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An assessment of the performance hybrid network with different model selection criteria
is considered. These criteria are used in an automatic model selection algorithm for
constructing a hybrid network of radial and Perceptron hidden units for regression.

A forward step builds the full hybrid network; A model selection criterion is used for
controlling the network-size and another criterion is used for choosing the appropriate

hidden unit for different regions of input space. This is followed by a conservative pruning

step using Likelihood Ratio Test, Bayesian or Minimum Description Length, which leads
to robust estimators with low variance. The result is a small architecture that performs

well on difficult, realistic, benchmark data-sets of high dimensionality and small training

size. Best results are obtained by using the Bayesian approach for the model selection.
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1. Introduction

The construction of a network architecture that contains units of different types
in the same hidden layer is not commonly done. One reason is that such construc-
tion makes model selection more challenging, as it requires the determination of
each unit type in addition to the determination of network size. A more common
approach to achieving higher architecture flexibility is via the use of more flexible
units 30,17. The potential problem of such a construction is over flexibility which
leads to over-fitting.

We have introduced a training methodology for a hybrid MLP/RBF network
6,4,7. This architecture produced better classification and regression results when
compared with advanced RBF methods or with MLP architectures. In this paper,
we introduce a novel model selection approach using the Minimum Description
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Length (MDL) principle. We compare this approach with previous approaches:
Likelihood Ratio Test and the Bayesian approach 7.

2. Motivation for incremental methods and the use of a hybrid
MLP/RBF networks

There are many ways to decompose a function into a set of basis functions. The
challenging task is to use a complete set which converges fast to the desired function
(chosen from a sufficiently wide family of functions). For example, while it is well
known that MLP with as little as a single hidden layer is a universal approximator,
namely, it can approximate any L2 function, it is also known that the approximation
may be greedy, with the number of hidden units growing large as a function of the
desired approximation error 1. When the number of training patterns in the Training
Sample Set (TSS) is low, this approximation introduces a large variance and the
prediction of the regressor becomes unreliable.

Analyzing cases where convergence of the architecture (as a function of number
of hidden units) is slow, reveals that often there is at least one region of input
space where an attempt is being made to approximate a function that is radially
symmetric (such as a doughnut) with projection units or vice versa 11,17. This sug-
gests that an incremental architecture which chooses the appropriate hidden unit
for different regions of input space can lead to a far smaller architecture. Earlier
approaches, attempted to construct a small network approximation to the desired
function at different regions of input space. This approach, which was called “divide
and conquer”, has been studied since the eighties in the machine learning and con-
nectionists community. Rather than reviewing the vast literature on that approach,
we shall point out some approaches which indicate some of the highlights that have
motivated our work. Work on trees is reviewed in 3 where the goal is to reach a
good division of the input space and use a simple architecture at the terminating
nodes. That work suggested some criteria for splitting the input space and provided
a cost complexity method for comparing the performance of architectures with dif-
ferent size. An approach which constructs more sophisticated architectures at the
terminating nodes was proposed in 35,26, where a gating network performs the di-
vision of the input space and small networks perform the function approximation
at each region separately. Nowlan’s 35 many experiments with such architecture led
him to the conclusion that it is better to have different type of architectures for
the gating network and for the networks that perform the function approximation
at the different regions. He suggested using RBF for the gating network and MLP
for the function approximation, and thus constructed the first hybrid architecture
between MLP and RBF. A tree approach with artificial neural networks as termi-
nating nodes was proposed by 27. The boosting algorithm 12 is another variant of
the space division approach, where the division is done based on the error perfor-
mance of the given architecture. In contrast to previous work, this approach takes
into account the geometric structure of the input data indirectly. A remote family
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of architectures, where the function approximation is constructed incrementally, is
projection pursuit 19 and additive models 22,23. Another approach is taken by the
cascade correlation algorithm, which incrementally adds hidden units to meet a
given error goal 15.

If one accepts the idea of constructing a local simple architecture to different
regions in input space, then the question becomes, which architecture family should
be used. The local architecture should be as simple as possible in order to avoid
over-fitting to the smaller portion of regional training data. Motivated by theoretical
work that has studied the duality between projection-based approximation and
radial kernel methods 11, we have decided to use RBF or Perceptron units. Donoho’s
work has shown that a function can be decomposed into two parts, the radial part
and the ridge (projection based) part, and that the two parts are mutually exclusive.
It is difficult however, to separate the radial portion of a function from its projection-
based portion before they are estimated, but a sequential approach which decides
on the fly, which unit to use for different regions in input space, has a potential to
find a useful subdivision.

The most relevant statistical framework to our proposal is Generalized Additive
Models (GAM) 22,23. In that framework, the hidden units (the components of the
additive model) have some parametric form, usually polynomial, which is estimated
from the data. While this model has nice statistical properties 46, the additional
degrees of freedom, require strong regularization to avoid over-fitting. Higher order
networks have at least one quadratic term in addition to the linear term of the
projections 30 as a special case of GAM:

y =
∑

i

wig(
∑

j

wijxj +
∑

k

∑
l

wiklxkxl + ai) + w0. (1)

While they present a powerful extension of MLPs, and can form local or global
features, they do so at the cost of squaring the number of input weights to the
hidden nodes. Flake 17 has suggested an architecture similar to GAM where each
hidden unit has a parametric activation function which can change from a projection
based to a radial function in a continuous way 17. This architecture uses a squared
activation function, thus called Squared MLP (SMLP), and only doubles the input
dimension of the input patterns.

Our proposed hybrid architecture extends both MLP and RBF networks, by
combining RBF and Perceptron units in the same hidden layer. Unlike the previ-
ously described methods, this does not increase the number of parameters in the
model, at the cost of predetermining the number of RBF and Perceptron units in the
network. The hybrid network is useful especially in cases where the data includes
some regions that contain hill-plateau and other regions that contain Gaussian
bumps, this is further discussed in 6. The hybrid architecture 4,6,7, which we call
Perceptron Radial Basis Net (PRBFN), automatically finds the relevant functional
parts from the data concurrently, thus avoiding possible local minima that result
from sequential methods. There are several approaches to set the structure of an
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Artificial Neural Network. The forward selection approach starts with a small 33,16

network and adds units until an error goal is reached. Another approach is to start
with a large network and prune unnecessary units, until a given criteria is met 14,47.
We introduced a combination of these approaches in 7. This algorithm starts with
a small network and expands the network until a given error goal is met, namely,
it determines automatically the size of the network. A difficult task in training
a hybrid artificial neural network is to find the radial and projection parts auto-
matically 7. This problem is amplified for high dimensional data, where the data
cannot be visualized very well. We proposed a novel way to select the type of hidden
unit automatically. After training the network, we proposed to prune unnecessary
weights using Bayesian techniques or LRT. The Forward Backward Model Selection
(FBMS) algorithm leads to smaller networks while maintaining good generalization
of the resulting network. The importance of a small architecture with strong regu-
larization is revealed when there are few samples in the Training Sample Set (TSS),
and the given function is corrupted with a large amount of noise 7. Weight decay
can be used to reduce the overfitting in these cases 36,29. Another approach, which
helps to reduce overfitting, is weight elimination or pruning of parameters 50,21,7.
In this work, we evaluate different model selection criteria for selecting the number
of hidden units and for pruning. Using the Minimum Description Length (MDL)
principle 40,41,43, a novel model selection criterion is derived. We use several data
sets to assess the performance of the hybrid network and the MDL criterion. In
addition, we consider eight new data sets for function approximation, and compare
our method to the Generalized Radial Basis Function (GRBF) algorithm that is
trained using the soft-EM algorithm 31.

3. Parameter estimation and model selection

For completeness, we give here a short description of the FBMS algorithm 7. Here
are the main steps of this algorithm: (i) find the next region in input space where a
hidden unit might be needed, (ii) decide which unit to add, a RBF or a Perceptron,
(iii) train the network, and (iv) prune unnecessary weights.

The SMLP 17 network uses both RBF and Perceptron units at each cluster.
In higher order networks 30, quadratic and linear terms always exists and strong
regularization must be used to avoid over-fitting. We prefer to attempt to select
the proper unit for each region in input space. Thus, the number of hidden units is
minimal and over-fitting is reduced. In order to select the type of units in a high
dimensional space, one has to divide the space into regions and then select the type
of hidden unit for each region. During the division of the space into small regions,
we can estimate the overall error and stop the splitting process when an error
goal is reached. Thus, monitoring the size of the network as well. After the initial
parameter estimation, there may be many unnecessary parameters and when the
training data-set is small an over-fitting may occur. Thus, a backward elimination
of weights can improve the prediction of the algorithm and reduces the variance of
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the estimator.
For these reasons there are several steps in estimating the parameters and struc-

ture of the hybrid network. We outline the algorithm’s steps to achieve these goals
as follows:

• Data clustering and splitting to reduce an error objective function.
• Automatic selection of unit type for each sub-space.
• Full gradient descent.
• Pruning of unnecessary weights.

Full details of the above steps are given in 5,7.

3.1. Model selection

The method that is described in this paper uses a statistical approach to select
models. Thus, we define a probability model for regression. We assume that the
target function values are corrupted by Gaussian noise with zero mean and equal
variance σ2. In addition, we assume that the noise is independent. We also assume
that the patterns in the training set are independent.

Thus, the likelihood of the data given the model is:

L =
1

(2π)
N
2 σN

exp(−
∑N

n=1(yn − tn)2

2σ2
), (2)

where N is the number of examples, t is the desired response and y is the out-
put of the regressor. The maximization of the above function is equivalent to the
maximization of its log value:

LL = −N

2
log(2π)−N log(σ)−

∑N
n=1(yn − tn)2

2σ2
. (3)

Thus, minimization the SSE is equivalent to the maximization of the likelihood of
the data. To obtain the maximum likelihood value of σ, we differentiate Eq. (3)
with respect to σ:

∂LL

∂σ
= −N

σ
+

∑N
n=1(yn − tn)2

σ3
. (4)

Thus, we obtain the maximum likelihood value for σ:

σ̂2 =
1
N

N∑
n=1

(yn − tn)2. (5)

We will use Eq. (3) when we compute the model selection criterion as described
below.

Model selection is applied twice in our method. The first time is when the type of
hidden unit has to be selected. The second time is when the weights are pruned and,
thus, there are two nested models. The task in this case is to select the best model
from a sequence of models. We use the Bayesian Information Criterion (BIC) or
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MDL to select the type of unit. We use BIC, MDL or LRT for the pruning process.
Next we describe these approaches.

3.1.1. The Bayesian approach

We start by describing the Bayesian approach. Mackay 32 used the evidence of the
model for model selection. Kass and Raftery 28 utilize Bayes Factors for model
selection.

Given a data-set D, the task is to choose between two (or more) models M1,M2.
Each model has a parametric family of weights attached to it, with its prior prob-
ability p(w|M). The probability of the data under each model is given by:

p(D|M) =
∫

w

p(D,w|M)dw =
∫

w

p(D|w,M)p(w|M)dw. (6)

The Bayes Factors are then defined as:

p(M1|D)
p(M2|D)

=
p(D|M1)p(M1)
p(D|M2)p(M2)

. (7)

The integration of Eq. (6) can be performed by using Laplace integral 28,13 which
approximates the integrand by a quadratic function (Taylor approximation to the
second order). Thus, the value of the integral becomes:

p(D|M) ∼= (2π)d|H|−1|2p(D|Wm0 ,M)p(Wm0 |M), (8)

where H is the Hessian matrix of the approximation and Wm0 is the most probable
value of the likelihood p(D|M). Another way to compute the integration of Eq.
(6) is by using Monte Carlo Markov Chain (MCMC) techniques 34, which for this
purpose is more computationally intensive. Note that this calculation takes into
account the performance of the model in the vicinity of the parameter vector m0

and is, thus, much more informative than a simple likelihood at m0. With the lack
of a-priori knowledge, we assume that a model with an RBF or a Perceptron as a
hidden unit is equally likely, thus:

p(M1) = p(M2).

This leads to the integrated likelihood ratio:

p(D|M1)
p(D|M2)

.

The BIC approximation can be derived from Eq. (8) by using Gaussian distri-
bution to the a-priori parameters density 28 to arrive at:

BIC ≡ log(p(D|M)) = log(p(D,Wm0 |M))− d

2
log(N), (9)

where log(p(D,Wm0 |M)) is the maximum likelihood estimation of the parameters
and d are the number of parameters.
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Substituting Eq. (5) and Eq. (3) into Eq. (9), we obtain:

BICi = − 1
N

log(2π)−N log(σ̂)− N

2
− di

2
log(N). (10)

The first and third terms on the right are constant and can be eliminated when
selecting models on the same data-set.

The truly Bayesian approach, then, uses the evidence as the weights of the
models in order to get a weighted prediction. That is, when a prediction of a new
value y is to be made given the training data-set D, we note that:

p(y|D) =
m∑

i=1

p(y, Mi|D) =
m∑

i=1

p(y|Mi, D)p(Mi|D). (11)

Equation (11) shows that the evidence of a model can be used as weight when
averaging the predictions of all models. When the best model gives good prediction
the averaging process can be skipped and the best model can be used for prediction.
Thus, the FBMS algorithm uses the best model for prediction.

3.1.2. Minimum Description Length

In the Minimum Description Length (MDL) formulation, one searches for a model
that allows the shortest data encoding, together with a description of the model
itself 39,42. MDL can be formulated on an imaginary communication game, in which
a sender observes the data D and communicates it to the receiver. Having observed
the data, the sender discovers that the data has some regularity that can be captured
by a model M . This encourages the sender to send the data using a probability
that is dictated by the model, instead of sending the data with a uniform prior
probability. Due to noise, there are possible errors. Both, the errors and the model,
are sent so that the receiver is able to recover the data. Complex models can achieve
high error correction tolerance, thus, high data accuracy, but their description is
expensive. In contrast, too simple models are more sensitive to errors, thus are less
accurate. Thus, there is a tradeoff between accuracy and the compactness of the
code.

To transmit the data, the sender composes a message which consists of the
message with the length `(M) that specifies the model, and `(D|M) that specifies
the length of the data given the model. The goal of the sender is to find the model
that minimizes the length of this encoded message `(M,D), called the description
length:

`(M,D) = `(D|M) + `(M). (12)

According to Shannon’s theory to encode a random variable X with a known dis-
tribution by the minimum number of bits, a realization of x has to be encoded by
− log(p(x)) bits 45,9. Thus the description length is:

`(M,D) = − log(p(D|M))− log(p(M)), (13)
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where p(M |D) is the probability of the output data given the model, and p(M) is
a−priori model probability. Typically the MDL principle is used to select the model
with the shorter description length. To make larger margin between the “support
vectors”, one seeks to minimize the second layer of weights of the neural network 8.
A similar idea is weight decay, which helps to improve generalization 29. Hinton and
Camp (1993) used zero-mean Gaussian distribution for the neural network weights.
This motivates us to define a− priori small values for the network parameters. We
assume normal probability model for the prior:

p(M) =
1

(2π)1/2βd
exp(−

∑d
i=1 w2

i

2β2
), (14)

where d is the number of parameters in the hybrid network, β is the standard
deviation and wi are the parameters of the estimator. In addition, we assume that
the errors that the model make are i.i.d with normal distribution.

Thus, the likelihood of the data given the model is:

p(D|M) =
1

(2π)
N
2 αN

exp(−
∑N

n=1(yn − tn)2

2α2
), (15)

where tn is the target value for the nth pattern, yn is the respected output of the
expert and α is the standard deviation. Under these assumptions the description
length of the model is:

`(M,D) =
N

2
log(2π) + N log(α) +

∑N
n=1(yn − tn)2

2α2
+

d

2
log(2π) + d log(β) +

d∑
i=1

w2
i

2α2
. (16)

Differentiating Eq. (16) with respect to α and equating to zero, we obtain:

α2 =
1
N

N∑
n=1

(yn − tn)2. (17)

Differentiating Eq. (16) with respect to β and equating to zero, we obtain:

β2 =
1
d

d∑
i=1

w2
i . (18)

Substituting Eq. (17) and Eq. (18) into Eq. (16) and discarding the constant terms,
we arrive at:

`(M,D) = N log(α) + d log(β) +
d

2
(1 + log(2π)). (19)

Equation (19) shows that the description length of the model is a tradeoff between
the errors (α) and the number of parameters d and their average value (β).
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3.1.3. Nested models and the Likelihood Ratio Test

The LRT can be used to select between two nested models. Given two models such
that M1 ⊂ M2, the LRT test is defined as follows 37:

−2 log(
p(D,Wm0 |M1)
p(D,Wm0 |M2)

) = χ2(d2 − d1). (20)

This approach uses P − V alues to reject the null hypothesis. That is, the simple
model is equivalent to the complicated one. Note that this approach only defines
confidence intervals to the selection (that is threshold). It does not select the best
possible model. The LRT criterion is applicable only when the models are nested.
Thus, this process is applicable only for the pruning process.

Using the maximum likelihood estimator for σ Eq. (5), we arrive at the following
test:

χ2(d2 − d1) = 2N log(σ1)− 2N log(σ2), (21)

where d1 and d2 are the number of parameters of the first and second models.

3.2. Forward step

In the forward step, the space is divided recursively into sub-spaces. While the Mean
Squared Error (MSE) is typically smaller with each division, the description length
of the model, or its Bayesian Information Criterion, can obtain larger or smaller
values. Thus, there are several models, with different model selection criterion value.
When the division process stops 7, the best model is selected, using either the BIC
or the MDL criterion. The space division stops when a predefined maximum number
of hidden units is achieved.

When the MDL is used, the model with the smallest description length from
Eq. (19) is selected. When the Bayesian Information Criterion is used, Eq. (10), the
model with the largest BIC value is selected. Thus, the number of hidden units in
the network is completely defined from the model selection criteria.

3.3. Pruning

The last step of the FBMS algorithm is to prune unnecessary weights. The pruning
process can prune inputs weight to a ridge unit, a feature of a RBF unit or a
hidden unit. We use a diagonal approximation to the covariance matrix. Thus, the
activation of a RBF function is given by:

φ(x) = exp(−
N∑

i=1

(xi − ci)2

σ2
i

). (22)

If we make the substitution:
1
σ

= r,
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we obtain:

φ(x) = exp(−
d∑

i=1

(xi − ci)2r2
i

2
). (23)

Consider setting rj to zero:

φ(x) = exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
) exp(−

(xj − cj)2r2
j

2
)

= exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
) exp(0)

= exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
). (24)

The partial derivatives with respect to ri are:
∂φ

∂ri
= −φ(x)(xi − ci)2ri. (25)

Thus, if we wish to prune a feature i, we set the respected ri to zero for the
proper radial function. Note, that this eliminates two parameters. For the ridge
input weights we add a matrix wij were wij ∈ 0, 1. These weights signal a pruned
parameter. That is, if wij = 0, the weight j to projection unit i is pruned. Since
the models are nested, it is possible to select the model using LRT. On the other
hand, the best model can be selected by the BIC approximation to its evidence, or
by the MDL principle. Our method uses both criteria when the BIC is its default
criterion for model selection. The pruning process that we implement here is similar
to 47,21. We start with the full model and, at each step, we prune the least significant
weight. That is, the weight that contributes least to the objective function. When
the BIC criterion or the MDL principle are used, the search is exhaustive for the
best model from a range of possible nested models. When the LRT criterion is used,
the pruning is stopped when a given threshold is reached. The threshold is derived
from the given significance value (P −value) of the χ2 distribution with one or two
degrees of freedom. Typically, a default value is 95% that matches to 3.841 of the
corresponding distribution for one degree of freedom.

4. Experimental results

This section describes function approximations and regressions results on several
approximation and regression problems.

4.1. Function approximation

We start by comparing our method to RBFN that uses Clustering for Function
Approximation (CFA) 20. We also compare our clustering stage of the FBMS al-
gorithm versus the one in 20. The RBFN − CFA implements RBFN algorithm
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where the first stage is clusterization and is done by using the function values in
order to achieve a better clustering for function approximation as described in 20.
After the clusterization RBFN −CFA is trained to adjust the parameters, centers
and widths of the radial as well as the output weights by Levenberg-Marquardt
algorithm. We denote the previous algorithm as PRBFN and PRBFN2, the new
algorithm, with model selection.

For the approximation problems we followed 20 and measured the normalized
root mean square error (NRMSE):

NRMSE =

√∑n
i=1(f(xi)− ti)2∑n
i=1(f(xi)− t̄)2

, (26)

where f(xi) is the function approximator output of the input vector xi and t̄ is the
mean output of all input vectors.

The first target to approximate is:

f1(x) =
sin(2πx)
exp(x)

, x ∈ [0, 10]. (27)

We use four prototypes and 1000 samples of f1 generated by evaluating inputs taken
uniformly from the interval [0, 10]. The second function from 20 is:

f2(x) = 0.2 + 0.8(x + 0.7 sin(2πx)), x ∈ [0, 1], (28)

using 21 equidistant input-output training examples belonging to the interval [0, 1].
The third function approximate also used in 20 is two-input data as follows:

f3(x1, x2) =
(x1 − 2)(2x1 + 1)

1 + x2
1

(x2 − 2)(2x2 + 1)
1 + x2

2

, x1, x2 ∈ [−5, 5], (29)

where a complete set of 441 examples obtained from a grid of 21 × 21 points uni-
formly distributed in the input interval defined for f3. Table 1 shows the results of
these three data-sets. The results for RBFN − CFA are quoted from 20.

Table 1. Comparison of normalized mean squared error re-
sults on three data-sets.

Function f1 f2 f3
RBFN-CFA 0.952±0.001 0.380±0.035 0.926±0.008

PRBFN 0.788±0.008 0.177±0.001 0.752±0.061
PRBFN2 0.103±0.000 0.082±0.000 0.663±0.000

Note: Results are given just after the initialization proce-
dure using four prototypes.

Figure 1 depicts the regression function f1, the output of the regression network
and the location of prototype points used by the algorithm to construct the archi-
tecture. The prototypes are located at the extrema points of the function where the
variance is large. This is also a good initial condition and, thus, this algorithm has



October 28, 2003 6:25 WSPC/INSTRUCTION FILE prbfn˙reg˙ijpr˙v1

12 S.Cohen and N. Intrator

superior results to CFA. Please note that no prototype is allocated to the linear
part, where in 20 the prototypes are allocated to the constant parts of the function
as well.

Fig. 1. The regression function f1 (continuous line), the output of the PRBFN regression network
(dashed line) and the location of prototype points (rectangles).

In addition, we consider the set of eight two dimensional functions used in 48,31

to compare the performance of several adaptive methods. These functions, which
form a suitable test set, are described in Table 2. For the above data sets, we use the
results from 31. They used a Generalized Radial Basis Function (GRBF) allowing
a different variance along each input dimension. The GRBF algorithm updates the
centers, variances and forward weights 31. In addition, they used the Expectation-
Maximization (EM) algorithms to obtain better and faster convergence. We follow
the tests in 31 and report the Signal to Error Ratio (SER) in dB defined as follows:

SER = 20 log(
1
N

N∑
i=1

|yi

ei
|).
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Table 2. Functions used to generate two-dimensional data sets.

Name Function Domain

Func 1 y = sin(x1x2) [−2, 2]
Func 2 y = exp(x1 sin(πx2)) [−1, 1]

Func 3 y =
40 exp(8((x1−0.5)2+(x2−0.5)2))

exp(8((x1−0.2)2+(x2−0.7)2))+exp(8((x1−0.7)2+(x2−0.2)2))
[0, 1]

Func 4 y = (1 + sin(2x1 + 3x2)/(3.5 + sin(x1 − x2)) [−2, 2]

Func 5 y = 42.659(0.1 + x1((0.05 + x4
1 − 10x2

1x2
2 + 5x4

2)) [−0.5, 05]
Func 6 y = 1.3356[1.5(1− x1 + exp(2x1 − 1) sin(3π(x1 − 0.6)2) + exp(3(x2 − .05)) sin(4π(x2 − 0.9)2)] [0, 1]

Func 7 y = 1.9[1.35 + exp(x1) sin(13(x1 − 0.6)2] + exp(3(x2 − 0.5)) sin(4π(x2 − 0.9)2)] [0, 1]

Func 8 y = sin(2π
√

x2
1 + x2

2) [−1, 1]

Note: The first column denotes the function name, the second the function and the third is the domain for both

coordinates.

Table 3. Results of function approximation on eight data sets.

Func 1 Func 2 Func 3 Func 4 Func 5 Func 6 Func 7 Func 8

Gradient 20.4 40.5 32.2 19.0 26.1 28.7 26.3 16.2
EM-1 17.9 30.6 34.7 14.1 27.4 29.4 30.5 14.7

EM-2 18.6 29.8 34.8 16.3 27.8 28.9 30.5 15.0

Soft-EM 20.0 39.3 42.9 19.5 31.8 33.6 34.3 16.3
PRBFN2 54.2 62.7 49.7 34.3 94.9 101.9 66.4 32.3

Note: The first four rows are taken from 31. The last row contains the results of the
PRBFN algorithm that is described in this work. Each result is obtained with 15 hidden
units. However, a PRBFN with 15 hidden units has less parameters since a Perceptron

has less parameters than a RBF unit with diagonal covariance matrix, and the unit type
selection algorithm can select either a Perceptron or RBF unit for each cluster.

4.2. Regression

We start with three variants of hybrid network. Our first extension to a hybrid of
projection and RBF units (PRBFN) hybrid architecture 4,6, model selection and
parameter estimation (PRBFN2) 7, FBMS using MDL as described in this paper
(PRBFN-MDL).

Orr’s RBF 14 method (RBF − Reg − Tree) is based on regression tree for
clusterization. This methods builds a large tree and then prunes it using model
selection criteria to achieve a smaller tree. Matlab’s RBF package (RBF − OLS)
implements an incremental algorithm 49, a new unit is added with a center that
corresponds to the pattern with the largest contribution to the current objective
function. Bishop’s algorithm 2 is based on the Expectation Maximization algorithm
10 for clustering (RBF − EM). In addition, for some data-sets, we have also used
a backpropogation algorithm using Levenberg-Marquardt optimization technique
(BP − Lev − Marq), and a Logistic Regression 25 algorithm (LogistReg). The
following results are given on the test portion of each data-set and represent an
average over 100 runs and include standard error.

The LogGaus data-set is a composition of one ridge function and three Gaussians
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as follows:

f(x) =
1

1 + exp(−wT x)
+

3∑
i=1

exp(−‖ x−mi ‖2

2σ2
),

where w = (1, 1), the centers of the Gaussian functions
are at (1, 1), (1,−5), (−4,−2) and σ = 1. A random normally distributed noise
with zero mean and 0.1 variance is added to the function. The whole data-set is
composed of 441 points and it is divided randomly into two sets of 221 and 220
points each. The first set serves as the training set and the second one is the test
set. All the regressors, that we have tested did not reveal the true structure of the
data, only PRBFN2 revealed the three Gaussians and the ridge function. This fact
is amplified from the results on this data-set. Thus, we make the observation that
PRBFN has high performance when the data is composed from ridge and Gaussian-
s. If the data is composed either from Gaussians or ridge function, it can reach the
performance of other regressors.

The second data-set is a two dimensional sine wave,

y = 0.8 sin(x1/4) sin(x2/2),

with 200 training patterns sampled at random from an input range x1 ∈ [0, 10]
and x2 ∈ [−5, 5] (see 14 for details). The clean data was corrupted by additive
Gaussian noise with σ = 0.1. The test set contains 400 noiseless samples arranged
in a 20 by 20 grid pattern, covering the same input ranges. Orr measured the error
as the total squared error over the 400 samples. We follow Orr and report the error
as the SSE on the test set.

The third data-set is a simulated alternating current circuit with four input
dimensions (resistance R, frequency ω, inductance L and capacitance C and one
output impedance Z =

√
R2 + (ωL− 1/ωC)2. Each training set contained 200

points sampled at random from a certain region 14. Again, additive noise was added
to the outputs. The experimental design is the same as the one used by Friedman
in the evaluation of MARS 18. Friedman’s results include a division by the variance
of the test set targets. We follow Friedman and report the normalized MSE on the
test set. Orr’s regression trees method 14 outperforms the other methods on this
data-set. However, the PRBFN network achieves results similar to Orr’s method.

The next experiments were done on the Pumadyn regression data, taken from
the DELEVE archive 38. This data was generated from a simulation of the dynamics
of a Puma robot arm. The target is the angular acceleration of one of the links and
the inputs are various joint angles, velocities and torques. The Pumadyn data-set
has several groups, and we have used the data group with the largest noise and
non-linearity. This group has either 8 or 32 inputs, each of which is non-linear with
high noise. The training set size is: 64,128,256,512,1024. This is done to test how
well each method scales with training sample size.

The methods we use to compare our results are:

• Lin-1 Linear least squares regression.
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Table 4. Comparison of test-set Mean squared error re-

sults on three data-sets.

Algorithm LogGauss 2D Sine Friedman
RBF-Reg-Tree 0.02±0.14 0.91±0.19 0.12±0.03

RBF-OLS - 0.74±0.41 0.20±0.03

RBF-EM 0.02±0.02 0.53±0.19 0.18±0.02
PRBFN 0.02±0.02 0.53±0.21 0.15±0.03

PRBFN-MDL 0.02±0.02 0.50±0.21 0.15±0.03

PRBFN2 0.01±0.01 0.46±0.19 0.12±0.03

Note: MSE Results are an averaged of 100 runs and

include standard deviation. They are given for several
variants of RBF networks which were used by Orr to

asses RBFs.

• kNN-cv-1 KNN for regression. K is selected by using leave one out cross
validation.

• MLP-ens-1 MLP ensembles with early stopping and conjugate gradient.
• ME-ese-1 Mixtures of experts using early stopping.
• HME-ens-1 Hierarchical mixtures of experts using early stopping.
• GP-map-1 Gaussian processes for regression, trained using a maximum

a-posteriori approach implemented by conjugate gradient optimization.
• MLP-MC-1 Multi-layer Perceptron (ensembles) networks trained by

MCMC methods 34. a maximum a-posteriori via conjugate gradient.
• MARS3.6-bag-1 Multivariate adaptive regression splines (MARS)18, ver-

sion 3.6 with bagging.
• PRBFN The first PRBFN algorithm as described in 6.
• PRBFN-AS-RBF RBF with pruning as described in Section 3.3.
• PRBFN-AS-MLP MLP with pruning as described in Section 3.3.
• PRBFN-LRT Full PRBFN method LRT for pruning.
• PRBFN-MDL Full PRBFN method with the MDL principle for pruning.
• PRBFN2 PRBFN - Evidence model selection for unit type and BIC prun-

ing as described in 7.

Additional details can be obtained from the DELVE web site 38.

5. Discussion

The work presented in this paper provides a comparison between several statistical
methods for model selection. The FBMS is a constructive algorithm, which can
be used for different types of neural networks. It was motivated by the success of
the original hybrid architecture which was introduced in 4,6,7. Several assumptions
were made in various parts of the architecture construction. We have shown that
that under these assumptions, an architecture that is smaller in size and better in
generalization performance can be obtained. Furthermore, while this architecture is
particularly useful when the data contains ridge and Gaussian parts, its performance
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Table 5. Regression on Pumadyn with 32 input non-linear with high noise.

Training size 64 128 256 512 1024

Lin-1 1.98±0.25 1.20±0.05 0.96±0.02 0.89±0.02 0.86±0.02

kNN-cv-1 1.00±0.02 1.01±0.03 0.94±0.02 0.92±0.02 0.90±0.02

MLP-ens-1 1.25±0.04 1.13±0.09 0.96±0.02 0.89±0.02 0.86±0.02
HME-ens-1 1.22±0.02 1.12±0.04 0.96±0.02 0.89±0.02 0.87±0.02

GP-map-1 1.01±0.06 0.70±0.12 0.38±0.01 0.36±0.01 0.35±0.01

MLP-mc-1 0.88±0.06 0.58±0.06 0.50±0.09 0.59±0.06 0.35±0.01
MARS3.6-bag-1 0.93±0.06 0.53±0.03 0.38±0.01 0.35±0.01 0.34±0.01

PRBFN 1.15±0.13 1.12±0.08 1.03±0.06 0.87±0.13 0.78±0.13
PRBFN-AS-RBF 1.14±0.2 0.57±0.09 0.40±0.02 0.39±0.02 0.38±0.03

PRBFN-AS-MLP 1.11±0.08 0.84±0.06 0.69±0.07 0.54±0.06 0.40±0.02

PRBFN-LRT 1.45±0.2 1.14±0.09 0.79±0.07 0.55±0.05 0.44±0.03
PRBFN-MDL 0.85±0.2 0.49±0.09 0.43±0.07 0.37±0.04 0.34±0.02

PRBFN2 0.75±0.10 0.43±0.02 0.38±0.01 0.37±0.02 0.34±0.01

Note: Regressors predictions are improved as the data-set get larger. PRBFN2 out-

performs all the regressors on the small data-sets.

Table 6. Regression on Pumadyn with 8 input non-linear with high noise.

Training size 64 128 256 512 1024

Lin-1 0.73±0.019 0.68±0.02 0.65±0.01 0.63±0.014 0.63±0.02
kNN-cv-1 0.79±0.02 0.71±0.02 0.64±0.01 0.58±0.019 0.53±0.02
MLP-ens-1 0.72±0.02 0.67±0.02 0.61±0.01 0.49±0.01 0.41±0.01

HME-ens-1 0.72±0.02 0.67±0.02 0.61±0.01 0.54±0.02 0.44±0.02
GP-map-1 0.44±0.03 0.38±0.01 0.35±0.01 0.33±0.01 0.32±0.01
MLP-mc-1 0.45±0.01 0.39±0.02 0.35±0.01 0.32±0.01 0.32±0.01

MARS3.6-bag-1 0.51±0.02 0.38±0.01 0.36±0.01 0.34 ±0.01 0.34±0.01
PRBFN 0.63±0.07 0.58±0.11 0.48±0.09 0.38±0.05 0.35±0.02
PRBFN-AS-RBF 0.51±0.03 0.38±0.02 0.36±0.01 0.33 ±0.01 0.32±0.01

PRBFN-AS-MLP 0.57±0.05 0.59±0.14 0.37±0.02 0.33 ±0.08 0.32±0.01
PRBFN-LRT 0.72±0.11 0.60±0.05 0.43±0.02 0.41 ±0.01 0.35±0.02

PRBFN-MDL 0.6±0.2 0.52±0.09 0.43±0.07 0.42±0.05 0.32±0.02
PRBFN2 0.48±0.03 0.38±0.01 0.34±0.01 0.33±0.01 0.32±0.01

was not below the performance of the best known MLP or RBF networks when data
which contains one type of structure was used.

The parameter pruning method suggested in this paper, is applied to individual
weights of each hidden unit. Its role in producing a smaller net with better gener-
alization is critical. Three criteria have been used: BIC,MDL and LRT. The BIC
and MDL have the ability to choose the best model out of many models. The LRT
works only on nested models and the process is terminated when the null hypoth-
esis is rejected, i.e., when the change in the likelihood is significant. The results in
this work show that the LRT method does not perform as well as the MDL or the
Bayesian method for pruning of the hybrid estimator. It appears that the Bayesian
approach, which was used here, is superior to the MDL approach. This approach
makes the assumption that the prior distribution of the model parameters is nor-
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mal with zero mean, which is not necessarily correct for the centers of the RBF.
This assumption has not been made in the Bayesian case 44,28. However, the MDL
approach can be very useful for Perceptrons, when small values of their parameters
simplifies the network 24.

We have tested the new architecture construction on seven regression problems
and eleven approximation problems. There are four cases where better results were
obtained. These results occur in the approximation problems where the function
is composed of parts that vary considerably and parts that are almost linear, e.g.
f1. In these cases, the first step of the training that allocates many prototypes to
the dynamic part successfully modeled the function and has shown low error rates.
In the LogGaus data-set, which is composed of Ridge and Gaussian parts – most
suitable for our hybrid – results were again improved with our proposed architecture
construction.

The tests on the Pumadyn family have raised interesting observations; Our
proposed pruning algorithm dramatically improved the generalization of regressors,
while the pruning process has removed 95% of the weights. For instance for the small
data-sets, only 10 weights were needed on average. The proposed method has always
been one of the best regressors and it has good performance on pumadyn32-nh. In
summary, based on data that has been extensively studied by others, it appears that
the proposed method is able to better model nonlinear data and, in particular, it
can improve generalization, while keeping the number of the estimated parameters
smaller compared to other regression methods.
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