden units, eliminating the need to pre-specify the number of hidden units. This results in
a smaller architecture with an automatic model selection, which performs as well and often better than the
previous hybrid architecture which we had optimized manually [6].

There are several approaches to set the structure of a Neural Network. The first one is forward selection.
This approach starts with a small [29, 14] network and add units until an error goal is reached. Another
approach is to start with a large network and [13] and prune un necessary units, until a given criteria
is met. In this paper we use the first approach. We start with a small network and expand it until a
given error goal is met or a confidence level is achieved. Thus, the algorithm determines the number of
hidden units automatically. As noted above, a very difficult task in training an hybrid neural network
is to find the radial and projection parts automatically. This problem is amplified for high dimensional
data, where the data cannot be visualized very well. We propose a novel way to select the type of hidden
unit automatically for classification. A similar algorithm can be proposed for regression. However, we
will concentrate on classification in this work. The proposed algorithm leads to smaller networks while
maintaining good generalization of the resulting network.

3 Parameter estimation and model selection

An incremental architecture with more than one type of building components, requires three decisions at
each step; (i) find the next region in input space where a hidden unit might be needed; (ii) decide which
unit to add, an RBF or a perceptron; (iii) apply global optimization on all of the parameters.

The SMLP [16] network uses both RBF and Perceptron units at each cluster. In higher order networks
[27] quadratic and linear terms always exist and strong regularization must be used to avoid over-fitting. We
prefer to try to select the proper unit for each region in input space. The splitting process is stopped when
the number of patterns in a given region is lower than a predefined number. Thus, the number of hidden
units is minimal and over-fitting is reduced. In order to select the type of units in a high dimensional space,
one has to divide the space to sub-regions and select the appropriate type of hidden unit for each region.
During the division of the space into sub-regions, we can estimate the overall error and stop the splitting
process when an error goal is reached or a confidence level is achieved. We therefore achieve network size
control that is data driven. There are several steps in estimating the parameters and structure of the hybrid
network.

We outline the algorithm’s steps to achieve these goals as follows:

• Data clustering and splitting to reduce an error objective function.

• Automatic selection of unit type for each cluster.
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• Full gradient descent.

In subsequent sections we describe each step of the algorithm in more details.

3.1 Data clustering

We start by clustering the data based on the class labels. This is done by minimizing a sub additive objective
function Er, Entropy for example. The entropy aims to purify the class label structure of clusters and is
defined as follows:

H = −
n∑

i=1

pilog(pi) (2)

where pi is the probability of class i in a given cluster.
Consider a data set D, we attempt to decompose it into a set {Ci}k

i=1, such that
⋃

Ci = D and Ci

⋂
Cj =

φ for i 6= j. The following algorithm, is similar to the one proposed in CART [3], it splits the cluster with
the largest objective function reduction into two clusters. Let Er(C0) be the value of the objective function
on the cluster C0. Consider a split for a cluster C0 into two clusters C1 and C2. Let the objective function
reduction defined as follows:

∆Er(C0) = Er(C0)− (Er(C1) + Er(C2)). (3)

Note, that the definition of Er(C0) takes into account the empirical probability of C0 which is given by:

P̂C0 = |C0|/|D|.

Since a cluster C with n members has 2n − 1 possible number of meaningful splits, an exhaustive search
is not feasible. CART [3] solves this problem by considering each axis 1 ≤ l ≤ d of the input space separately
and search for the best split of the form xi ≥ λi for axis xi. The sorting of the data ( by considering each
axis separately ) reduces the number of possibilities to dn and the time complexity to O(dnlog(n)). We
seek a similar approach which is not as restricted as CART to projections that are parallel to the axes. To
demonstrate our approach, we consider specific objective function, for data splitting and classification.

3.2 Objective function and splitting rule for classification

In this section we want to expand the splitting rule to include directly the class labels in the data. We basically
attempt to split along the discriminant directions in the data. Following an application of the entropy
splitting rule described above or in its simpler form the Gini rule [3], we study the local cluster properties
using discriminant analysis. Fisher linear discriminant analysis [15] gives a discriminating hyperplane
between two classes. For completeness, we provide here the equations for computing the hyperplane w and
its shift from the origin w0, as the latter is slightly different than Fisher’s original calculation. Consider two
subsets V1, V2 with their mean give by:

mi =
1
Ni

∑
x∈Vi

x.

Let yi ∈ {−1, 1} be the class labels corresponding to these subsets respectively. The scatter matrices are
defined as follows:

Si =
∑
x∈Vi

(x−mi)(x−mi)T ,

Sw = S1 + S2. (4)

The projection vector w which defines the discriminating hyperplane is given by:

w = S−1
w (m1−m2). (5)

Full details are given e.g., in [33]. The shift of the hyperplane from the origin is computed using the following
relation:

wT x + w0 = 0.
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We define the following objective function:

E =
n∑

i=1

(wT xi + w0 − yi)2.

Given w we can now minimize E to obtain w0:

∂E

∂w0
=

n∑
i=1

(wT xi + w0 − yi) = 0. (6)

To arrive at:

w0 =
∑n

i=1 yi − wT
∑n

i=1 xi

n
. (7)

The above calculation requires the inversion of the matrix S−1
w . This inversion can be avoided using the

following calculation; We find a projection such that the SSE is minimized and the distance between the
centers is maximized. A projected cluster center is given by:

1
n

n∑
i=1

wT xi = wT 1
n

n∑
i=1

xi.

Thus, we wish to maximize the following criterion:

S =
1
2

∑
i=1

(wT xi + w0 − yi)2 +
1
2
(wT m1 − wT m2)2, (8)

where m1 and m2 are the mean vectors of the patterns from the first and the second class respectively.
Deriving equation 8 and equating to zero we arrive at:

w0 =
n∑

i=1

yi − wT
n∑

i=1

xi, (9)

w =
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi/n∑n

i=1 xT
i xi −

∑n
i=1 xi

∑n
i=1 xi/n− ‖ m1−m2 ‖2

. (10)

Thus, we propose the following splitting procedure for a given cluster:

• Select the two classes with the maximum number of patterns.

• Use equation 10 and equation 9 to compute w and w0.

• For each pattern xi compute: wT xi + w0 if the result is positive associate it with the first cluster and
otherwise with the second one.

The above splitting rules are simple to implement and can perform data splits that are not parallel to the
feature axes. The time complexity of this procedure is only O(n× d), with d being the data dimensionality
and n the number of patterns.

3.2.1 Stopping criterion for the splitting

The stopping rule for the splitting process described above, seeks to determine if a candidate split is mean-
ingful - that is, whether it differs significantly from a random split. Since we split among the two prominent
classes, we consider only patterns from these two classes. Consider a split that sent Nl patterns to the left
node. Let N i

l be the number of patterns sent to the left node of class i by the splitting rule. Let E[N i
l ]
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be the expected number of patterns from a random split. We define the deviation of the results due to our
candidate split by means of chi− squared statistic:

χ2 =
2∑

i=1

(N i
l − E[N i

l ])
2

E[N i
l ]

(11)

When the value of χ2 vanishes the splitting rule is random and not informative. If the candidate split does
not yield a χ2 exceeding the chosen confidence level, splitting is stopped. A typical confidence level would
be 0.05 (and this is the default level for our method). Alternatively, the splitting can be continued until the
sum of squared error of all the nodes reaches a predefined value or a predefined maximum number of clusters
is achieved.

3.3 Unit selection

Now, that we have constructed a decomposition of the input space into more homogeneous subsets, it is
time to choose for each such subset the appropriate hidden unit, namely a projection or a radial unit. We
formulate this problem as a classical model selection task and thus apply a commonly used formulation to
do this; Mackay [28] used the evidence for model selection. Kass and Raftery [26] utilize Bayes Factors for
model selection.

For this problem we have found that the maximum likelihood model selection suffice. We wish to choose
the model that best explains the training data. This approach is described below.

Given a data set D, the task is to choose between two (or more) models M1,M2. Each model has a
parametric family of weights attached to it, with its prior probability p(M). The likelihood factors are then
defined as:

p(M1|D)
p(M2|D)

=
p(D|M1)p(M1)
p(D|M2)p(M2)

. (12)

With the lack of a-priori knowledge we assume that a model with an RBF or a perceptron as a hidden unit
is equally likely, thus:

p(M1) = p(M2).

This leads to the likelihood ratio:
p(D|M1)
p(D|M2)

.

In our case the maximum likelihood is computed for each cluster and unit type. The unit type with the
higher likelihood is selected.

For simplicity, we assume that the clustering which has been performed in the previous step, has partly
purified the clusters, namely, each cluster mostly contains patterns of a single class. Under this assumption,
it is reasonable to use the likelihood of the data points of single class within the cluster as an indication of
the fit of different unit types. When the assumption does not hold, more refined clustering is needed.

3.4 Determining the initial perceptron-unit weights

For completeness, we present here the estimation of the initial weight values for perceptron units, which
were introduced in [6]. This is done by considering a linear approximation for the weights of the projection.
We wish to maximize the scalar product of w and the sum of the patterns in the current cluster. Since this
is an unconstrained optimization, a Lagrange multiplier is introduced to enforce the following constrain:

wT w = 1,

arriving at the following objective function:

L(w,α) =
N∑

i=1

wT xi + α(wT w − 1), (13)
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where N is the number of patterns in the current cluster. The partial derivative with respect to the weight
vector is:

∂L

∂w
=

N∑
i=1

xi + 2αw, (14)

and the partial derivative with respect to α is

∂L

∂α
=

d∑
i=1

w2
i − 1. (15)

For convenience, let Z =
∑N

i=1 xi. Setting Equation 14 to zero gives:

Z = −2αw.

Squaring both sides and using (15) gives:
‖ Z ‖2= 4α2.

Thus, we obtain:
2α = ± ‖ Z ‖,

or,

w = ± Z

‖ Z ‖
. (16)

The Hessian, which is derived from Equation 14, provides the correct sign of wj and ensures the maximization
procedure:

∂2J

∂w2
= 2αI. (17)

Thus, the Hessian is a diagonal matrix, and it is negative when α is negative, leading to setting w as follows:

w =
Z

‖ Z ‖
. (18)

3.5 Determining the likelihood of a cluster under a perceptron or RBF model

While a cluster may not be radially symmetric or even Gaussian, it may still be possible that an RBF unit
will do a better job than an MLP unit at the vicinity of the cluster. We therefore replace the criterion
we introduced in [6] which tested for a Gaussian distribution, with the following criterion which compares
likelihoods under the two models.

Under independence assumption between the observations, the likelihood is given by

p(D|M) =
N∏

i=1

p(xi|C), (19)

where
p(xi|C) =

1
1 + exp(−wT x)

for ridge function, and

p(xi|C) = exp(
− ‖ x−m ‖2

2σ2
),

with m given by 1/N
∑N

i=1 xi, for an RBF function. However, since the ridge function is an improper
probability density function (PDF), that is: ∫ ∞

−∞
p(x|C)dx 6= 1
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We thus, normalize it by the factor:
N∑

i=1

p(xi|C),

Where N is the number of the patterns in the data set.

4 Experimental results

This section describes results for three variants of RBF, as well as, our first extension to a hybrid architecture
(PRBFN) [6] and the present hybrid architecture, which includes model selection, clustering and initial
parameter estimation (PRBFN2).

Orr’s RBF [13] method (RBF − Reg − Tree) is based on regression tree for clustering. This methods
builds a large tree and then prunes it using model selection criteria. Matlab’s RBF package (RBF −OLS)
implements an incremental algorithm [37], a new unit is added with a center that corresponds to the pattern
with the largest contribution to the current objective function. Bishop’s algorithm [1] is based on the
Expectation Maximization algorithm [7] for clustering (RBF −EM). In addition for some data sets we have
also used a backpropogation algorithm using Levenberg-Marquardt optimization technique (BP − Lev −
Marq), and a Logistic Regression [23] algorithm (LogistReg). LogistReg and RBF − Reg − Tree work
only on two class classification problems. The following results are given on the test portion of each data
set and represent an average over 100 runs with different initial conditions and in some cases with different
splits for train and tests. The standard errors indicate variability over those runs. Table 1 summarizes the
classification results (in percentage) on the different data sets for the different RBF and MLP classifiers and
the proposed hybrid architecture.

Algorithm Sonar Vowel Waveform Hepatitis Iris Letters
BP-Lev-Marq 90.4±0.5 51±3.0 70.3±6 75.4 ±7 88.8±9.4 –
LogistReg 74.0±0 – – 80.8 ±0 – –
RBF-Reg-Tree 71.7±0.5 – – 79.8±5 – –
RBF-OLS 82.3±2.4 51.6±2.9 83.8±0.2 82.7±3 96±2.4 –
RBF-EM – 48.4±2.4 83.5±0.2 77.3±3 95.5±1.7 85.49±2.0
PRBFN 91.3±2.1 67.0±2.1 85.8±0.2 82.1±4 95.8±2.7 85.5 ±1.9
PRBFN2 92.3±1.9 68.4±1.9 85.8±0.3 84.8±4 96.8±1.1 94.02 ±0.0

Table 1: Percent classification results of different classifiers variants on six data sets.

We have used several data sets to compare the classification performance of the proposed methods to
other RBF networks. The sonar data set attempts to distinguish between a mine and a rock. It was used
by Gorman and Sejnowski [31] in their study of the classification of sonar signals using neural networks.
The data has 60 continuous inputs and one binary output for the two classes. It is divided into 104 training
patterns and 104 test patterns. The task is to train a network to discriminate between sonar signals that are
reflected from a metal cylinder and those that are reflected from a similar shaped rock. There are no results
for Bishop’s algorithm as we were not able to get it to reduce the output error. Gorman and Sejnowski
report on results with feed-forward architectures [35] using 12 hidden units. They achieved 90.4% correct
classification on the test data with the angle dependent task. This result outperforms the results obtained
by the different RBF methods, and is only surpassed by the proposed PRBFN2 network, that used only 10
hidden units. The previous version PRBFN used 12 hidden units on this problem.

The Deterding vowel recognition data [8, 16] is a widely studied benchmark. This problem may be more
indicative of the type of problems that a real neural network could be faced with. The data consists of
auditory features of steady state vowels spoken by British English speakers. There are 528 training patterns
and 462 test patterns. Each pattern consists of 10 features and it belongs to one of 11 classes that correspond
to the spoken vowel. The speakers are of both genders. The best score so far was reported by Flake using
his SMLP units. His average best score was 60.6% [16] and was achieved with 44 hidden units. Our new
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algorithm (PRBFN2) achieved 68.4% correct classification with only 22 hidden units. For this problem
PRBFN needed 27 hidden units. As far as we know, it is the best result that was achieved on this data set.

The waveform data set is a three class problem which was constructed by Brieman to demonstrate the
performance of the Classification and Regression Trees method [3]. Each class consists of a random convex
combination of two out of three waveforms sampled discretely with added Gaussian noise. The data set
contains 5000 instances, and 300 are used for training. Recent reports on this data-set can be found in
[22, 4]. Each of these reports used a different size training set. We used the smaller training set size as in [22]
who report 80.9% correct classification. The Optimal Bayes classification rate is 86% correct classification,
the CART decision tree algorithm achieved 72%, and Nearest Neighbor Algorithm achieved 38%. PRBFN2
achieved 85.8% correct classification on this data set.

The Hepatitis data set is a two class classification problem and the input vector space has 19 attributes.
The task is to predict if a patient will survive. Diaconis and Efron [9] achieved 80% correct classification on
this dataset and Cestink et al. [5] achieved 83%. The Iris data set [15] contains three classes, each with 50
instances. The classes refer to a type of iris plant. Each pattern is composed of four attributes. We divided
the data set into two halves one for train and one for test. This procedure is repeated 100 times. The Letters
data set [18] contains 20,000 patterns. The objective is to identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital letters in the English alphabet. The character images
were based on 20 different fonts and each letter within these fonts was randomly distorted to produce a file
of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical attributes (statistical
moments and edge counts) which were then scaled to fit into a range of integer values from 0 through 15.
We trained on the first 16000 patterns and tested the model on the remaining 4000. Frey et al. result [18]
was a little over 80%, PRBFN2 achieved 93% correct classification. Other results over 90% are reported in
[10, 17, 32]. Since this data set is large some of the classifiers were able run.

5 Discussion

The work presented in this paper extends our earlier work on hybrid architectures [6]. Several assumptions
were made in various parts of the architecture construction. Our aim was to show that even under these
assumptions, an architecture that is smaller in size and better in generalization performance can already
be achieved. Furthermore, while this architecture is particularly useful when the data contains ridge and
Gaussian parts, its performance were not below the performance of the best known MLP or RBF networks
when data that contains only one type of structure was used e.g., the Sonar or Iris data-sets.

In previous work [6] we used fixed threshold for unit type selection and a predefined number of hidden
units. This paper introduced an algorithm that finds automatically the relevant parts of the data (via tree-
like clustering) and maps these parts onto RBF or Ridge functions using a likelihood test. The algorithm
also finds the number of hidden units for the network given only an error target. The automatic unit type
selection uses the maximum likelihood principle in different manner for classification.

The proposed network construction and training method, has several means to avoid overfitting: (i) The
number of patterns in each region can not be below a certain predefined number. (ii) A confidence level is
used to determine whether a new split is performed, thus, the flexibility and size of network can be controlled
by this parameter. (iii) The fact that either a radial basis function or a projection unit is fit locally to the
data reduces overfitting as a better fit to the data is more likely. (iv) RBF optimization, as well as full
gradient descent optimization on the hybrid network, are done via a constrained minimization. (v) An error
goal is pre set for the mean square error, in order to enable early stopping. (vi) Unit type selection relies
on likelihood ratio and not absolute numbers, ensuring that the better unit will be chosen to locally fit the
data.

We have tested the new architecture and training algorithm on six classification problems. The resulting
network does appear to be smaller than competing architectures, validating the usefulness of the overfitting
avoidance methods. There are two cases where significant improvement was obtained. In the extensively
studied vowel data set, the proposed hybrid architecture achieved average results which are superior to the
best known results [34] while using a smaller number of hidden units. On the waveform classification problem
[3], our results are close to the Bayes limit for the data and are better than the current known results.

In summary, the proposed method appears to have the ability to better model nonlinear data, in partic-
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ular, demonstrate increased generalization, while keeping the number of the estimated parameters smaller.
The potential flexibility is greater than in an MLP or RBF networks as the architecture includes both these
models, however the strong regularization keeps the model smaller than other competing models.
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