
A strong regularization on a hybrid MLP/RBF architecture
achieves small bias and small variance error?

Shimon Cohen and Nathan Intrator

School of Computer Science, Tel Aviv University
www.math.tau.ac.il/∼nin

Abstract. We introduce a Forward Backward and model selection algorithm for constructing a hybrid
network of radial and perceptron hidden units for regression. The algorithm determines if a radial or a
perceptron unit is required at a given region of input space. Given an error target, the algorithm also
determines the number of hidden units. Then the algorithm uses model selection criteria and prunes
unnecessary weights. This results in a final architecture which is often much smaller than an RBF
network or a MLP.

Keywords: Projection units, RBF Units, Hybrid Network Architecture, SMLP, Clustering, Regularization.

1 Introduction

The construction of a network architecture which contains units of different types at the same hidden layer
is not commonly done. One reason is that such construction makes model selection more challenging, as
it requires the determination of each unit type in addition to the determination of network size. A more
common approach to achieving higher architecture flexibility is via the use of more flexible units [23, 11].
The potential problem of such a construction is over flexibility which leads to over-fitting.

We have introduced a training methodology for a hybrid MLP/RBF network [5, 4]. This architecture
produced far better classification and regression results when compared with advanced RBF methods or
with MLP architectures. In this work, we further introduce a novel training methodology, which:

1. evaluates the need for additional hidden units,
2. chooses optimally their nature – MLP or RBF – and
3. determines their optimal initial weight values.

The determination of additional hidden units is based on an incremental strategy which searches for regions
in input space for which the input/output function approximation leads to highest residual error. The
last step is to prune unnecessary parameters and to select the best model from the sequence of nested
models using Bayesian model selection or Likelihood Ratio Test (LRT). This approach, coupled with optimal
determination of initial weight values for the additional hidden units, constructs a computationally efficient
training algorithm which appears to scale up with the complexity of the data, which is better than regular
MLP or RBF methods.

2 Motivation for incremental methods and the use of a hybrid MLP/RBF
networks

There are many ways to decompose a function into a set of basis functions. The challenging task is to
use a complete set which converges fast to the desired function (chosen from a sufficiently wide family of
functions.) For example, while it is well known that MLP with as little as a single hidden layer is a universal

? This work was partially supported by the Israeli Ministry of Science and by the Israel Academy of Sciences and
Humanities – Center of Excellence Program. Part of this work was done while N. I. was affiliated with the Institute
for Brain and Neural Systems at Brown University and supported in part by ONR grants N00014-98-1-0663 and
N00014-99-1-0009.

approximator, namely, it can approximate any L2 function, it is also known that the approximation may be
very greedy, with the number of hidden units growing very large as a function of the desired approximation
error. When the number of train patterns in the train sample set is low, this approximation introduces a
large variance and the prediction of the regressor becomes unreliable.

Analyzing cases where convergence of the architecture (as a function of number of hidden units) is
slow, reveals that often there is at least one region of input space where an attempt is being made to
approximate a function that is radially symmetric (such as a donut) with projection units or vice versa. This
suggests that an incremental architecture which chooses the appropriate hidden unit for different regions
of input space can lead to a far smaller architecture. Earlier approaches, attempted to construct a small
network approximation to the desired function at different regions of input space. This approach, which was
called “divide and conquer”, has been studied since the eighties in the machine learning and connectionists
community. Rather than reviewing the vast literature on that approach, we shall point out some approaches
which indicate some of the highlights that have motivated our work. Work on trees is reviewed in [2] where
the goal is to reach a good division of the input space and use a very simple architecture at the terminating
nodes. That work suggested some criteria for splitting the input space and provided a cost complexity
method for comparing the performance of architectures with different size. An approach which constructs
more sophisticated architectures at the terminating nodes was proposed in [28, 19], where a gating network
performs the division of the input space and small neural networks perform the function approximation at
each region separately. Nowlan’s [28] many experiments with such architecture led him to the conclusion
that it is better to have different type of architectures for the gating network and for the networks that
perform the function approximation at the different regions. He suggested using RBF for the gating network
and MLP for the function approximation, and thus constructed the first hybrid architecture between MLP
and RBF. A tree approach with neural networks as terminating nodes was proposed by [20]. The boosting
algorithm [8] is another variant of the space division approach, where the division is done based on the
error performance of the given architecture. In contrast to previous work, this approach takes into accounts
the geometric structure of the input data indirectly. A remote family of architectures, where the function
approximation is constructed incrementally, is projection pursuit [13] and additive models [15, 16].

If one accepts the idea of constructing a local simple architecture to different regions in input space,
then the question becomes, which architecture family should be used. The local architecture should be as
simple as possible in order to avoid over-fitting to the smaller portion of regional training data. Motivated
by theoretical work that has studied the duality between projection-based approximation and radial kernel
methods [7], we have decided to use RBF or perceptron units. Donoho’s work has shown that a function can
be decomposed into two parts, the radial part and the ridge (projection based) part, and that the two parts
are mutually exclusive. It is difficult however, to separate the radial portion of a function from its projection-
based portion before they are estimated, but a sequential approach which decides on the fly, which unit to
use for different regions in input space, has a potential to find a useful subdivision.

The most relevant statistical framework to our proposal is Generalized Additive Models (GAM) [15, 16].
In that framework, the hidden units (the components of the additive model) have some parametric form,
usually polynomial, which is estimated from the data. While this model has nice statistical properties [32],
the additional degrees of freedom, require strong regularization to avoid over-fitting. Higher order networks
have at least one quadratic term in addition to the linear term of the projections [23] as a special case of
GAM.

y =
∑

i

wig(
∑

j

wijxj +
∑

k

∑
l

wiklxkxl + ai) + w0 (1)

While they present a powerful extension of MLPs, and can form local or global features, they do so at the cost
of squaring the number of input weights to the hidden nodes. Flake [11] has suggested an architecture similar
to GAM where each hidden unit has a parametric activation function which can change from a projection
based to a radial function in a continuous way [11]. This architecture uses a squared activation function,
thus called Squared MLP (SMLP) and only doubles the input dimension of the input patterns.

Our proposed hybrid extends both MLP and RBF networks by combining RBF and Perceptron units
in the same hidden layer. Unlike the previously described methods, this does not increase the number of
parameters in the model, at the cost of predetermining the number of RBF and Perceptron units in the
network. The hybrid network is useful especially in cases where the data includes some regions that contain

Fig. 1. Data that is composed of five clusters and a sigmoidal surface.

hill-plateau and other regions that contain Gaussian bumps, as demonstrated in Figure 1. The hybrid
architecture [4, 5], which we call Perceptron Radial Basis Net (PRBFN), automatically finds the relevant
functional parts from the data concurrently, thus avoiding possible local minima that result from sequential
methods. The first training step in the previous approach [4, 5] was to cluster the data. In the next step, we
tested two hypotheses for each cluster. If a cluster was far from radial Gaussian, we rejected this hypothesis
and accepted the null hypothesis. However, we had to use a threshold for rejecting the normal distribution
hypothesis. When it was decided that a data cluster was likely to be normal, an RBF unit was used and
otherwise a Perceptron (projection) unit was used. The last step was to train the hybrid network with full
gradient descent on the full parameters.

However, the selection based on a simple hypothesis test could be improved and suffered from an unclear
way of estimating the hypothesis rejection threshold. Another problem with the old approach is that the
number of hidden units has to be given to the algorithm in advance. In this paper, we introduce a Forward
Backward Model Selection (FBMS) algorithm that automatically selects the type of hidden units as well
as the number of units. In addition the algorithm removes unnecessary parameters using statistical model
selection criteria like the Likelihood Ratio Test (LRT) or the Bayesian Information Criterion (BIC) [31].

There are several approaches to set the structure of a Neural Network. The first one is forward selection.
This approach starts with a small [26, 10] network and add units until an error goal is reached. Another
approach is to start with a large network and [9] prune unnecessary [21] units, until a given criteria is met.

In this paper we use a combination of these approaches. We start with a small network and expand it
until a given error goal is met. Thus, the algorithm determines the number of hidden units automatically.
As noted above, a very difficult task in training a hybrid neural network is to find the radial and projection
parts automatically. This problem is amplified for high dimension data, where the data cannot be visualized
very well. We propose a novel way to select the type of hidden unit automatically. After training the network,
we propose to prune unnecessary weights using Bayesian techniques or LRT. The FBMS algorithm leads to
smaller networks while maintaining good generalization of the resulting network.

3 Parameter estimation and model selection

An incremental architecture with more than one type of building component, requires four decisions at each
step; (i) find the next region in input space where a hidden unit might be needed; (ii) decide which unit to
add, a RBF or a perceptron; (iii) train the network; (iv) prune unnecessary weights.

The SMLP [11] network uses both RBF and Perceptron units at each cluster. In higher order networks
[23], quadratic and linear terms always exists and strong regularization must be used to avoid over-fitting.
We prefer to attempt to select the proper unit for each region in input space. Thus, the number of hidden
units is minimal and over-fitting is reduced. In order to select the type of units in a high dimensional space,
one has to divide the space into regions and then select the type of hidden unit for each region. During
the division of the space into small region we can estimate the overall error and stop the splitting process
when an error goal is reached. Thus, monitoring the size of the network as well. After the initial parameter
estimation, there may be many unnecessary parameters and when the train data set is small an over-fitting
may occur. Thus, a backward elimination of weights can improve the prediction of the algorithm and reduces
the variance of the estimator.

For these reasons there are several steps in estimating the parameters and structure of the hybrid network.
We outline the algorithm’s steps to achieve these goals as follows:

– Data clustering and splitting to reduce an error objective function.
– Automatic selection of unit type for each cluster.
– Full gradient descent.
– Pruning of unnecessary weights.

In subsequent sections, we describe each step of the algorithm in more details.

3.1 Data clustering

The objectives of regression and function approximation are different than classification. The main implica-
tions on the training algorithm are summarized below:

1. In classification, the output variable takes a finite set of values – the class labels. In regression the output
value, the dependent variable is continuous. Thus, training is more difficult as it is not enough to find
only the class boundaries but also to correctly approximate the function in the whole space.

2. In regression problems, the output variable may be different from their target. It is acceptable to have
similar values, in the sense that the difference is not as important for classification. In other words
the differences between the regressor and the true values may be worthless approximation error. In
classification problems the output labels, the class tags, may not be related to any distance operator.
The output response different from the correct one may be unacceptable, that is, the class with maximum
posterior probability is not the correct one.

3. In regression, a more appropriate objective for the clustering algorithm is a reduction in the sum squared
error (SSE) while in classification, the entropy measure is more appropriate [4].

4. In classification problems the a-priori class membership may be available some times (it exists partially
in the TSS). This however, is not an interesting information in regression problems.

Next we describe a clusterization algorithm for regression and function approximation.
We start by clustering the data based on the function values. This is done by minimizing an objective

function, the Sum of Square Errors (SSE). The SSE is equivalent to the maximum likelihood under Gaussian
assumption about the noise. Thus, reducing the SSE is equivalent to the maximization of the data likelihood.

Consider a data set D, we attempt to decompose it into a set {Ci}k
i=1, such that

⋃
Ci = D and Ci

⋂
Cj =

φ for i 6= j.
Let the objective function be the Sum of Square Residual about the mean (SSR):

SSR(C0) =
∑

yi∈C0

(yi − ȳo)2,

where ȳo is the mean of yi ∈ C0. Given a training data set D, we attempt to decompose it into a set {Ci}k
i=1,

such that
⋃

Ci = D and Ci

⋂
Cj = φ for i 6= j. The following algorithm, which is similar to the one proposed

in CART [2], splits the cluster with the largest objective function reduction into two clusters. Consider a
split for a cluster C0 into two clusters C1 and C2. Let the SSR reduction be defined as follows:

∆SSR(C0) = SSR(C0)− (SSR(C1) + SSR(C2)). (2)

Finding a possible set of candidate for splitting Since a cluster C with n members has 2n−1 possible
number of meaningful splits, an exhaustive search is not feasible. CART [2] solves this problem by considering
each axis 1 ≤ l ≤ d of the input space separately and searches for the best split of the form xi ≥ λi for axis
xi. The sorting of the data (by considering each axis separately) reduces the number of possibilities to dn.
We seek a similar approach which is not as restricted as CART to projections that are parallel to the axes.

Splitting rule We assume that the underlying function to be estimated is continuous. Let y1 be the minimum
value of the function in C0, let x1 be the respected pattern. Let y2 be the maximum value of the function in
C0 and let x2 be the respected pattern.

The splitting procedure is defined as follows:

– For each pattern find the Euclidean distance to x1 and x2.
– If the distance to x1 is smaller associate it to C1, otherwise to C2.
– Choose the split of a cluster with the largest reduction in the objective function.

The splitting is continued until an error goal of the hybrid classifier is reached or a predefined maximum
number of clusters is achieved.

Additional distance measures such as Mahalanobis or Manhattan can be considered.
The above splitting rules are simple to implement and can perform data splits that are not parallel to

the feature axes.

3.2 Model selection

The method that is described in this paper uses a statistical approach to select models. Thus, we define a
probability model for regression. We assume that the target function values are corrupted by Gaussian noise
with zero mean and equal variance σ2. In addition, we assume that the noise is independent. We also assume
that the patterns in the train set are independent.

Thus, the likelihood of the data given the model is:

L =
1

(2π)
N
2 σN

exp(−
∑N

n=1(yn − tn)2

2σ2
), (3)

where N is the number of examples, t is the desired response and y is the output of the regressor. The
maximization of the above function is equivalent to the maximization of its log value:

LL = −N

2
log(2π)−N log(σ)−

∑N
n=1(yn − tn)2

2σ2
. (4)

Thus, minimization the SSE is equivalent to the maximization of the likelihood of the data. To obtain the
maximum likelihood value of σ, we derive Eq. 4 with respect to sigma.

∂LL

∂σ
= −N

σ
+

∑N
n=1(yn − tn)2

σ3
. (5)

Thus, we obtain the maximum likelihood value for σ:

σ̂2 =
1
N

N∑
n=1

(yn − tn)2. (6)

We will use Eq. 4 when we compute the model selection criterion as described below.
Model selection is applied twice in our method. The first time is when the type of hidden unit has to be

selected. The second time is when the weights are pruned and, thus, there are two nested models. The task
in this case is to select the best model from a sequence of models. We use the Bayesian information Criterion
(BIC) to select the type of unit. We use either the BIC or LRT for the pruning process. Next we describe
the two approaches.

We start by describing the Bayesian approach. Mackay [25] used the evidence of the model for model
selection. Kass and Raftery [22] utilize Bayes Factors for model selection.

Given a data set D, the task is to choose between two (or more) models M1,M2. Each model has a
parametric family of weights attached to it, with its prior probability p(w|M). The probability of the data
under each model is given by:

p(D|M) =
∫

w

p(D,w|M)dw =
∫

w

p(D|w,M)p(w|M)dw. (7)

The Bayes Factors are then defined as:

p(M1|D)
p(M2|D)

=
p(D|M1)p(M1)
p(D|M2)p(M2)

. (8)

The integration of Eq. 7 can be performed by using Laplace integral [22, 30] which approximates the integrand
by a quadratic function (Taylor approximation to the second order). Thus, the value of the integral becomes:

p(D|M) ∼= (2π)d|H|−1|2p(D|Wm0 ,M)p(Wm0 |M), (9)

Where H is the Hessian matrix of the approximation and Wm0 is the most probable value of the likelihood
p(D|M). Another way to compute the integration of Eq. 7 is by using Monte Carlo Markov Chain (MCMC)
techniques [27], which for this purpose is more computationally intensive. Note that this calculation takes
into account the performance of the model in the vicinity of the parameter vector m0 and is, thus, much
more informative than a simple likelihood at m0. With the lack of a-priori knowledge, we assume that a
model with an RBF or a perceptron as a hidden unit is equally likely, thus:

p(M1) = p(M2).

This leads to the integrated likelihood ratio:

p(D|M1)
p(D|M2)

.

The BIC approximation can be derived from Eq. 9 by using Gaussian distribution to the a-priori param-
eters density [22] to arrive at:

BIC ≡ log(p(D|M)) = log(p(D,Wm0 |M))− d

2
log(N), (10)

where log(p(D,Wm0 |M)) is the maximum likelihood estimation of the parameters and d are the number of
parameters.

Substitute Eq. 6 and Eq. 4 into Eq. 10 we obtain:

BICi = − 1
N

log(2π)−N log(σ̂)− N

2
− di

2
log(N). (11)

The first and third terms on the right are constant and can be eliminated when selecting models on the same
data set.

The truly Bayesian approach, then, uses the evidence as the weights of the models in order to get a
weighted prediction. That is, when a prediction of a new value y is to be made given the train data set D,
we note that:

p(y|D) =
m∑

i=1

p(y, Mi|D) =
m∑

i=1

p(y|Mi, D)p(Mi|D). (12)

Equation 12 shows that the evidence of a model can be used as weight when averaging the predictions of
all models. When the best model gives good prediction the averaging process can be skipped and the best
model can be used for prediction. Thus, the FBMS algorithm uses the best model for prediction.

The LRT can be used to select between two nested models. Given two models such that M1 ⊂ M2, the
LRT test is defined as follows [29]:

−2 log(
p(D,Wm0 |M1)
p(D,Wm0 |M2)

) = χ2(d2 − d1). (13)

This approach uses P − V alues to reject the null hypothesis. That is, the simple model is equivalent to the
complicated one. Please note that this approach only defines confidence intervals to the selection (that is
threshold). It does not select the best possible model. The LRT criterion is applicable only when the models
are nested. Thus, this process is applicable only for the pruning process.

Using the maximum likelihood estimator for σ Eq. 6, we arrive at the following test:

χ2(d2 − d1) = 2N log(σ2
1)− 2N log(σ2

2). (14)

3.3 Unit selection

Now, that we have constructed a decomposition of the input space into more homogeneous subsets, it is
time to choose for each such subset the appropriate hidden unit, namely a projection or a radial unit. Since
in this case the models are not nested, we apply only the Bayesian approach to select between the different
units.

First, we set the parameters of hidden units. Consider two 1−D data fitting problems;
Figure 2 depicts the possible 1 − D prototypical projections, an RBF projection (left side) and Ridge

projection (right side). The lower part was obtained by multiplying the functions values by −1, although,
this is the case when the forward weight is negative.

Fig. 2. Left side: upper part positive RBF, lower part negative RBF. Right side: upper part positive ridge, lower part
negative ridge

The ridge projection is monotonically increasing with the correlation between its weight vector and the
data points. It achieves its maximum value when the correlation is maximized (for a unit projection vector).

Therefore, the ridge weight vector Wm0 should be proportional to the pattern where the function acquires
its maximum value.

The RBF function is monotonically decreasing with the distance from the maximum point. Thus, the
center of the RBF is located at the function maximum point. In this case selection of the value Wm0 that
maximizes the likelihood is trivial.

After the parameters of the hidden unit have been approximated, we can treat a given unit as a Gener-
alized Linear Model (GLM) and compute the full evidence of the models. We assume that the prior of the

forward weight is Gaussian with an unknown variance β. Thus, we have the following probability model for
the likelihood:

p(D|Wm0 ,M) =
1

(2π)N/2αN
exp(

−
∑N

i=1(yi − ti)2

2α2
). (15)

The probability model for the prior:

p(Wm0 |M) =
1

(2π)1/2β
exp(− w2

2β2
). (16)

Let yi be the ridge or RBF values for each xi ∈ Ci, and let ti be the targets. Thus, the integrand of the
evidence in Eq. 7 can be viewed as:

L =
1

(2π)N/2αN
exp(

−
∑N

i=1(yi − ti)2

2α2
)

1
(2π)1/2β

exp(− w2

2β2
). (17)

The maximization of the above function is equivalent to the minimization of the negative log:

LL = N log(α) +
∑N

i=1(yi − ti)2

2α2
+ log(β) +

w2

2β2
, (18)

where we have discarded the constants factors. Deriving Eq. 18 with respect to α and equating to zero, we
obtain:

α2 =
∑N

i=1(yi − ti)2

N
. (19)

Deriving Eq. 18 with respect to β we obtain:

β2 = w2. (20)

Deriving Eq. 18 with respect to w0, we obtain:

w0 =
1
N

(
N∑

i=1

(yi− w
N∑

i=1

φi). (21)

Deriving Eq. 18 with respect to w and setting to zero, we obtain:

w =
β2

∑N
i=1 tiφi − β2

N

∑N
i=1 ti

∑N
i=1 φi

β2
∑N

i=1 φ2
i −

β2

N

∑N
i=1 φi

∑N
i=1 φi + α2

. (22)

The Hessian of the negative log-likelihood can be computed to arrive at:

H =

 ∑N

i=1
φ2

i

α2 + 1
β2

∑N

i=1
φi

α2∑N

i=1
φi

α2
N
α2

 .

Thus, the evidence of the model from Eq. 9 is:

LL = −1
2
N log(α)− 1

2
log(β)− 1

2
log(|H|). (23)

Thus, we purpose the following algorithm for unit selection:

– Initialize α and β.
– Loop: compute w,wo using Eq. 21 and Eq. 22
– Compute α, β using Eq. 19 and Eq. 20.
– Until the difference in LL (Eq. 23) is small.

We note that for large samples ŵ ≈ w where ŵ is the MLE, and H ≈ Ni, where i is the expected Fisher
information matrix for one observation. This is a (d× d) matrix whose (i, j) element is −E[∂2logp(y1|w)

∂wi∂wj
], the

expectation being taken over the values of y1, with w held fixed. Thus, |H| ≈ Nd|i|. This approximation
introduces an O(N− 1

2) into equation 23. If we neglect this term, we arrive at:

Evid ≈ −N log(α)− log(β). (24)

The intuition behind Eq. 24 is that the evidence is large for small MSE errors, but as the weight w
becomes larger, the evidence becomes smaller. Thus, if the function does not truly fit the data a larger w is
needed, and the evidence has a natural cost complexity factor in this case. This is a practical explanation of
the evidence in this case.

The above algorithm converges very fast and the evidence of each model can be computed from Eq. 23.
The model with the highest evidence is selected.

Note that our approach of divide and conquer applies only to unit selection. In the resulting architecture,
each unit can see the whole data and contribute to the output for every pattern. This is different than the
divided and conquer approach of decision tree [2], or to the soft partition of the input space in Hierarchical
Mixture of Experts [24].

3.4 Pruning

The last step of our method is to prune unnecessary weights. The prune process can prune inputs weight to
a ridge unit, a feature of a RBF unit or a hidden unit.

We use a diagonal approximation to the covariance matrix. Thus, the activation of a RBF function is
given by:

φ(x) = exp(−
N∑

i=1

(xi − ci)2

σ2
i

). (25)

If we make the substitution:
1
σ

= r,

we obtain:

φ(x) = exp(−
d∑

i=1

(xi − ci)2r2
i

2
). (26)

Consider setting rj to zero:

φ(x) = exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
) exp(−

(xj − cj)2r2
j

2
)

= exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
) exp(0)

= exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
). (27)

The partial derivatives with respect to ri are:

∂φ

∂ri
= −φ(x)(xi − ci)2ri. (28)

Thus, if we wish to prune a feature i, we set the respected ri to zero for the proper radial function. Note,
that this eliminates two parameters.

For the ridge input weights we add a matrix wij were wij ∈ 0, 1. These weights signal a pruned parameter.
That is, if wij = 0, the weight j to projection unit i is pruned.

Since the models are nested, it is possible to select the model using LRT. On the other hand, the best
model can be selected by the BIC approximation to its evidence. Our method uses both criteria when the
BIC is its default criterion for model selection.

The pruning process that we implement here is similar to [21, 14]. We start with the full model. At
each step, we prune the least significant weight. That is, the weight that contributes least to the objective
function. When the BIC criterion is used the search is exhaustive for the best model from a range of possible
nested models. When the LRT criterion is used, the pruning is stopped when a given threshold is reached.
The threshold is derived from the given significance value (P − value) of the χ2 distribution with one or two
degrees of freedom. Typically, a default value is 95% that matches to 3.841 of the corresponding distribution
for one degree of freedom.

4 Experimental results

This section describes function approximations and regressions results on several approximation and regres-
sion problems.

4.1 Function approximation

In this section we compare our method to RBFN that uses Clustering for Function Approximation (CFA)
[18]. We also compare our clustering stage of the FBMS algorithm versus the one in [18]. The RBFN−CFA
implements RBFN algorithm where the first stage is clusterization and is done by using the function values
in order to achieve a better clustering for function approximation as described in [18]. After the clusterization
RBFN − CFA is trained to adjust the parameters, centers and widths of the radial as well as the output
weights by Levenberg-Marquardt algorithm.

For the approximation problems we followed [18] and measured the normalized root mean square error
(NRMSE):

NRMSE =

√∑n
i=1(f(xi)− ti)2∑n
i=1(f(xi)− t̄)2

, (29)

where f(xi) is the function approximator output of the input vector xi and t̄ is the mean output of all input
vectors.

The first target to approximate is:

f1(x) =
sin(2πx)
exp(x)

, x ∈ [0, 10]. (30)

We use four prototypes and 1000 samples of f1 generated by evaluating inputs taken uniformly from the
interval [0, 10].

The second function, also taken from [18], to consider is:

f2(x) = 0.2 + 0.8(x + 0.7 sin(2πx)), x ∈ [0, 1] (31)

from 21 equidistant input-output training examples belonging to the interval [0, 1].
The third function approximate also used in [18] is two-input data as follows:

f3(x1, x2) =
(x1 − 2)(2x1 + 1)

1 + x2
1

(x2 − 2)(2x2 + 1)
1 + x2

2

, x1, x2 ∈ [−5, 5] (32)

where a complete set of 441 examples obtained from a grid of 21x21 points uniformly distributed in the
input interval defined for f3.

Table 1 shows the results of these three data sets. The results for RBFN −CFA are quoted from [18].
Figure 3 shows f1 in continuous line, the output of PRBFN is displayed in dashed line and the prototypes

are shown as rectangles. The prototypes are located at the extremum points of the function where the variance
is large. This is also a very good initial condition and, thus, this algorithm has superior results to CFA. Please
note that no prototype is allocated to the linear part, where in [18] the, prototypes are allocated to the
constant parts of the function as well.

Function f1 f2 f3

RBFN-CFA 0.952±0.001 0.380±0.035 0.926±0.008

PRBFN2 0.103±0.000 0.082±0.000 0.663±0.000

Table 1. Comparison of normalized mean squared error results on three data sets (see [18] for details). Results are
given just after the initialization procedure using four prototypes.

Fig. 3. f1 taken from [18]. The net output is in dash and the prototypes are the rectangles.

4.2 Regression

We start with three variants of RBF. Our first extension to a hybrid of projection and RBF units (PRBFN)
[4, 5] presents hybrid architecture, model selection and parameter estimation (PRBFN2).

Orr’s RBF [9] method (RBF −Reg − Tree) is based on regression tree for clusterization. This methods
builds a large tree and then prunes it using model selection criteria to achieve a smaller tree. Matlab’s RBF
package (RBF − OLS) implements an incremental algorithm [33], a new unit is added with a center that
corresponds to the pattern with the largest contribution to the current objective function. Bishop’s algorithm
[1] is based on the Expectation Maximization algorithm [6] for clustering (RBF − EM). In addition, for
some data sets, we have also used a backpropogation algorithm using Levenberg-Marquardt optimization
technique (BP −Lev−Marq), and a Logistic Regression [17] algorithm (LogistReg). The following results
are given on the test portion of each data set and represent an average over 100 runs and include standard
error.

The LogGaus data set is a composition of one ridge function and three Gaussians as follows 1:

f(x) =
1

1 + exp(−wT x)
+

3∑
i=1

exp(−‖ x−mi ‖2

2σ2
),

where w = (1, 1), the centers of the Gaussian functions are at (1, 1), (1,−5), (−4,−2) and σ = 1. A random
normally distributed noise with zero mean and 0.1 variance is added to the function. The whole data set is
composed of 441 points and it is divided randomly into two sets of 221 and 220 points each. The first set
serves as the train set and the second one is the test set. All the regressors, that we have tested did not

reveal the true structure of the data, only PRBFN2 revealed the three Gaussians and the ridge function.
This fact is amplified from the results on this data set. Thus, we make the observation that PRBFN has
high performance when the data is composed from ridge and Gaussian-s. If the data is composed either from
Gaussians or ridge function it can reach the performance of other regressors.

The second data-set is a 2D sine wave,

y = 0. sin(x1/4) sin(x2/2),

with 200 training patterns sampled at random from an input range x1 ∈ [0, 10] and x2 ∈ [−5, 5]. The clean
data was corrupted by additive Gaussian noise with σ = 0.1. The test set contains 400 noiseless samples
arranged in a 20 by 20 grid pattern, covering the same input ranges. Orr measured the error as the total
squared error over the 400 samples. We follow Orr and report the error as the SSE on the test set.

The third data-set is a simulated alternating current circuit with four input dimensions (resistance R,
frequency ω, inductance L and capacitance C and one output impedance Z =

√
R2 + (ωL− 1/ωC)2. Each

training set contained 200 points sampled at random from a certain region [9, for further details]. Again,
additive noise was added to the outputs. The experimental design is the same as the one used by Friedman in
the evaluation of MARS [12]. Friedman’s results include a division by the variance of the test set targets. We
follow Friedman and report the normalized MSE on the test set. Orr’s regression trees method [9] outperforms
the other methods on this data set. However, the PRBFN neural network achieves similar results to Orr’s
method.

LogGauss 2D Sine Friedman

RBF-Reg-Tree 0.02±0.14 0.91±0.19 0.12±0.03

RBF-OLS - 0.74±0.41 0.20±0.03

RBF-EM 0.02±0.02 0.53±0.19 0.18±0.02

PRBFN 0.02±0.02 0.53±0.21 0.15±0.03

PRBFN2 0.01±0.01 0.46±0.19 0.12±0.03

Table 2. Comparison of Mean squared error results on three data sets (see [9] for details). Results on the test set are
given for several variants of RBF networks which were used also by Orr to asses RBFs. MSE Results of an average
over 100 runs including standard deviation are presented.

Next, we describe regression results for variant of well known regressors on the Pumadyn data. The
Pumadyn data from the DELEVE archive [3] is generated from a simulation of the dynamic of a Puma
robot arm. The target is the angular acceleration of one of the links and the inputs are various joint angles,
velocities and torques. The Pumadyn data set has several groups, and we have used the data group with the
largest amount of noise and non-linearity. The data set is divided into another two groups. Each of which is
non-linear with high noise. The first group has 8 inputs (Pumadyn8) and the second group has 32 inputs.
There are 5 sizes of the train sample set: 64, 128,256,512,1024. Testing the methods on all of these show
how the method scale with the train sample size. In other words, one can see how the variance of a method
behaves to different train sample size.

For these data sets, we obtain the results of several methods from the DELVE archive and compare our
methods to those results. These methods are:

– Lin-1 Linear least squares regression.
– kNN-cv-1 KNN for regression. K is selected by using leave one out cross validation.
– MLP-ens-1 MLP ensembles with early stopping and conjugate gradient.
– ME-ese-1 Mixtures of experts using early stopping.
– HME-ens-1 Hierarchical mixtures of experts using early stopping.
– GP-map-1 Gaussian processes for regression, trained using a maximum a-posteriori approach imple-

mented by conjugate gradient optimization.
– MLP-MC-1 Multi-layer perceptron (ensembles) networks trained by MCMC methods [27]. a maximum

a-posteriori via conjugate gradient.

– MARS3.6-bag-1 Multivariate adaptive regression splines (MARS) [12], version 3.6 with bagging.
– PRBFN-AS-RBF RBF with pruning as described in section 3.4.
– PRBFN-AS-MLP MLP with pruning as described in section 3.4.
– PRBFN-LRT Full PRBFN method LRT for pruning.
– PRBFN2 PRBFN - Evidence model selection for unit type and BIC pruning as described in section

3.3.

Further more details can be obtained from the DELVE web site [3].

Training size 64 128 256 512 1024

Lin-1 1.98±0.25 1.20±0.05 0.96±0.02 0.89±0.02 0.86±0.02

kNN-cv-1 1.00±0.02 1.01±0.03 0.94±0.02 0.92±0.02 0.90±0.02

MLP-ens-1 1.25±0.04 1.13±0.09 0.96±0.02 0.89±0.02 0.86±0.02

HME-ens-1 1.22±0.02 1.12±0.04 0.96±0.02 0.89±0.02 0.87±0.02

GP-map-1 1.01±0.06 0.70±0.12 0.38±0.01 0.36±0.01 0.35±0.01

MLP-mc-1 0.88±0.06 0.58±0.06 0.50±0.09 0.59±0.06 0.35±0.01

MARS3.6-bag-1 0.93±0.06 0.53±0.03 0.38±0.01 0.35±0.01 0.34±0.01

PRBFN-AS-RBF 1.14±0.2 0.57±0.09 0.40±0.02 0.39±0.02 0.38±0.03

PRBFN-AS-MLP 1.11±0.08 0.84±0.06 0.69±0.07 0.54±0.06 0.40±0.02

PRBFN-LRT 1.45±0.2 1.14±0.09 0.79±0.07 0.55±0.05 0.44±0.03

PRBFN2 0.75±0.11 0.43±0.02 0.38±0.01 0.37±0.02 0.34±0.01

Table 3. Regression on Pumadyn with 32 input non-linear with high noise

Training size 64 128 256 512 1024

Lin-1 0.73±0.019 0.68±0.02 0.65±0.01 0.63±0.014 0.63±0.02

kNN-cv-1 0.79±0.02 0.71±0.02 0.64±0.01 0.58±0.019 0.53±0.02

MLP-ens-1 0.72±0.02 0.67±0.02 0.61±0.01 0.49±0.01 0.41±0.01

HME-ens-1 0.72±0.02 0.67±0.02 0.61±0.01 0.54±0.02 0.44±0.02

GP-map-1 0.44±0.03 0.38±0.01 0.35±0.01 0.33±0.01 0.32±0.01

MLP-mc-1 0.45±0.01 0.39±0.02 0.35±0.01 0.32±0.01 0.32±0.01

MARS3.6-bag-1 0.51±0.02 0.38±0.01 0.36±0.01 0.34 ±0.01 0.34±0.01

PRBFN-AS-RBF 0.51±0.03 0.38±0.02 0.36±0.01 0.33 ±0.01 0.32±0.01

PRBFN-AS-MLP 0.57±0.05 0.59±0.14 0.37±0.02 0.33 ±0.08 0.32±0.01

PRBFN-LRT 0.72±0.11 0.60±0.05 0.43±0.02 0.41 ±0.01 0.35±0.02

PRBFN2 0.48±0.03 0.38±0.01 0.34±0.01 0.33±0.01 0.32±0.01

Table 4. Regression on Pumadyn with 8 input non-linear with high noise

5 Discussion

The work presented in this paper represent a major step in constructing an incremental hybrid architecture
for regression. It was motivated by the success of the original hybrid architecture which was introduced
in [4, 5]. Several assumptions were made in various parts of the architecture construction. Our aim was to
show that even under these assumptions, an architecture that is smaller in size and better in generalization
performance can already be achieved. Furthermore, while this architecture is particularly useful when the
data contain ridge and Gaussian parts, its performance was not below the performance of the best known
MLP or RBF networks when data that contains only one type of structure was used.

In previous work [4, 5], we used hard threshold for unit type selection. The previous algorithm also
accepted the number of hidden units in advance. This paper introduces an algorithm that automatically
reveals the relevant parts of the data and maps these parts onto RBF or Ridge functions respectively. The
algorithm also finds the number of hidden units for the network given only an error target. The automatic
unit type detection uses the Bayesian evidence principle for regression. The pruning method suggested in this
paper is applied to individual weights of each hidden unit. It produces a smaller net with better generalization.
Two cirterions have been used: BIC and LRT. The BIC criterion has the ability to choose the best model
out of many models. The LRT works only on nested models and the process is terminated when the null
hypothesis is rejected. In other words when the change in the likelihood is significant.

We have tested the new architecture construction on seven regression problems and three approximation
problems. There are four cases where better results were obtained. These results occur in the approximation
problems where the function is composed of parts that vary considerably and parts that are almost linear,
e.g. f1. In this cases, the first step of the training that allocates many protopyes to the dynamic part
successfuly modeled the function and has shown low error rates. In the LogGaus data set, which is composed
of Ridge and Gaussian parts – an excellent example for our hybrid – results were again improved with our
proposed architecture construction. The tests on the Pumadyn family have raised interesting observations.
The Bayesian Information Criterion (BIC) is superior to the LRT. The pruning algorithm that has been
described in this paper improved the generalization of regressors. However, regressors with one type of
hidden units, like RBF or MLP, can be improved by using the unit type selection method we have purposed
here. On Pumadyn the pruning has removed 95% of the weights. For instance for the small data sets on
average only 10 weights are needed. The proposed method has always been one of the best regressors and it
has very good performance on pumadyn32-nh. The proposed method appears to have the ability to better
model extensively studied, nonlinear data and, in particular, demonstrate increased generalization, while
keeping the number of the estimated parameters smaller.

References

1. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
2. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. The Wadsworth

Statistics/Probability Series, Belmont, CA, 1984.
3. C.E.Rasmussen, R.M. Neal, G.E. Hinton, D. Van Camp, Z. Ghahrman M. Revow, R. Kustra, and R. Tibshirani.

The delve manual. 1996.
4. S. Cohen and N. Intrator. Automatic model selection in a hybrid perceptron/radial network, 2002. The name is

the same as in the proceedings.
5. S. Cohen and N. Intrator. A hybrid projection based and radial basis function architecture: Initial values and

global optimization. Pattern Anal. Appl. (Special issue on Fusion of Multiple Classifiers), 5(2):113–120, 2002.
6. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm.

Proceedings of the Royal Statistical Society, B-39:1–38, 1977.
7. D. L. Donoho and I. M. Johnstone. Projection-based approximation and a duality with kernel methods. Annals

of Statistics, 17:58–106, 1989.
8. H. Drucker, R. Schapire, and P. Simard. Improving performance in neural networks using a boosting algorithm.

In Steven J. Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing
Systems, volume 5, pages 42–49. Morgan Kaufmann, 1993.

9. M.J.L Orr et al. Combining regression trees and radial basis functions. Int. J. of Neural Systems, 10(6):453–466,
2000.

10. S. E. Fahlman and C. Lebiere. The cascade–correlation learning architecture. CMU-CS-90-100, Carnegie Mellon
University, 1990.

11. G.W. Flake. Square unit augmented, radially extended, multilayer percpetrons. In G. B. Orr and K. Müller,
editors, Neural Networks: Tricks of the Trade, pages 145–163. Springer, 1998.

12. J. H. Friedman. Mutltivariate adaptive regression splines. The Annals of Statistics, 19:1–141, 1991.
13. J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American Statistical Association,

76:817–823, 1981.
14. B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In C. L. Giles,

S. J. Hanson, and J. D. Cowan, editors, Advances in Neural Information Processing Systems, volume 5. Morgan
Kaufmann, San Mateo, CA, 1993.

15. T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1:297–318, 1986.

16. T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, London, 1990.
17. David W. Hosmer and Stanley Lemeshow. Applied Logistic Regression. Wiley Series in Probability and Mathe-

matical Statistics, 1989.
18. H. Pomares J. Ortega J. Gonzalez, I. Rojas and A. Prieto. A new clustering techniques for function approxima-

tion,. IEEE Transaction on Neural Networks, 13:132–142, 2002.
19. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural

Computation, 3(1):79–87, 1991.
20. M. I. Jordan and R. A. Jacobs. Hierarchies of adaptive experts. In J. E. Moody, S. J. Hanson, and R. P. Lippmann,

editors, Advances in Neural Information Processing Systems, volume 4, pages 985–992. Morgan Kaufmann, San
Mateo, CA, 1992.

21. N. Sugie K. Suzuki, I. Horiba. A simple neural network algorithm with application to filter synthesis. Neural
Processing Letters, Kluwer Academic Publishers, Netherlands, 13:43–53, 2001.

22. R. E. Kass and A. E. Raftery. Bayes factors. Journal of The American Statistical Association, 90:773–795, 1995.
23. Y.C. Lee, G. Doolen, H.H. Chen, G.Z.Sun, T. Maxwell, H.Y. Lee, and C.L. Giles. Machine learning using higher

order correlation networks. Physica D, pages 22–D:276–306, 1986.
24. R. A. Jacobs M. I. Jordan. Hierarchical mixture of experts and the EM algorithm. Nueral Computation, 6:181–

214, 1994.
25. D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.
26. John Moody. Prediction risk and architecture selection for neural networks. In V. Cherkassky, J. H. Friedman,

and H. Wechsler, editors, From Statistics to Neural Networks: Theory and Pattern Recognition Applications.
Springer, NATO ASI Series F, 1994.

27. R. M. Neal. Bayesian Learning for Neural Networks. Springer, New York, 1996.
28. S. J. Nowlan. Soft competitive adaptation: Neural network learning algorithms basd on fitting statistical mixtures.

Ph.D. dissertation, Carnegie Mellon University, 1991.
29. A. Papoulis. Probbaility, Random Variables, and Stochastic Process, volume 1. McGRAW-HILL, New York, third

edition, 1991.
30. D. G. Stork R. O. Duda, P. E. Hart. Pattern Classification. John Wiley Sons, INC., New York, 2001.
31. G. Schwarz. Estimationg the dimension of a model. Annals of Statistics, 6:461–464, 1978.
32. C. J. Stone. The dimensionality reduction principle for generalized additive models. The Annals of Statistics,

14:590–606, 1986.
33. P.D. Wasserman. Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York, 1993.

A Approximation power

In this section we show that the algorithm described in this paper converges to a usefull solution. We prove
that an algorithm that does not make the optimal steps converges, and hence this algorithm converges. We
first assume that the algorithm uses the MLE estimation for the unit type, that is, the best forward weights
are selected for w,w0 in the unit selection procedure. We also assume that only RBF units were choosen.
Otherwise, if a ridge were choosen then the network had smaller error in each step and the convergence
would be assured again.

ROC A1 Let V = {xi, yi}n
i=1 a data set where xi ∈ Rd. Let f be a continous function in V and assume

that f is bounded on V . Let ε > 0, and assume that all the units chosen are Gaussians. Assume that,
|f(x)| < b∀x ∈ V , and let Vx = {xi}n

i=1. The algorithm converges with rate O(1/n).

We set the approximator at each step as follows:

ˆf(x) =
K∑

i=1

yi exp(−||x− xi||2

r2
i

). (33)

We set ri as follows:

r2
i < min

xj∈Vx

||xj − xi||2

|log(b)− log(ε
n)|

. (34)

For the first Kxi chosen by the algorithm there exist:

|f(xi)− ˆf(xi)| < |f(xi)− yi|+ |
∑
j 6=i

yj exp(−||xj − xi||2

r2
i

)|

< 0 +
K − 1

n

ε

n
<

ε

n
(35)

For all the other points xk that have not yet been selected the following hold:

|f(xk)− ˆf(xi)| < |yk|+ |
∑

j

yj exp(−||xj − xi||2

r2
i

)|

< b +
n−K

n

ε

n
< b +

ε

n
. (36)

Thus, the sum of Squares error is:

n∑
i=1

(f(xi)− ˆf(xi))2 =
∑

xi,i≤k

(f(xi)− ˆf(xi))2 +
∑

xi,i>k

(f(xi)− ˆf(xi))2

<
εk

n
+

bε(n− k)
n

, (37)

and hence we see that the residual error decreases and the decrease is: ε b−1
n . It follows that if we choose

b > 1 that at each step the decrease of the error is O(1/n).

