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Classification of Underwater Mammals
Using Feature Extraction Based on

Time–Frequency Analysis and BCM Theory
Quyen Q. Huynh, Leon N Cooper, Nathan Intrator, and Harel Shouval

Abstract—Underwater mammal sound classification is demon-
strated using a novel application of wavelet time–frequency de-
composition and feature extraction using a Bienenstock, Cooper,
and Munro (BCM) unsupervised network. Different feature ex-
traction methods and different wavelet representations are stud-
ied. The system achieves outstanding classification performance
even when tested with mammal sounds recorded at very different
locations (from those used for training). The improved results
suggest that nonlinear feature extraction from wavelet represen-
tations outperforms different linear choices of basis functions.

Index Terms—Classification, nonlinear feature extraction,
time–frequency analysis, wavelets.

I. INTRODUCTION

DETECTION, classification, and localization are among
the most important and challenging goals of underwater

signal analysis. A cocktail of sounds, which includes biological
sounds (dolphins, sperm whales, shrimp, etc.), is mixed with
environmental sounds (estuaries, cracking of ice, rain, etc.)
and manmade sounds (torpedoes, submarines, surface ships,
etc.) dramatically reduces recognition performance.

It is well known that the features presented to a classifier
play a crucial role on its performance. Indeed, the feature set
selected may be more important than the classifier architecture
itself. Recently, with advances in time–frequency analysis
(wavelet packet, local trigonometric basis, Gabor expansions,
etc.), different feature extraction methodologies [1]–[3] have
been proposed based on the localization properties of the
time–frequency basis functions. It has been shown that using a
wavelet representation of the acoustic signals, we can achieve
improved classification [3]. This has led to the increased
interest in methods for feature extraction from this data rep-
resentation.

Wavelet representation is merely a different full represen-
tation of the same signal. Although it suggests natural ways
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to reduce representation dimensionality by keeping only the
highest energy coefficients (which is similar to keeping only
the first few principal components or Fourier coefficients of the
signal), there is no rigorous result showing that these will be
a useful representation for the purpose of signal classification
and detection. The need for dimensionality reduction is clear;
it follows from the curse of dimensionality[4], namely, the
fact that the number of data points needed for a robust
parameter estimation of the data density grows exponentially
with the dimensionality. The problem of feature extraction is
fundamental in information science. We look for an efficient
and compact representation of data that leads to new insight
into the problem to be solved. Under some conditions, features
extracted with an unsupervised learning procedure may be
more robust and general than those extracted by a supervised
learning procedure. This is because the unsupervised algorithm
must focus on the underlying structure of the data and not on
preassigned labels that may not reveal the full structure of the
data (especially with a small training set). The Bienenstock,
Cooper, and Munro (BCM) theory was developed to under-
stand and model the plasticity of the mammalian visual cortex.
This model has recently been extended to a lateral inhibition
network [5], and a statistically motivated variant of it has been
used in various high-dimensional feature extraction tasks [6],
[7].

In this paper, we use a network of BCM neurons for optimal
feature extraction from a wavelet representation, leading to
improved classification of underwater acoustic signals. We
emphasize here that the BCM network is not playing the role
of a classifier; rather, its role is feature extraction.

A. Feature Extraction from Wavelet Representations

Previous approaches to feature extraction from wavelet
representation were based on signal energy [1]–[3]. Although
this is not necessarily the best statistic of the signal for the
purpose of classification, it was a must in the methods that have
been used for feature extraction. In [1] and [2], the training
set was analyzed using the time–frequency energy map of
the wavelet packet decomposition tree. Coifman and Saito [1]
used statistical considerations to determine the optimal wavelet
packet basis for classification, which they termed the “local
discriminating basis” (LDB). Unknown signals were then pro-
jected onto this LDB, and classification of the unknown signals
was based on the time–frequency coefficients of only those
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basis functions in the LDB with the largest “discriminating
power.” Willsky et al. [2] determined relevant features from a
time-averagedenergy map that did not necessarily correspond
to a single wavelet packet basis. For each signal class in
the training set, an energy matrix was constructed, and the
singular vectors of this matrix were used to identify the
dominant energy pattern of each class. The features were
then selected from the energy bins of the wavelet packet
basis that corresponded to the peak values of the “primary
singular” vectors. Huynhet al. [3] approached the binary
classification problem by searching the wavelet packet library
for another “discriminating basis” (LDB-2) using the “best
basis” paradigm of Coifman and Wickerhauser [8] to find
the basis that best approximated thedifference of the two
classes of signals. LDB-2 was thus the basis that maximized
the separationof the two classes. Unknown signals were then
projected onto the LDB-2 and classified by feeding a fixed
number of the largest time–frequency coefficients of the LDB-
2 (along with their corresponding time and frequency indices)
into a standard classifier such as the back propagation artificial
neural network [9].

II. PROJECTIONINDEX FOR CLASSIFICATION:
THE UNSUPERVISEDBCM NEURON

Exploratory projection pursuit theory [10], [11] tells us that
search for structure in input space can be approached by a
search for deviation from normal distribution of the projected
space.1 Furthermore, when input space is clustered, a search
for deviation from normality can take the form of search
for multimodality since when clustered data is projected in
a direction that separates at least two clusters, it generates
multimodal projected distributions.

It has been recently shown that a variant of the BCM
neuron [12] performs exploratory projection pursuit using a
projection index that measures multimodality [5]. This neuron
allows modeling and theoretical analysis of various visual
deprivation experiments [5] and is in agreement with the
vast experimental results on visual cortical plasticity [13].
A network implementation that can find several projections
in parallel while retaining its computational efficiency was
found to be applicable for extracting features from very high-
dimensional vector spaces [14], [15].

In the single neuron case, the neuronal activity (in the linear
region) is given by , where is the input vector,
and is the synaptic weight vector (including a bias). The
essential properties of the BCM neuron are determined by
a modification threshold (which is a nonlinear function
of the history of activity of the neuron) and a function
that determines the sign and amount of modification The
synaptic modification equations are given by

where, in a simple form, and

1In a neural net architecture, this is the space generated by the hidden unit
activity of the feedforward network.

In the lateral inhibition network of nonlinear neurons, the
activity of neuron is given by , where is the
synaptic weight vector of neuron The inhibitedactivity and
threshold of the th neuron is given by

for a monotone saturating function
The projection index for a single neuron is given by

The total index is the sum over all neurons in the network.
The resulting stochastic modification equations for a synaptic
vector (the negative gradient of the index) in the network
are given by

This network is a first-order approximation to a lateral inhi-
bition network (using a single-step relaxation). Its properties
and connection to a lateral inhibition network, as well as some
related statistical and computational issues, are discussed in
[5].

Under reasonable assumptions, the BCM algorithm (with
BCM neurons) produces weight vectors that converge

iteratively to fixed points corresponding to states of “maximum
selectivity.” In other words, for a single BCM neuron, the
converged weight vector becomes orthogonal to all cluster
centers except one. The feature set of the BCM algorithm
is formed by the convolutions of the weight vectors with
the unknown data.

Lateral inhibition in the network allows the construction of
an array of feature-selective cells in which the same feature is
not selected more than once, and all features of the data set
are represented in an orderly fashion.

III. FEATURE EXTRACTION BASED ON

TIME–FREQUENCY ANALYSIS AND BCM THEORY

Our previous work [3] on using wavelet transforms for
feature extraction have shown good results in the classifica-
tion of marine mammals (dolphins, sperm whales, and por-
poises). Modern time–frequency techniques (wavelet packet,
local trigonometric basis, Gabor expansions) are considered
as tools for providing an efficient data representation to
transform the original data set to a preliminary feature set.
However, classification may be improved if a dimensionality
reduction takes place before the classification stage (curse of
dimensionality[4]). In this case, applying the BCM algorithm
to the preliminary feature set (time–frequency transformed
data) reveals important clues about the underlying structure
of the data. The use of wavelet representation is supported by
the fact that classification results obtained by feature extraction
from the raw signal are worse than those obtained from the
wavelet representation (Table II).
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We approach the problem of building a robust classifier
that combines the virtues of modern adaptive time–frequency
techniques and BCM optimal selectivity as follows.

1) Choose an efficient coordinate system (library of orthog-
onal and nonorthogonal bases) to transform the original
data set to a preliminary feature space.

2) Construct a network of connectedBCM neurons with
lateral inhibition.

3) Train the BCM neurons on the transformed data to
produce stable weight vectors.

4) Extract crucial features that are the convolution out-
puts of the weight vectors with the transformed
unknown data.

5) Present the features as inputs to a classifier, e.g., the
back propagation classifier [9].

A. Signal Description

The types of signals explored in this study are the marine
mammal sounds, namely, porpoise and sperm whale, which
were recorded at a sampling rate of 25 kHz at various
locations such as the Gulf of Maine, the Mediterranean Sea,
and the Caribbean sea. We consider large original data files
where sounds consist intermittently of mammal sounds and
background noise. Note that each of these large original files
contain whale or porpoise sounds and not both. Six data sets of
length 32 768 samples, each corresponding approximately to
1.3 s, were extracted from these large files for each class. Three
data sets from each class were used for training, and another
three data sets (of sounds reordered at different geographical
locations) were used for testing (12 data sets altogether). These
data sets contained mammal sounds (of one or more animals)
mixed with background noise.

B. Projections on Wavelet Space

As a first step in our approach, we choose to project each
of the sound vectors on an orthonormal wavelet basis. Since
the sound files are sequences of discrete numbers, we adopt
the compactly supported wavelets Daubechies 4 [16], which
are based on discrete-time filter banks. Let
be the discrete version of the input signal of length

In the fast discrete wavelet transform, the signal
is first decomposed into low- and high-frequency bands by

the convolution-decimation (subsampling by two) operations
of with a lowpass filter and a highpass filter

The filters and satisfy the orthogonality
conditions

and

and are called quadrature mirror filters (QMF’s).
The QMF’s allow perfect reconstruction. The decomposition
process continues iteratively on the resulting low-frequency
bands, and each time, the high-frequency bands are left intact.
The iteration stops with one low-frequency coefficient and one
high-frequency coefficient. As a result, the frequency axis is
partitionedsmoothlyand dyadically. On the time–frequency
(phase), the signal is decomposed in an octave-band fashion
(Fig. 1). The entire phase plane is covered by disjoint cells of

Fig. 1. Dyadic time–frequency tiling of the phase plane. The frequency
axis is partitioned in an octave-band fashion. Low-frequency bands with low
temporal resolution are at the bottom, whereas higher frequency bands with
high temporal resolution are toward the top of the figure. The entire phase
plane is covered by disjoint rectangles of equal area. On the time–frequency
plane, the highest frequency bin was 6.25–12.5 kHz, and there were 16 384
wavelet coefficients spanning over the bandwidth of the signals in the time
domain. The next frequency bin was 3.125–6.25 kHz, and there were 8192
wavelet coefficients. The third frequency bin of 1.562–3.125 kHz contained
4096 wavelet coefficients. Toward the lower frequency bands, each successive
frequency bandwidth is reduced by half.

equal area, which we call the Heisenberg cells. The uncertainty
principle can be interpreted as a rectangular cell located around

that represents an uncertainty region associated with
The total number of cells is equal to the dimension

of the input vector.
This representation is different than a Fourier representation

and a windowed Fourier transform (WFT). Fourier basis has
optimal frequency localization but no time localization. It is
thus not practical for mammal sounds representation, which
are of transient nature. The WFT of these signals derived
from signals with 512 samples was generated by 32 overlapped
windows of equal length. This corresponds to a cover of the
time–frequency plane with congruent Heisenberg cells whose
width is the window width. In contrast with a wavelet
representation, WFT does not maintain the same uncertainty
for all frequencies.

C. Construction of Training Examples

We applied the wavelet transform to 12 porpoise and whale
signals, each of length 32 768 samples, sampled at 25 kHz
(see Section III-A). Two different approaches to construct
the training data were used. The more conventional one is
described on the right side of Fig. 2; here, we randomly choose
small chunks of acoustic signal (512 consecutive samples)
and apply wavelet analysis to get a new representation of
this 512-dimensional data. Then, we extract ten features from
the wavelet representation. The less conventional method is
described on the left side of Fig. 2. Here, we first transform
the full 32 768 samples of the raw signal into a wavelet
representation (details of the representation are in Fig. 1). The
two-dimensional representation is then converted into a single
32 768-dimensional vector. From this vector, we randomly
choose a chunk of 512 samples starting at a random location
and use this 512-dimensional vector for feature extraction.
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Fig. 2. Application of BCM and PCA feature extraction to the wavelet
representation; On the left, the raw signal with 32768 components was run
through the Daubechies 4 discrete wavelet transform. From right to left are
the different levels of hierarchy (16385–32768, 8193–16384, 4907–8192,
etc.) correspond respectively to frequency bandwidths 6.25–12.5, 3.12–6.25,
1.56–3.12 kHz.

The next step of our approach was to train theBCM
neurons on the wavelet transformed data to producestable
weight vectors. We used ten BCM neurons that were fully
connected and formed a network with lateral inhibition. Each
neuron was represented by one weight vector of dimension
512. The neurons were trained simultaneously on wavelet
transformed signals of porpoises and whales. It took several
hundred thousand iterations to converge to ten fixed points.

Fig. 3 presents various processings of the acoustic signals.
There are 32 768 consecutive measurements of the raw data
(top panel), a Fourier representation (which looks very similar
for both signals), a wavelet representation of the same signal,
and a convolution with two BCM neurons (bottom two panels).
It can be seen that the convolution between the BCM and
wavelet representation of the whale signals indicates that the
BCM neurons (all ten of the network) respond only within
the frequency bandwidth of 1.562–3.125 kHz at different time
locations. There are no responses in the porpoise cases.

IV. CLASSIFICATION RESULTS

We have used 300 examples of whale signals and 300
examples of porpoise signals for the training of the classifier.
Each example was in a vector form with ten components rep-
resenting ten features extracted by the BCM feature extraction
network. For a baseline comparison, we also extracted the first
ten principal components (PCA) from the same data. PCA is
much used in signal processing as it is very simple to apply and
extracts second-order statistics, which is sufficient for many
applications [17].

A feedforward neural network with ten input nodes was
used as a classifier. The architecture of the network consisted
of one hidden layer with eight nodes and one output node.
The network was trained to over 90% correct classification on
the training data.

When using the large wavelet representation for feature
extraction, we have noticed that classification performance
could be improved if we do not train the classifier from

Fig. 3. Various representations for the acoustic signal based on different
preprocessing methods: (First row) Raw signal: 32 768 consecutive samples
representing approximately 1.3 s of signal sampled at a rate of 25 kHz
(horizontal axis is sample number). (Second row) Fourier representation of
the signal (horizontal axis represents frequency). Note that although the raw
signal does show some differences between a porpoise signal and a whale
signal, the Fourier representations are very similar, indicating the difficulty of
the classification problem. (Third row) Wavelet representation (transformed to
a vector) of the signal (horizontal axis represents time and frequency). This
one-dimensional signal is a concatenation of time and frequency information
(see Fig. 1) so that the low-frequency coefficients with low temporal resolution
appear at the left, followed by high frequency with higher temporal resolution.
It can be seen that the high-frequency part carries less information (see also
Fourier representation) compared with the lower frequency part. This fact is
emphasized in the fourth and fifth rows, where the convolutions of two BCM
neurons with the wavelet signals are depicted (horizontal axis is the same
as in the wavelet representation). It is clear that BCM found discriminating
information in the low-frequency range at a frequency band of 1.562–3.125
kHz. We can then view the BCM neuron as a matched (nonlinear) filter
designed to increase discrimination between the signals.

signals that were taken from the same frequency band (for
both species). Although this may sound odd, it is actually very
reasonable and demonstrates a unique property of the BCM
feature extraction. The selective response of BCM neurons
to a specific frequency band was mainly seen for the whale
signals due to the feature vectors becoming orthogonal to the
class of porpoise sounds. The orthogonality to the other class
of signals makes it difficult for the classifier to converge,
as there is noerror signal due to the inputs being close to
zero. We have therefore used the frequency bin 1.562–03.125
kHz, which contains 4096 wavelet coefficients for the porpoise
signal. Duringtestingof the classifier, only thesamefrequency
band was used for both species (since we does not knowa
priori to what animal the signal belongs). Thus, the “Different
freq. bins” referred to in Table I corresponds to the training
methodology only.

The results presented in Tables I and II are for test data
that was recorded from different oceans, thus representing a
different acoustic environment and possibly different species
types. These results are therefore not comparable to results
shown in [2], where training and testing was done from the
same geographical location and possibly the same animal. We
have performed such analyses as well and got results in the
range of 95–100% correct classification.

Authorized licensed use limited to: BROWN UNIVERSITY. Downloaded on April 13, 2009 at 23:15 from IEEE Xplore.  Restrictions apply.



1206 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998

TABLE I
PERCENT CORRECT CLASSIFICATION USING PCA AND BCM FEATURE

EXTRACTION FROM DAUBECHIES FOUR BASIS REPRESENTATION. RESULTS ARE

PRESENTED BASED ON FEATURES EXTRACTION DIRECTLY FROM THE

COEFFICIENTS OR FROM THESQUARE OF THE COEFFICIENTS(THE ENERGY).
RESULTS ARE ALSO PRESENTED FORTRAINING THE CLASSIFIER BASED ON

FEATURES EXTRACTED BY BCM FROM THE WHOLE WAVELET REPRESENTATION,
NAMELY, FROM ALL FREQUENCY BANDS, OR BASED ON FEATURES EXTRACTED

ONLY FROM LOCATIONS BCM WAS SELECTIVE TO (SEE TEXT FOR

DETAILS). TEN FEATURES WEREEXTRACTED IN EACH OF THESE METHODS

TABLE II
PERCENT CORRECT CLASSIFICATION BASED ON VARIOUS SIGNAL

REPRESENTATIONS(SEE TEXT FOR DETAILS). BCM APPLIED TO THE RAW DATA

IS PERFORMED BY EXTRACTING TEN FEATURES WHILE TRAINING ON RANDOMLY

CHOSEN SEQUENTIAL CHUNKS OF 512 SAMPLES FROM THE 32 768-SAMPLE RAW

DATA. LDB ON WAVELET PACKET EXTRACTS TEN BEST DISCRIMINANT BASIS

FUNCTIONS BASED ON COIFMAN’S ALGORITHM [1]. HIGHEST ENERGY

CORRESPONDS TOEXTRACTING TEN HIGHEST ENERGY COEFFICIENTS WITH

THEIR LOCATION (20 FEATURES TOTAL) FROM DAUBECHIES FOUR BASIS. THE

LAST ROW REPRESENTSCLASSIFICATION PERFORMANCE ONTEN BCM
FEATURES EXTRACTED FROM DAUBECHIES FOUR BASIS REPRESENTATION

A. Importance of BCM Feature Extraction

In this case, we have studied feature extraction from the
compactly supported wavelet Daubechies 4 representation.
We have compared the BCM feature extraction with PCA
feature extraction from this representation. As is seen in Table
I, the performance of PCA here is worse, suggesting that
additional structure beyond second-order statistics is required
for the classification task. We have further tested whether
the squared coefficients were more informative than the co-
efficients themselves, as is often assumed. It turned out that
the squared coefficients that correspond to the energy in a
particular time–frequency location are more informative, as is
seen in Table I.

B. Importance of the Wavelet Representation

The Fourier representation of the data was not useful for
discrimination as it was very similar for both species (see
the second panel from top of Fig. 3). The usefulness of

wavelet representation for classification of underwater sounds
has been extensively studied and briefly reviewed in Section
I-A. We have thus not attempted to compare classification
performance based on a wavelet to performance based on
other representations. However, since we have been using a
novel feature extraction method for these signals, we evaluated
the performance of the BCM feature extraction based on the
wavelet representation and compared it with performance on
feature extraction via BCM from the raw signal.

Table II presents classification results from the more con-
ventional way of extracting features from this data, which is
a method that allows comparison with (LDB) [18]. The first
row represents results of feature extraction taken directly from
the raw signal, namely, choosing randomly 512 consecutive
measurements from the raw signal and using them as input to
the BCM feature extraction. The high sensitivity to the whale
signal is in contrast to the high sensitivity of the other methods
to the porpoise signal. This suggests a possible combination
between these two signal representations in the future. We
have also compared two different wavelet representations:
the compactly supported wavelet Daubechies2 4 [16] and the
wavelet packet representation with the LDB feature extraction
of Coifman and Saito [1]. LDB yields the closest results to
classification from BCM features.

Support for the usefulness of the wavelet representation
is provided by comparison with the performance of a WFT
representation (see Section III-B). In this representation, the
ten largest Fourier coefficients with their corresponding ten
locations (20 features total) were fed into the classifier. Clas-
sification error on the test data were 60% for porpoises and
32% for whales. Although WFT representation is much more
appropriate for the signal than a Fourier representation, it
appears that the nonuniform covering of the time–frequency
plane with Heisenberg cells whose width changes inversely
with the frequency, maintaining a fixed uncertainty at all
frequencies, provides a better result.

V. CONCLUSIONS

We have shown that feature extraction from a wavelet
representation has a profound effect on the classification
results. While wavelet representations are appropriate for these
acoustic signals, the detail in the resulting representation is not
directly appropriate for classification, due to its size. We have
shown the useful properties of an efficient nonlinear feature
extraction method for classification from wavelet representa-
tions.

The BCM feature extraction that performs nonlinear un-
supervised dimensionality reduction was found to be more
practical than PCA on one hand and supervised discriminant
pursuit on the other. Rather than looking for the projections
that minimize the ratio of the within-class distance versus the
between-class distance (as is done in discriminant analysis)
[19], BCM looks for a direction that is mostly orthogonal to
one group of signals (without knowing if they belong to the

2The third row represents classification from the ten highest energy coeffi-
cients of the wavelet representation.
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same class or not) while retaining selectivity to another set
of signals.

We have also demonstrated the ability of this method to
extract features from the huge full-signal wavelet represen-
tation. This is a unique feature that cannot be performed by
linear discrimination [18]. Classification based on this feature
extraction achieved outstanding results on test data that was
recorded at the same location as well as data based on a
mixture of locations.
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