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Abstract. We introduce a Forward Backward and Model Selection al-
gorithm (FBMS) for constructing a hybrid regression network of radial
and perceptron hidden units. The algorithm determines whether a radial
or a perceptron unit is required at a given region of input space. Given an
error target, the algorithm also determines the number of hidden units.
Then the algorithm uses model selection criteria and prunes unneces-
sary weights. This results in a final architecture which is often much
smaller than a RBF network or a MLP. Results for various data sizes
on the Pumadyn data indicate that the resulting architecture competes
and often outperform best known results for this data set.
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1 Introduction

The construction of a network architecture, which contains units of different
types at the same hidden layer is not commonly done. One reason is that such
construction makes model selection more challenging, as it requires the deter-
mination of each unit type in addition to the determination of network size. A
more common approach to achieving higher architecture flexibility is via the use
of more flexible units [12, 6]. The potential problem of such a construction is
over flexibility which leads to over-fitting.

Analyzing cases where convergence of MLP or RBF networks (as a function
of number of hidden units) is slow, reveals that often there is at least one region
in input space where an attempt is being made to approximate a function that
is radially symmetric (such as a donut) with projection units or vice versa. This
suggests that an incremental architecture which chooses the appropriate hidden
unit for different regions in input space can lead to a far smaller and more
effective architecture.

Earlier approaches, attempted to construct a small network approximation
to the desired function at different regions of input space via a “divide and con-
quer” approach. Rather than reviewing the vast literature on that, we shall point
out some approaches which indicate some of the highlights that had motivated
our work. Work on trees is reviewed in [1] where the goal is to reach a good



division of the input space and use a very simple architecture at the terminating
nodes. That work suggested some criteria for splitting the input space and pro-
vided a cost complexity method for comparing the performance of architectures
with different sizes. An approach which constructs more sophisticated architec-
tures at the terminating nodes was proposed in [14, 9], where a gating network
performs the division of the input space and small neural networks perform the
function approximation at each region separately. Donoho’s work [5] has shown
that a function can be decomposed into two parts, the radial part and the ridge
(projection based) part and that the two parts are mutually exclusive. It is dif-
ficult however, to separate the radial portion of a function from its projection
based portion.

We have introduced a training methodology for a hybrid MLP/RBF network
[4, 3]. This architecture, produced far better classification and regression results
compared with advanced RBF methods or with MLP architectures. In this work,
we further introduce a novel training methodology, which evaluates the need for
additional hidden units, chooses optimally their nature – MLP or RBF – and
determines their optimal initial weight values. The determination of additional
hidden units is based on an incremental strategy which searches for regions in
input space for which the input/output function approximation leads to highest
residual error. The last step is to prune unnecessary parameters and to select the
best model from the sequence of nested models using Bayesian model selection
or Likelihood Ratio Test (LRT). This approach, Forward and Backward Model
Selection (FBMS), coupled with optimal determination of initial weight values
for the additional hidden units, constructs a computationally efficient training
algorithm which appears to scale up with the complexity of the data, better than
regular MLP or RBF methods.

2 Parameter estimation and model selection

An incremental architecture with more than one type of building components,
requires four decisions at each step; (i) find the next region in input space where a
hidden unit might be needed; (ii) decide which unit to add, RBF or a perceptron;
(iii) train the network; (iv) prune unnecessary weights. The SMLP [6] network
uses both RBF and Perceptron units at each cluster. In higher order networks
[12] quadratic and linear terms always exist and strong regularization must be
used to avoid over-fitting. Our proposed FBMS selects the proper unit for each
region in input space. Thus, the number of hidden units remains minimal and
over-fitting is reduced. In order to select the type of units, FBMS divides the
space into homogeneous regions and selects the type of hidden unit for each
region. During the division of the space into small regions the overall error is
estimated and the splitting is stopped when an error goal is reached. Thus, the
network size is monitored using the error criterion. When the training data set
is small, an over-fitting may occur. Thus, a backward elimination of weights can
improve the prediction and reduce the variance of the estimator. The steps in
the algorithm include:



– Data clustering and splitting to reduce an error objective function.
– Automatic selection of unit type for each cluster.
– Full gradient descent on the resulting hybrid architecture.
– Pruning of unnecessary weights.

Below, we describe in detail each step.

2.1 Data clustering

We start by clustering the data based and minimizing the Sum of Square Residual
about the mean (SSR):

SSR(C0) =
∑

yi∈C0

(yi − ȳo)2,

where ȳo is the mean of yi ∈ C0. Given a training data set D, we attempt to
decompose it into a set {Ci}k

i=1, such that
⋃

Ci = D and Ci

⋂
Cj = φ for i 6= j.

The following algorithm, is similar to the one proposed in CART [1], it splits the
cluster with the largest objective function reduction into two clusters. Consider
a split for a cluster C0 into two clusters C1 and C2. Let the SSR reduction be
defined as follows:

∆SSR(C0) = SSR(C0)− (SSR(C1) + SSR(C2)). (1)

The splitting is continued until an error goal of the hybrid classifier is reached or
a predefined maximum number of clusters is achieved. Since a cluster C with n
members has 2n − 1 possible number of meaningful splits, an exhaustive search
is not feasible. CART [1] solves this problem by considering each axis 1 ≤ l ≤ d
of the input space separately and search for the best split of the form xi ≥ λi for
axis xi. The sorting of the data (by considering each axis separately) reduces the
number of possibilities to dn. We seek a similar approach which is not restricted
to projections that are parallel to the axes.

Splitting rule We assume that the underlying function to be estimated is con-
tinuous. Consider a subset C0 of the data. Let y1 be the minimum value of the
function in C0 with a corresponding input x1. Let y2 be the maximum value of
the function in C0 with input x2.

The splitting procedure is defined as follows:

– For-each pattern find the Euclidean distance to x1 and x2.
– If the distance to x1 is smaller, associate the pattern to C1, otherwise to C2.
– Choose to split the cluster with the largest reduction in the objective func-

tion.

Other distance measures such as Mahalanobis or Manhattan can be considered
depending on prior knowledge about the problem.



2.2 Model selection

FBMS uses a classical statistical approach to select models. We assume that
the target function values are corrupted by Gaussian noise with zero mean and
equal variance σ2. In addition we assume that the noise is independent. Thus,
the likelihood of the data given the model is:

L =
1

(2π)
N
2 σN

exp(−
∑N

n=1(yn − tn)2

2σ2
). (2)

The maximization of the above function is equivalent to the maximization of its
log value:

LL = −N

2
log(2π)−N log(σ)−

∑N
n=1(yn − tn)2

2σ2
. (3)

Thus, minimization of the SSE is equivalent to the maximization of the likelihood
of the data. To obtain the maximum likelihood value of σ we differentiate 3 with
respect to sigma.

∂LL

∂σ
= −N

σ
+

∑N
n=1(yn − tn)2

σ3
. (4)

This leads to the maximum likelihood estimate for σ:

σ̂2 =
1
N

N∑
n=1

(yn − tn)2. (5)

We use 3 to perform model selection when the type of a hidden unit has to be
selected, or when the weights are pruned and thus there are two nested models.
The task in this case is to select the best model from a sequence of models.
The Bayesian information Criterion (BIC) is used to select the type of unit and
either the BIC or LRT is used for the pruning process.

We start by describing the Bayesian approach. Given a data set D, the
task is to choose between two (or more) models M1,M2. Each model has a
parametric family of weights attached to it, with its prior probability p(w|M).
The probability of the data under each model is given by:

p(D|M) =
∫

w

p(D,w|M)dw =
∫

w

p(D|w,M)p(w|M)dw. (6)

The Bayes Factors are then defined as:

p(M1|D)
p(M2|D)

=
p(D|M1)p(M1)
p(D|M2)p(M2)

. (7)

The integration of Eq. 6 can be performed by using Laplace integral [11] which
approximates the integrand by a quadratic function. Thus, the value of the
integral becomes [11, 16]:

p(D|M) ∼= (2π)d|H|−1|2p(D|Wm0 ,M)p(Wm0 |M), (8)



Where H is the Hessian matrix of the approximation and Wm0 is the most
probable value of the likelihood p(D|M). With the lack of a-priori knowledge
we assume that a model with a RBF or a perceptron as a hidden unit is equally
likely, thus: p(M1) = p(M2).

This leads to the integrated likelihood ratio: p(D|M1)/p(D|M2).
The BIC approximation can be derived from 8 by using Gaussian distribution

to the a-priori parameters density [11] to arrive at:

BIC ≡ log(p(D|M)) = log(p(D,Wm0 |M))− d

2
log(N), (9)

where log(p(D,Wm0 |M)) is the maximum likelihood estimation of the parame-
ters and d are the number of parameters. Substituting 5 and 3 into 9 we obtain:

BICi = − 1
N

log(2π)−N log(σ̂)− N

2
− di

2
log(N). (10)

The first and third terms on the right are constant and can be eliminated when
selecting models on the same data set. The truly Bayesian approach then uses
the evidence as the weights of the models in order to get a weighted predication
for a new value y as follows:

p(y|D) =
m∑

i=1

p(y, Mi|D) =
m∑

i=1

p(y|Mi, D)p(Mi|D). (11)

Equation 11 shows that the evidence of a model can be used as weight when
averaging the predications of all models. When the best model gives good pred-
ications, the averaging process can be skipped. Then, the FBMS algorithm uses
the single best model for predication.

The LRT can be used to select between two nested models. Given two models
M1 ⊂ M2 the LRT test is defined as follows [15]:

−2 log(
p(D,Wm0 |M1)
p(D,Wm0 |M2)

) = χ2(d2 − d1). (12)

This approach uses P − V alues to reject the null hypothesis, that is, the simple
model is equivalent to the complicated one. The LRT criteria is applicable only
when the models are nested. Thus, this process is applicable only for the prun-
ing process. Using the maximum likelihood estimator for σ 5 we arrive at the
following test:

χ2(d2− d1) = 2N log(σ2
1)− 2N log(σ2

2). (13)

2.3 Unit selection

After the decomposition of the input space into more homogeneous subsets, a
unit type is selected for each such subset. Since the models are not nested the
BIC criterion is applied. The maximum likelihood is computed for each cluster



and unit type and the unit type with the higher BIC value is selected. First we
set the parameters of hidden units.

The ridge projection is monotonically increasing with the correlation be-
tween its weight vector and the data points. It achieves its maximum value when
the correlation is maximized (for a unit projection vector). Therefore, the ridge
weight vector Wm0 should be proportional to the pattern where the function
acquires its maximum value.

The RBF function is monotonically decreasing with the distance from the
maximum point. Thus, the center of the RBF is located at the function maximum
point. To set the forward weights the log-likelihood is computed as follows. Let
Ci be the set of points of the current cluster. Let φ(xi) be the ridge or RBF values
for each xi ∈ Ci, and let ti be the targets. We define the objective function:

E(w,w0) =
1
2

N∑
i=1

(wT φ(xi) + w0 − ti)2. (14)

The partial derivatives with respect to w and w0 are:

∂E

∂w
=

∑
xi∈Ci

(wT φ(xi) + w0 − ti)φ(xi) = 0.

∂E

∂w0
=

∑
xi∈Ci

(wT φ(xi) + w0 − ti) = 0. (15)

Thus, we obtain the locally forward weights of the specific unit:

w =
n

∑
xi∈Ci

φ(xi)ti −
∑

xi∈Ci
ti

∑
xi∈Ci

φ(xi)
n

∑
xi∈Ci

φ(xi)2 − (
∑

xi∈Ci
φ(xi))2

, (16)

and

w0 =

∑
xi∈Ci

ti − w
∑

xi∈Ci
φ(xi)

n
. (17)

Substituting w and w0 into Eq. 14 gives the error value of the fit for each unit
type. The error is inversely proportional to the likelihood.

The above procedure is repeated for each cluster and using 10, the most
probable unit type is selected.

2.4 Pruning

The last step of the algorithm prunes unnecessary weights. This can remove
inputs weight to a ridge unit, a feature of a RBF unit or a hidden unit. Using
a diagonal approximation to the covariance matrix, the activation of a RBF
function is given by:

φ(x) = exp(−
N∑

i=1

(xi − ci)2

σ2
i

). (18)



If we make the substitution: 1
σ = r, we obtain:

φ(x) = exp(−
d∑

i=1

(xi − ci)2r2
i

2
). (19)

Consider setting rj to zero:

φ(x) = exp(−
d∑

i=1,i 6=j

(xi − ci)2r2
i

2
) exp(0) = exp(−

d∑
i=1,i 6=j

(xi − ci)2r2
i

2
).

The partial derivatives with respect to ri is:

∂φ

∂ri
= −φ(x)(xi − ci)2ri. (20)

Thus, to prune a feature i it suffices to set ri to zero. This eliminates two
parameters. For the ridge input weights we add a matrix wij were wij ∈ {0, 1}.If
wij = 0, the weight j to projection unit i is pruned. Since the models are nested
it is possible to select the model using LRT. On the other hand the best model
can be selected by the BIC approximation to its evidence. FMBS uses both
criteria when BIC is the default one. Our pruning process is similar to [10, 8];
We start with the full model and at each step we prune the least significant
weight. That is, the weight that least contributes to the objective function.
When the BIC criterion is used, the search is exhaustive for the best model from
a range of possible nested models. When the LRT criterion is used the pruning
is stopped when a given threshold is reached. The threshold is derived from the
given significance value (P−value) of the χ2 distribution with one or two degrees
of freedom. Typically, we use a default value of 95% that matches to P = 3.841
of the corresponding distribution for one degree of freedom.

3 Experimental results

This section describes regression results for the Pumadyn data from the DELEVE
archive [2]. The data was generated from a simulation of the dynamics of a
Puma robot arm. The target is the angular acceleration of one of the links and
the inputs are various joint angles, velocities and torques. The Pumadyn data
contains several sets with different noise levels. We have used the data set with
the largest noise. This data set is divided into two groups. The first has 8 inputs
(Pumadyn8) and the second has 32 inputs. There are 5 sizes of the train sample
set: 64, 128,256,512,1024. Studying a regressor on all subsets indicates how the
method scales with the train sample size.

For these data sets, we compare our results to several other methods that
have been used in the past. We thus provide results for the following methods:

– lin-1 Linear least squares regression.



– knn-cv-1 K-nearest neighbors for regression. K is selected by using leave-
one-out cross-validation.

– mars3.6-bag-1 Multivariate adaptive regression splines (MARS) [7], ver-
sion 3.6 with bagging.

– mlp-ese-1 Multilayer perceptron ensembles, trained with early stopping im-
plemented by conjugate gradient optimization.

– mlp-mc-1 Multilayer perceptron networks trained by MCMC methods [13].
– gp-map-1 Gaussian processes for regression, trained using a maximum a-

posteriori approach implemented by conjugate gradient optimization.
– PRBFN-AS-RBF Using the a regular RBF network with Gaussians units

with the pruning algorithm.
– PRBFN-AS-MLP Using MLP network with the pruning algorithm.
– PRBFN-LRT The PRBFN method with the LRT for the pruning algo-

rithm.
– PRBFN-FBMS The hybrid network with BIC for the model selection in

the process. Each unit type is selected as described in section 2.3.

Further details can be obtained from the DELVE web site [2].

Pumadyn32nh 64 128 256 512 1024

lin-1 1.98±0.25 1.20±0.05 0.96±0.02 0.89±0.02 0.86±0.02

knn-cv-1 1.00±0.02 1.01±0.03 0.94±0.02 0.92±0.02 0.90±0.02

mlp-ese-1 1.25±0.04 1.13±0.09 0.96±0.02 0.89±0.02 0.86±0.02

gp-map-1 1.01±0.06 0.70±0.12 0.38±0.01 0.36±0.01 0.35±0.01

mlp-mc-1 0.88±0.06 0.58±0.06 0.50±0.09 0.59±0.06 0.35±0.01

mars3.6-bag-1 0.93±0.06 0.53±0.03 0.38±0.01 0.35 ±0.01 0.34±0.01

PRBFN-AS-RBF 1.14±0.2 0.57±0.09 0.40±0.02 0.39 ±0.02 0.38±0.03

PRBFN-AS-MLP 1.11±0.08 0.84±0.06 0.69±0.07 0.54 ±0.06 0.40±0.02

PRBFN-LRT 1.45±0.2 1.14±0.09 0.79±0.07 0.55 ±0.05 0.44±0.03

PRBFN-FBMS 0.75±0.11 0.43±0.02 0.38±0.01 0.37±0.02 0.34±0.01

Table 1. Regression on Pumadyn with 32 input non-linear with high noise

4 Discussion

The work presented in this paper represents a practical step in constructing an
incremental hybrid architecture for regression. It was motivated by the success
of the original hybrid architecture which was introduced in [3, 4]. Several as-
sumptions were made in various parts of the architecture construction. Our aim
was to show that even under these assumptions, an architecture that is smaller
in size and better in generalization performance can already be achieved. Fur-
thermore, while this architecture is particularly useful when the data contains



Pumadyn8nh 64 128 256 512 1024

lin-1 0.73±0.02 0.68±0.02 0.65±0.01 0.63±0.01 0.63±0.02

knn-cv-1 0.79±0.02 0.71±0.02 0.64±0.01 0.58±0.02 0.53±0.02

mlp-ese-1 0.72±0.02 0.67±0.02 0.61±0.01 0.49±0.01 0.41±0.01

gp-map-1 0.44±0.03 0.38±0.01 0.35±0.01 0.33±0.01 0.32±0.01

mlp-mc-1 0.45±0.01 0.39±0.02 0.35±0.01 0.32±0.01 0.32±0.01

mars3.6-bag-1 0.51±0.02 0.38±0.01 0.36±0.01 0.34 ±0.01 0.34±0.01

PRBFN-AS-RBF 0.51±0.03 0.38±0.02 0.36±0.01 0.33 ±0.01 0.32±0.01

PRBFN-AS-MLP 0.57±0.05 0.59±0.14 0.37±0.02 0.33 ±0.08 0.32±0.01

PRBFN-LRT 0.72±0.11 0.60±0.05 0.43±0.02 0.41 ±0.01 0.35±0.02

PRBFN-FBMS 0.48±0.03 0.38±0.01 0.34±0.01 0.33±0.01 0.32±0.01

Table 2. Regression on Pumadyn with 8 input non-linear with high noise

ridge and Gaussian parts, its performance were not below the performance of
the best known MLP or RBF networks when data that contains only one type
of structure was used1.

In our previous work [4], we have used hard threshold for unit type selection.
That algorithm also accepted the number of hidden units in advance. This paper
introduces an algorithm that finds automatically the relevant parts of the data
and maps these parts onto RBF or Ridge functions respectively. The algorithm
also finds the number of hidden units for the network for a given error target.
The automatic unit type detection uses the maximum likelihood principle for
regression, and the proposed pruning method is applied to individual weights of
each hidden unit. Two criteria have been used: BIC and LRT. The BIC criterion
can be used for choosing the best model out of a general family of models. The
LRT works only with nested models, where the process is terminated when the
null hypothesis is rejected.

The tests on the Pumadyn family of data sets suggests that the Bayesian
Information Criterion (BIC) is superior to the LRT. Most importantly, the
proposed method can achieve better performance for smaller data set sizes. This
property is very useful for problems where large training data set is difficult to
obtain, e.g., medical data or, most recently, protein and gene expression data.
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