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Abstract

We introduce a mechanism for constructing and training a hybrid architecture of
projection based units and radial basis functions. In particular, we introduce an opti-
mization scheme which includes several steps and assures a convergence to a useful solu-
tion. During network architecture construction and training, it is determined whether a
unit should be removed or replaced. The resulting architecture has often smaller num-
ber of units compared with competing architectures. A specific overfitting resulting
from shrinkage of the RBF radii is addressed by introducing a penalty on small radii.

Classification and regression results are demonstrated on various benchmark data
sets and compared with several variants of RBF networks [1, 12]. A striking performance
improvement is achieved on the vowel data set [8].

Keywords: Projection units, RBF Units, Hybrid Network Architecture, SMLP, Clus-
tering, Regularization.

1 Introduction

The duality between projection-based approximation and radial kernel methods has been
explored theoretically [9]. It was shown that a function can be decomposed into mutually
exclusive parts: the radial part and the ridge (projection based) part. It is difficult however,
to separate the radial portion of a function from its projection based portion before they
are estimated. Thus, sequential methods which attempt to first find the radial part and
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then proceed with a projection based approximation are likely to get stuck in sub-optimal
solutions.

Earlier approaches to kernel based estimation were based on Volterra and Wiener kernels
[30, 33] but they failed to produce a practical optimization algorithm that can compete with
MLPs or RBFs. A relevant statistical framework is Generalized Additive Models (GAM)
[17, 18]. In that framework, the hidden units (the components of the additive model) have
some parametric form, usually polynomial, which is estimated from the data. While this
model has nice statistical properties [31], the additional degrees of freedom, require strong
regularization to avoid over-fitting. One of the more advanced RBF methods has been
proposed by Orr [25]. He suggested to construct an RBF network using regression trees and
presented a pruning process for model selection that is based on a Bayesian Information
Criterion. Higher order networks increase the complexity of the RBF units. They include a
quadratic term in addition to the linear term of the projections [21]. While they present a
powerful extension of MLPs, they do so at the cost of squaring the number of input weights
to the hidden nodes. Flake has suggested an architecture similar to GAM where each
hidden unit has a parametric activation function which can change from a projection based
to a radial function in a continuous way [12]. This architecture uses a squared activation
function, thus called Squared MLP (SMLP) and only doubles the number of input weights.
This architecture achieved overall best results among the RBF architectures that we have
tested.

Motivated by Donoho and Johnstone result [9], this paper introduces a simple extension
to both MLP and RBF networks by combining RBF and Perceptron units in the same
hidden layer. Unlike the previously described methods, this does not increase the number
of parameters in the model, but requires a determination of the number of RBF and Per-
ceptron units in the network during training. The new hybrid architecture, which we call
Perceptron Radial Basis Net (PRBFN), automatically finds the relevant functional parts
from the data. By optimizing the units concurrently, it avoids local minima which often
occur in sequential architecture optimization methods. The new architecture construction
and training leads to superior results on data sets on which radial basis functions have so
far produced best results, in particular, on the vowel classification data [8].

The paper extends an earlier version of hybrid architecture training [6] in a number
of directions: (i) It provides a better initialization rule for choosing perceptrons. (ii) It
presents an analytic computation for the initial weights in the first layer. (iii) It provides
a mechanism for determining whether an RBF unit is essential. (iv) It introduces a con-
strained global optimization which reduces the chances of getting stuck in sub-optimal local
minima solutions.

2 The hybrid RBF/FF architecture and training

For simplicity, we shall consider a single hidden layer architecture, since the extension to
a multi-layer net is simple. In the hybrid architecture, some hidden units are of radial
functions and the others are of projection type. All the hidden units are connected via a
set of weights to the output layer which can be linear, for regression problems, or non-linear
for classification problems.

There are several steps in estimating parameters to the hybrid architecture; First, the
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Figure 1: PRBF hybrid neural network with M1 Perceptrons and M2 RBFs.

number of cluster centers is determined from the data and the number of RBF hidden
units is chosen accordingly. Each RBF units is assigned to one of the cluster centers. The
clustering can be done by a k-means procedure [10]. A discussion about the benefits of
more recent approaches to clustering is beyond the scope of this paper. Unlike Orr [24], we
assume that the clusters are symmetric, although each cluster may have a different radius.
This reduces the number of free parameters. It is likely that in data-sets where Orr’s method
outperforms other RBF methods (e.g. on Friedman’s data below), the assumption is not
valid.

We are left with setting the initial weights for the projection based units. These weights
are set using a linear discriminating criterion. The second layer of weights can then be
found using a pseudo-inverse of the activity matrix or via a least mean square procedure.
The last step in the parameter estimation is to refine the weights of the hybrid network via
some form of gradient descent minimization on the full architecture.

The basic philosophy of our algorithms is as follows. We start with a large architecture
that includes sufficient projection units and sufficient RBF units for the given problem.
Thus we have to devise an algorithm to eliminate units which are not functional or have
small contribution to the overall approximation. Projection units are reduced or tampered
by the familiar weight decay constraint, using a strong weight decay imposes high penalty
on weights that are not zero and practically drive un-necessary projection units to zero
weights. With regards to RBF units, we need to test whether they are centered around a
Gaussian bump in the data, or whether that area of the data could be better approximated
by a projection unit.

Following the clustering algorithm, we describe in the next section a crude form of
density estimation to test whether RBF units should be used with the cluster centers that
were found. If the criteria is not met, we replace the RBF units with projection units. An
example can be seen in Figure 2 where data that is composed of a sigmoidal surface and



S. Cohen and N. Intrator: A Hybrid Projection Based and RBF Architecture 4

clusters is shown. If the three adjacent clusters belong to the same class than it is better
to use a perceptron unit to separate them from the rest of the data. If, on the other hand,
they are from different classes it would be better to use RBFs. The sigmoidal surface part
of the data should always be approximated with a projection unit.

Figure 2: Data that is composed of five clusters and a sigmoidal surface.

2.1 Gaussian Density hypothesis testing

When the data dimensionality is low, the conventional χ2 test [23] can be used to determine
whether the density of the cluster is Gaussian. As the dimensionality grows, this test
becomes impractical. Fukunaga has analyzed the one dimensional random variable (r.v.)
ξ which measures the Mahalanobis distance [16] of the high dimensional r.v. X from the
mean.

ξ =
1

N − 1
(X −m)T Σ−1(X −m),

where m is the sample mean: m = 1
N

∑N
i=1 Xi, and Σ is the sample covariance matrix:

Σ = 1
N

∑N
i=1(Xi −m)(Xi −m)T . When the data is Gaussian, ξ has a Gamma distribution,

This can be expanded and the sample mean and the sample covariance matrix can be used
for the Mahalanobis distance:

p(ξ) =
Γ(N−1

2 )
Γ(n

2 )Γ(N−n−1
2 )

ξ
n
2
−1(1− ξ)

N−n−1
2

−1. (1)

Fukunaga suggested to test Gaussianity by analyzing the variance of ξ; When the mean
and variance of the distribution are not known but estimated from the data, then ξ has a
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β distribution [16] with variance given by:

V ar(ξ) =
2d

(N − 1)2
1− (d + 1)/N

1 + 1/N
. (2)

Thus, we compute the sample mean m and sample covariance Σ in each cluster, then for
each pattern in the cluster we compute:

ξk =
1

N − 1
(Xk −m)T Σ−1(Xk −m). (3)

Then we compute the variance vs of ξk and compute the variance vb as given by Equation 2.
Using the fact ξ has a β distribution, we can decide on the confidence p value on which we
want to reject the null hypothesis (that the distribution is Gaussian) and set the threshold
of | (vs− vb) |/vb accordingly.

The above test for Gaussianity can be replaced by other tests depending on the nature of
the problem and the desired solution. Tests like Kurtosis [32] and other forms of Exploratory
Projection Pursuit [15, 13, 20] are possible. We used the Gamma distribution, as it does
not require any optimization, although the calculation of the covariance and its inverse are
involved.

2.2 Computation of initial weights of projection units

It is important to find a useful initial weight values when it is determined that an RBF
unit should be replaced by a projection unit. Otherwise, training is required in order to
determine whether the unit is needed at all and the process of model selection becomes
very slow. We take advantage of the prior knowledge about the rough membership of the
patterns in the cluster (which we have determined to be approximated with a projection
unit). We require the new projection unit to have maximal response for the patterns in its
cluster which are denoted by Cj . We further require that the projection unit will have a
minimal response to the rest of the data. Let N be the number of patterns in the data set.
Let N1 = |Cj | be the number of patterns in the cluster, and N2 = N − N1. We wish to
maximize:

J1 =
1

N1

∑
xi∈Cj

wT xi, (4)

and for data points that do not belong to this cluster minimize the term:

J2 =
1

N2

∑
xi /∈Cj

wT xi. (5)

Let yi be 1 for xi ∈ Cj and −1 otherwise. The following criterion is maximized:

J =
1

N1

∑
xi∈Cj

wT xiyi +
1

N2

∑
xi /∈Cj

wT xiyi, (6)

subject to the constraint
d∑

k=1

w2
k = 1.
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Using Lagrange multipliers, we arrive at the following criterion:

J =
1

N1

∑
xi∈Cj

wT xiyi +
1

N2

∑
xi /∈Cj

wT xiyi + α(
d∑

k=1

w2
k − 1). (7)

The partial derivative with respect to the cluster center weight vector is:

∂J

∂wj
=

1
N1

∑
xi∈Cj

yixi +
1

N2

∑
xi /∈Cj

yixi + 2αw, (8)

and the partial derivative with respect to α is

∂J

∂α
=

d∑
i=1

w2
i − 1. (9)

For convenience, let

Z =
1

N1

∑
xi∈Cj

yixi +
1

N2

∑
xi /∈Cj

yixi.

Setting Equation 8 to zero gives:
Z = −2αw.

Squaring both sides and using (9) gives:

‖ Z ‖2= 4α2.

Thus, we obtain:
2α = ± ‖ Z ‖,

or,

w = ± Z

‖ Z ‖
. (10)

The Hessian, which is derived from Equation 8, provides the correct sign of w and ensures
the maximization procedure:

∂2J

∂w2
= 2αI. (11)

Thus, the Hessian is a diagonal matrix, and it is negative when α is negative, leading to
setting w as follows:

w =
Z

‖ Z ‖
. (12)
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2.3 Gradient based parameter optimization

Problems with estimating sub-optimal cluster centers, can be alleviated by performing post
parameter estimation of the full model after the estimation of the forward weights and the
replacement of some radial basis units by projection units. An initial step in this direction
is to perform a gradient descent on the cluster centers, the projection units and the forward
weights. Full optimization of an RBF architecture was described in [5]. We describe here
the extension of that algorithm to the hybrid architecture.

The last step in the parameter estimation is to refine the weights of the hybrid network
via some form of gradient descent minimization on the full architecture. We start by deriving
the gradient of the full architecture. The output of a radial basis unit is given by:

φ(x, wi) = exp
−(x−wi)

2

2r2
i .

The output of a projection based unit is given by:

aj = g(
∑

i

(wji · zi)),

Where z is the output of the previous layer or the input to the hidden layer and w is the
weight vector associated with this unit. The transfer function g is monotone and smooth
such as sigmoidal. It is linear in the case of regression. The total error is given by the sum
of the errors for each pattern:

E =
N∑

n=1

En. (13)

We estimate the architecture parameters by performing a gradient descent search after
the initial parameter estimation. The search should include the cluster centers, the clusters’
radii and the weights of the input and output layers. This concurrent search on all the
parameters is non-trivial, as it appears that the force that is driving the cluster radii to
zero is stronger than the other optimization forces. Wang and Zhu [26] addressed this
problem by assuming a fixed size of the radii and thus, performing the optimization on
the remaining parameters, namely the cluster centers and the forward weights. We address
the shrinking radius problem by applying a constrained optimization, which penalizes small
radii. The optimization objective function is:

E =
1
2

N∑
n=1

M∑
k=1

(yn
k − tnk)2 + α

M∑
k=1

1
rk

,

where rk is the radius of cluster k. Note that we assume a radially symmetric cluster, this
assumption can be relaxed, by performing a local Mahalanobis transformation around each
cluster. α is a small regularizing parameter, which should be estimated by cross validation
on the training data.

The error on K outputs for the n’th pattern is given by:

En =
1
2

K∑
k=1

(yn
k − tnk)2, (14)
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where tnk and yn
k are the target value and output value for the n’th pattern of the k’th

output respectively. The partial derivatives of the error function with respect to the output
weights is given by:

∂En

∂wkj
= g′(ak)(yn

k − tnk)zi. (15)

where zi is the output of the previous layer and g′(ak) is the derivative of the transfer
function at the linear value ak.

The error term δ for the output units is given by:

δn
k = (yn

k − tnk)g′(ak),

The error term for the hidden units by:

δn
j = g′(aj)

K∑
k=1

δn
k wkj . (16)

Using this notation, the partial derivatives of the error function with respect to first layer
of weights (from the patterns to Ridge units) is given by:

∂En

∂wji
= δn

j xn
i . (17)

The partial derivatives of the error function with respect to the centers of the RBFs is given
by:

∂En

∂mj
=

K∑
k=1

δn
k wkj

(xn −mj)
r2
j

φ(xn, wj). (18)

The partial derivatives of the error function with respect to the radii is given by:

∂En

∂rj
=

K∑
k=1

δn
k wkj

‖ xn −mj ‖2

r3
j

φ(xn, wj). (19)

A momentum term can be added to the gradient, however it was not found to be useful
with the hybrid gradient. A Levenberg Marquardt updating rule was found to be very
useful for updating the weights, the centers and the radii. It is given by

wnew = wold − (ZT Z + λI)−1ZT wold,

where the matrix Z is given by:

(Z)ni =
∂yn

∂wi
. (20)
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3 Experimental results

This section describes regression and classification results of several variants of RBF and
the proposed PRBFN architecture on several data sets. Orr’s RBF [11] method (RBF −
Reg− Tree) is based on regression tree for clusterization. This methods builds a large tree
and then prunes it using model selection criteria to achieve a smaller tree. Matlab’s RBF
package (RBF −OLS) implements an incremental algorithm [34], a new unit is added with
a center that correspond to the pattern with the largest contribution to the current objective
function. Bishop’s algorithm [2] is based on the Expectation Maximization algorithm [7]
for clustering (RBF − EM).

The results which are only given for the test data are an average over 100 runs and
include the standard deviation.

3.1 Regression

We start with a comparison on four simulated regression data sets that were used by Orr
to asses the performance of RBF. The results are summarized in Table 1.

The first data set [22, 25] is based on a one dimensional Hermite polynomial

y = (1 + (x + 2x2))e−x2
.

100 input values are sampled randomly between −4 < x < 4, and Gaussian noise of standard
deviation σ = .1 was added to the output.

The second data set is a 1D sine wave [24].

y = sin(12x),

with x ∈ [0, 1]. A Gaussian noise was added to the outputs with a standard deviation of
σ = 0.1. 100 sets of 50 train and 50 test patterns randomly sampled from the data with
the additive noise were used.

MacKay 1D Sine 2D Sine Friedman
RBF-Reg-Tree 0.44 ±0.14 0.44 ±0.14 0.91 ±0.19 0.12±0.03
RBF-OLS 0.69±0.41 0.57±0.27 0.74±0.4 0.2 ±0.03
RBF-EM 6.82±0.82 0.33 ±0.16 0.53 ±0.19 0.17 ±0.02
PRBFN 0.39±0.11 0.33±0.16 0.51 ±0.19 0.15±0.02

Table 1: Comparison of Mean squared error results on four data sets (see [11] for details).
Results on the test set are given for several variants of RBF networks which were used
also by Orr to asses RBFs. MSE Results of an average over 100 runs including standard
deviation are presented.

The third data-set is a 2D sine wave,

y = 0. sin(x1/4) sin(x2/2),
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with 200 training patterns sampled at random from an input range x1 ∈ [0, 10] and x2 ∈
[−5, 5]. The clean data was corrupted by additive Gaussian noise with σ = 0.1. The test
set contains 400 noiseless samples arranged as a 20 by 20 grid pattern, covering the same
input ranges. Orr measured the error as the total squared error over the 400 samples. We
follow Orr and report the total squared error on this test set.

The fourth data-set is a simulated alternating current circuit with four input dimensions
(resistance R, frequency ω, inductance L and capacitance C) and one output impedance
Z =

√
R2 + (ωL− 1/ωC)2. Each training set contained 200 points sampled at random

from a certain region [14, 11, for further details]. Additive noise was added to the outputs.
The experimental design is the same as the one used by Friedman in the evaluation of
MARS [14]. Friedman’s results include a division by the variance of the test set targets.
We follow Friedman and divide the MSE by the variance of the test targets on this set.
Orr’s regression trees method [11] outperforms the other methods on this data set. We
believe that this is due to the high inhomogeneity (nonlinearity) in the data which is better
captured by the tree split of the data.

3.2 Classification

We have used several data sets to compare the classification performance of the proposed
method to other RBF networks. The sonar data set attempts to distinguish between a mine
and a rock. It was used by Gorman and Sejnowski [27] in their study of the classification
of sonar signals using neural networks. The data has 60 continuous inputs and one binary
output for the two classes. It is divided into 104 training patterns and 104 test patterns.
The task is to train a network to discriminate between sonar signals that are reflected from a
metal cylinder and those that are reflected from a similar shaped rock. There are no results
for Bishop’s algorithm as we were not able to get it to reduce the output error. Gorman
and Sejnowski report on results with feed-forward architectures [29] using 12 hidden units.
They achieved 90.4% correct classification on the test data with the angle dependent task.
This result outperforms the results obtained by the different RBF methods, and is only
surpassed by the proposed hybrid RBF/FF network.

The Deterding vowel recognition data [8, 12] is a widely studied benchmark. This
problem may be more indicative of the type of problems that a real neural network could
be faced with. The data consists of auditory features of steady state vowels spoken by
British English speakers. There are 528 training patterns and 462 test patterns. Each
pattern consists of 10 features and it belongs to one of 11 classes that correspond to the
spoken vowel. The speakers are of both genders. The best score so far was reported by
Flake using his SMLP units. His average best score was 60.6% [12] and was achieved with
44 hidden units. Our algorithm achieved 67% correct classification with only 27 hidden
units. As far as we know, it is the best result that was achieved on this data set.

The seismic1 and seismic2 data sets are two different representations of seismic data.
The data sets include waveforms from two types of explosions and the task is to distinguish
between the two types. This data was used in a “Learning” course in the last two years
for performance evaluation of many different classifiers1. The dimensionality of seismic1 is
352 representing 32 time frames of 11 frequency bands, and the dimensionality of seismic2

1For details see http://www.math.tau.ac.il∼nin/learn98,9
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Algorithm Sonar Vowel Seismic1 Seismic2 waveform
RBF-Reg-Tree 71.7±0.5 – 63±0 79±0 –
RBF-OLS 82.3±2.4 51.6±2.9 73±4 81±3 83.8±0.2
RBF-EM – 48.4±2.4 60±4 77±5 83.5±0.2
PRBFN 91±2 67±2 89±0 85±3 85.8±0.3

Table 2: Percent classification results of different classifiers variants on four data sets.

patterns is 242 representing 22 time frames of 11 frequency bands. Principal Component
Analysis (PCA) was used to reduce the data representation into 12 dimensions. Both data-
sets have 65 training patterns and 19 test patterns which were chosen to be the most difficult
for the desired discrimination.

The waveform data set is a three class problem which was constructed by Brieman to
demonstrate the performance of the Classification and Regression Trees method [3]. Each
class consists of a random convex combination of two out of three waveforms sampled
discretely with added Gaussian noise. The data set contains 5000 instance, and 300 are
used for training. Recent reports on this data-set can be found in [19, 4]. Each used a
different size training set. We used the smaller training set size as in [19] who report best
result of 19.1% error. The Optimal Bayes classification rate is 86% accuracy, the CART
decision tree algorithm achieved 72% accuracy, and Nearest Neighbor Algorithm achieved
38% accuracy. PRBFN has achieved 85.8% accuracy on this data set. There is not much
room for improvement over the PRBFN classifier, in this example.

Table 2 summarizes the percent correct classification results on the different data sets
for the different RBF classifiers and the proposed hybrid architecture. As in the regression
case, the STD is also given however, on the seismic data, due to the use of a single test set
(as we wanted to see the performance on this particular data set only) the STD is often
zero as only a single classification of the data was obtained in all 100 runs.

4 Discussion

The general idea of our hybrid architecture falls under the theory of generalized additive
models [18]. The theory does not address however, what type of architectures to combine
and how to train them so that each part of the function approximation is used to fit the
most appropriate portion of the data. Motivated by the theoretical work of Donoho and
Johnstone [9], we have chosen to combine perceptron units with RBF units and not use
more complex architectures which can have a larger variety of transfer functions. The issue
of appropriate exploitation of each function approximation family was addressed during
the construction of the architecture, by the various regularization constraints and by the
global parameter optimization that is used at the end of architecture selection. This is
made practical by the simplicity of training, and the tight control over the number of model
parameters via regularization. A particular type of overfitting due to shrinkage of the
RBF radii was avoided by additional penalty on small radii. This can be seen as another
smoothness criterion.
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In the extensively studied vowel data set, the proposed hybrid architecture achieved
average results which are superior to the best known results [28] while using a smaller
number of hidden units. On the waveform classification problem [3], our results are close
to the Bayes limit and are better than the current known results. The hybrid network also
outperformed feed-forward network results and RBF results on the sonar data [27].

The proposed hybrid network is thus, a viable alternative to either projection based or
radial basis functions. It shares the good convergence properties of both, and with a careful
parameter estimation procedure, it is expected to outperform either on difficult tasks.
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