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Abstract—In this paper, we present a novel method to extract stroke order independent information from online data. This information,

which we term pseudo-online, conveys relevant information on the offline representation of the word. Based on this information, a

combination of classification decisions from online and pseudo-online cursive word recognizers is performed to improve the recognition

of online cursive words. One of the most valuable aspects of this approach with respect to similar methods that combine online and

offline classifiers for word recognition is that the pseudo-online representation is similar to the online signal and, hence, word

recognition is based on a single engine. Results demonstrate that the pseudo-online representation is useful as the combination of

classifiers perform better than those based solely on pure online information.

Index Terms—Online, offline, handwriting, cursive, word recognition, classifier combination.
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1 INTRODUCTION

ONLINE cursiveword recognition is a challenging task ([1],
[2]). Currently, online recognition suffers from several

weaknesses that involve sensitivity to stroke order, stroke
number, and stroke characteristics variations ([3]). As similar
shapes might be produced by different sets of strokes, two
instances of the same letter or wordmay resemble each other
in the image domain though they are associated with diverse
online signals. This phenomenon is dominant at the begin-
ning of words, after a pen-up pen-down motion and in the
presence of letters that contain delayed strokes like i and t.
Following the event of pen-up or, equivalently, at the
beginning of a word, any writer may put the pen down in a
different locationand,hence, thenext letter couldbedrawn in
a unique manner. Delayed strokes may appear at any time
and, consequentially, at any place, within the online signal.
Fig. 1 presents two instances of the letter “o” that have the
same topology—a single loop with no tails—and similar
geometry—mostly concave with global extreme points at
each side. Nevertheless, since each one of these letters was
drawn from adifferent starting point (the beginning of stroke
number 1), it resulted in a unique set of strokes. Another side
of this phenomenon is observed in letters like b, d, h, i, and l,
where an ascender that looks like a thick pole can bemade by
either one of an elongated loop or cusp form.

A special group of strokes that often cause inconsistency
problems are the ones we term redundant strokes. There are
many superfluous pixels that are byproducts of the contin-
uous nature of cursive handwriting. On the one hand, such
redundant strokes do not appear constantly because some

writersuse thepen-uppen-downoption instead.On theother
hand, in the time domain, adjacent strokes remain disjoint
even if theymeant tooverlap, so it is only in the imagedomain
that they coincide. See, for example, Fig. 2 where there is
zoom-in on two instances of the letter “a.” The difference
between the two samples is the ligature that connects the
letter in Fig. 2b to its preceding (strokes number 1 and 2).
Another aspect of redundant strokes that is very common in
real scenes is strokes that are repeated either intentionally or
accidentally. Sometimes, the writer goes back and corrects
himself. There areother timeswhenhemistakenlyproduces a
slip of “ink” at the end of a letter.

In a similar way, incomplete (open) loops are more
frequent in the online representation. It seems that many
writers countonstrokewidthandsmearingeffects to close the
loops they sketch. Hence, it would be only in the real offline
representation (a scanned bitmap image) that some loops
mature. This phenomenon, which is demonstrated in Fig. 2a,
is also considered a major problem in online recognition.

In this paper, we present a novel approach to extract an
alternative list of strokes from an online signal. The
resulting representation, which we term pseudo-online, is
a two-dimensional signal of pixel locations along an
imaginary uniformly distributed time axis—ðxðtÞ; yðtÞÞ.

Our aim is to provide a method that produces a new
representation for a given word in which the above-
mentioned phenomena will be minor. In order to achieve
this goal, we suggest that one should refer to the associated
bitmap image of the online word with the purpose of
deriving the proposed alternative list of strokes. To generate
this bitmap image, we simulate the image that would have
been captured by scanning a real scene. The main emphasis
is on giving strokes a significant width.

Themain advantage of the bitmap image representation is
the resemblance between instances of the same word. In this
case, the deterministic algorithm thatwedescribe nextwould
derive a consistent list of strokes from the bitmap image of the
word. In addition, many genuine strokes are filtered out
because of the blurring effect and the lack of temporal
information. This process reduces the number of redundant
strokes. Using this approach, we propose a new strategy to
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bootstrap an alternative list of strokes, the pseudo-online,
from an online signal, using the bitmap image representation
as a buffer. The idea is to regenerate an ordered list of strokes
that would represent the input word in a different manner,
mostly in view of spatial closeness between adjacent strokes.
Thus, we produce new offline-like features that support an
improved online recognition process.

Several methods were proposed to do an offline to online
transformation. They were usually referred to as temporal
information recovery ([10], [19], [20]). Nonetheless, in contrast
with these methods, our algorithm does not aim to trace the
original path of the pen. This would have been less useful
for the purpose of integration with the genuine online
signal because there would have been no diversity between
their outputs. Instead, we control the pseudo-online
transformation to be complementary to the online signal
and create true additional recognition critical information.

In order to serve the concept of a transformation that
keeps resemblance between images, the information carried
by the pseudo-online representation is analogous to the
shapes of the characters creating the word. This is achieved
by referring to the external contour of significant parts like
ascenders, descenders, and loops. Furthermore, the image is
always traversed from the leftmost pixel to the rightmost
pixel and, in this way, a consistent order among the
branching parts is enforced. For similar reasons, all
connected components, with the exception of i-dots, are
concatenated. The latter are virtually associated with the
closest peak in the middle zone of the word.

The proposed pseudo-online representation enables one

to recognize words that are not recognized easily given the

genuine online signal. However, there are many other

words for which recognition could be easier using the

original signal alone. Usually, the pseudo-online represen-

tation would be inferior when valuable strokes disappear in

the bitmap image. Sometimes, temporal information is also

a must. This is the case, for example, when stroke order is

the only way to distinguish between similar objects ([4], [5]).
In general, online classifiers are superior to pure pseudo-

online classifiers. When one exploits offline-like features

derived from bitmap images, he might lose valuable

significant informative strokes that are filtered out ([4],

[5]). In a similar way, offline classifiers are also limited to

some extent ([6], [7], [8]).
As a result, one cannot replace the online representation

with the pseudo-online.Nevertheless, in order to get closer to

optimality,we suggestusing themboth.Weproposeworking

with a combination of classifiers trained individually on

either online or pseudo-online representations, respectively.

Thus, the heterogeneous classifiers would compensate each

other. The transformation from online to pseudo-online via

bitmap image should be configured to compensate and

support thepure online representation, creatingnew features

and, hence, new recognition ability. This will increase the

group of recognizable words span by the combination of

classifiers and maximize the overall recognition rate.
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Fig. 1. Two instances of the letter “o” that were produced by diverse sets of strokes due to a different starting point, but resulted in similar shapes,
i.e., the same topology—a single loop with no tails—and similar geometry—mostly concave with global extreme points at each side.

Fig. 2. Two instances of the letter “a” that resemble each other in the image domain but present diverse sets of strokes. While the first sample starts
with a pen-down operation, the second one is connected by a ligature to the preceding (strokes number 1 and 2). This ligature is hidden in the bitmap
image because it was overlapped by the other strokes. The first sample also demonstrates a loop that was left open (strokes number 1 and 3 are not
in touch), but became closed in the offline representation (in white).



The fact that the pseudo-online is also in the form of pixels
(strokes) as a function of (an imaginary) time is the key to a
dual practice of a single online word recognition engine.

Therefore, one can utilize a single onlineword recognition
engine to run both online and pseudo-online data. In this
case, there will be two sets of trained instances of the same
engine—for the genuine and pseudo-online signals, respec-
tively. Both sets of classifiers are trained on the samedata and
the dissimilarity is gained from the unique extended
preprocessing.

We propose runing online word recognition in two
parallel paths—see Fig. 3. The given input word is
duplicated and processed simultaneously by online and
pseudo-online classifiers. In the pseudo-online root, a
preprocessing stage precedes the recognition. It consists of
three steps: First, the online signal is projected to the image
domain, then consecutive pixels are connected by thick
lines to establish meaningful stroke width, and, eventually,
the pseudo-online signal is extracted. All the classifiers are
instances of a single online word recognition engine. The
outputs of all classifiers from both paths are collected and
fused by a common combination scheme.

There were previous methods that suggested a combina-
tion of classifiers for online recognition ([9], [10]). Some of
them proposed embedding offline-like data in the classical
stroke representation during preprocessing ([11], [12], [13],
[14]). Other methods suggested integration with pure offline
word recognition systems at the postprocessing stage ([15],
[16], [17], [18]). We propose using the same online word
recognition engine to process both types of data. Thus,
maintenance is simplified to a single enginewith a single data
set. Moreover, according to Velek et al. ([18]), who investi-
gated online and offline classifier combinations, it requires
some relation among the confidence values that are attached
to candidates stemming from different classifiers in order to
compare them. Sometimes, various normalization functions
are necessary to overcome their inadequacies. Therefore, an
integration of classifiers based on the same recognition
engine is more straightforward.

Our experiments show that such a mixed combination of
classifiers improves the recognition rate suggested by a
combination of online classifiers solely. In general, online
classifiers arenot sensitive to the samewords that thepseudo-
online classifiers are. These results also demonstrate that the
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Fig. 3. Data flow in the proposed method. The online signal is duplicated and processed simultaneously by online and pseudo-online classifiers. The
pseudo-online root presents some preprocessing stages that precede the recognition: projection to the image domain, drawing of thick lines between
consecutive pixels, and the pseudo-online transformation. Both representations are then fed to several classifiers that are instances of the same
online word recognition engine. The output results from both paths are collected and fused by a common combination scheme.



features conveyed by the pseudo-online representation are
informative and useful.

The paper is organized as follows: Section 2 describes the
proposed pseudo-online transformation. Section 3 explains
the integration of online and pseudo-online classifiers.
Section 4 presents experimental results that are analyzed
and discussed in Section 5. We summarize with some
insights and conclusions in Section 6.

2 THE PSEUDO-ONLINE TRANSFORMATION

In a series of papers in late 1980s and early 1990s ([21], [22]),
Simon and Baret defined cursive handwriting as: “Displa-
cing a pen from left to right in an oscillating movement,
with loops, descendants (legs), and ascendants (poles).”
Following this observation, the set of strokes that construct
a word’s image is divided as follows:

Themain subset is an a posteriori concatenation of strokes
that assemble the backbone, which is the shortest path from
left to right, including loops on several occasions. We term
this subset the axis. The other subsets are groups of connected
strokes that produce branches which hang above (in case of
ascenders) or below (in case of descenders) the axis. These
subsets are called tarsi. Fig. 4 presents the separation of the
word “complete” to axis, colored in white, tarsi, colored in
gray, and to hanging points that are crossed.

Consequently, we propose a novel approach to transform
a word’s image to an ordered list of strokes ([23]): Follow the
skeleton of the axis from the leftmost pixel until reaching the
first intersection with a tarsus. Surround the tarsus by
tracking its contour until returning back to the intersection
point we started from. Continue along the axis to the next
intersectionwith a tarsus andsoonuntil the rightmost pixel is
reached. Loops that are encountered along the axis are also
surrounded completely.

In thenextsections,wewill elaborateoneachmoduleof the
transformation. We start with the preliminary image genera-
tion procedure and the description of two necessary pre-
processing steps: The concatenation of characters toprovide a
pure cursiveword reflection and the extraction of a thin form
for every loop in theword’s image. Following is themethod to
compute the axis’ skeleton, extract and order the tarsi and
i-dots, plus postprocessing smoothing activities. Fig. 5 gives
an overview of the process.

2.1 Preliminary Image Generation

Given ðxðtÞ; yðtÞÞ—a two-dimensional vector representing
the genuine online signal and upðtÞ—an associated one-
dimensional vector denoting pen-up motions, then the

projected bitmap image is formed by initializing foreground
pixels in the same locations captured by the digitizing device:

Ii;j¼
1 if 9tjði;jÞ¼ ðxðtÞ;yðtÞÞ
0 otherwise:

�
1� i� jcolumnsj; 1� j� jrowsj

Next, thick lines are drawn between every pair of
consecutive stand-alone pixels that share the same stroke.
In this case, the line thickness would be determined by the
desired stroke width that should be simulated. The
resulting bitmap image is modified as follows:

Ii;j¼

1 if 9tjði;jÞ is on the thick line between

ðxðtÞ;yðtÞÞ and ðxðtþ1Þ;yðtþ1ÞÞ and ðupðtÞ¼ 0Þ

0 otherwise:

8><
>: 1� i� jcolumnsj;1� j� jrowsj

2.2 Connected Component Analysis

Our algorithm expects a truly cursive word of a single

continuous pen movement. Unfortunately, there are many
words that are not written as a single entity, so the word’s
image is built of several components. These words are
preprocessed in order to merge the individual parts into a
single element. First, the word’s image is searched and the

connectedcomponents are spatiallyordered fromleft to right.
Next, eachpair of consecutive components is concatenatedby
an artificial “bridge”—a sequence of pixels between the two
closest pixels across the neighboring components.

Nevertheless, if a connected component is heuristically
identified as an i-dot, it is not bridged to any other
component.

2.3 Loop Extraction

The objective of this step is to produce thin representations
for all the loops in the word’s image in order to serve the
computation of the axis’ skeleton that comes next.

An intuitive definition of a loop would be: a set of
neighboring foreground pixels surrounding a “hole,” i.e., a
connected blocked group of background pixels in the word’s
image, where all foreground pixels are within stroke width
distance from the “hole.” We denote the thin representation
of a loop as theminimal subset of these foregroundpixels that
form a closed outline. One group that satisfies this require-
ment is the complete collection of foregroundpixels that have
at least one 4-neighbor background pixel that belongs to the
“hole.” Fig. 6a illustrates a “hole” made of one background
pixel. In general, the foregroundpixels enumerated 14, 15, 16,
18, 19, 21, 22, and 23 are its 8-neighbors and pixels 15, 18, 19,
and 22 are its 4-neighbors. Therefore, the last subsetwould be
the thin representation of the loop—see Fig. 7a.

2.4 Computing the Axis’ Skeleton

First, we create a graph GðV ;EÞ that is isomorphic to the
word’s image I. We define the following transformation:

Each foreground pixel pi 2 I (belonging to the word’s
body) is associated with a unique node vi 2 G in the graph.
Therefore, there are N nodes, where N is the number of
foreground pixels in the image. Next, all pairs of 8-neighbor
foreground pixels ðpi; pjÞ 2 I � I are connected with an
edge ek 2 E between their associated nodes ðvi; vjÞ 2 V � V .
In this case, the neighboring matrix M is formed as follows:
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Fig. 4. An instance of the word “complete” where the axis is colored in
white and the various tarsi are colored in gray. Crossed points indicate
intersections between the axis and meaningful tarsi where their
dimension exceeds a threshold.



Mi;j ¼
1 if pi and pj are 8-neighbors
0 otherwise

�
1 � i; j � N:

Fig. 6a shows an image of the word “co” where all body
pixels are enumerated and, in Fig. 6b, there is an illustration
of its isomorphic graph representation.

The next step is to group nodes that correspond to pixels
of the same loop into a single special node. For this purpose,
we use the thin representations of loops that were extracted
in the previous step. LetL ¼ fpl1 ; ::; plmg be a set of pixels that
form a loop in the word’s image. Then, nodes fvl1 ; ::; vlmg are
removed and node vNþ1 is appended. All edges fel1 ; ::; elng
that connect pairs of nodes of the form fvj; vlig are replaced
with edges fe01; . . . ; e0ng that connect pairs of nodes of the
form fvj; vNþ1g, respectively. So, nodes that were connected
to one of the deleted nodes are now connected to the new
special node. The neighboring matrix is modified as follows:

M 0
i;j ¼ Mi;j i; j=2 l1; . . . ; lmf g

M 0
i;Nþ1 ¼

1 if 9 k 2 l1; . . . ; lmf g
jpi and pk are 8-neighbors

0 otherwise

8<
: 1 � i � N

M 0
Nþ1;i ¼ M 0

i;Nþ1 1 � i � N:

Fig. 7a shows in gray a group of pixels that form a loop. The

resulting isomorphic graph after grouping their associated

“loopy” nodes is shown in Fig. 7b.
At this stage, if p1 is the leftmost pixel and pN is the

rightmost pixel, then the shortest path between v1 and vN is
isomorphic to the axis’ skeleton of the word’s image. A
standard Breadth First Search (BFS) algorithm is used to
find the shortest path in the graph. After this stage, we
completed the computation of the axis’ skeleton.

Fig. 8a shows an illustration of the shortest path in the

graph representation and Fig. 8b shows the associated axis’

skeleton in the word’s image.

2.5 Processing the Tarsi

Defining the contour to be the background pixels on the edge
of theword’s body, there are three tasks to be carried outwith
regards to the tarsi. First, pieces of the contour that surround
tarsus areas should be identified. Next, undersized pieces
that are presumednoise are filtered out. Finally,we locate the
optimal points along the axis’ skeleton to which the
remaining tarsi’s contourswill be connected. Inwhat follows,
we describe these tasks in details.
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Fig. 5. Flow chart of the pseudo-online transformation. First, connected components are separated into main body and i-dots. Next, the axis’ skeleton
is computed using an isomorphic graph representation of the word’s image and the output of a thin loop extraction procedure. Given the axis, the
tarsi are extracted by identifying relevant pieces on the surrounding contour. The axis, tarsi, and i-dots in their new representation forms are merged
and smoothed into an ordered list of pixels that are equivalent to strokes.



In order to identify tarsus areas, we calculate the Geodesic
distance between the axis’ skeleton and each one of the pixels
on the contour. TheGeodesicdistance is theminimumnumber
of body pixels that separate two body points. Fig. 9a shows
the output of this procedure on the contour of the word “co”
with its computed axis’ skeleton.

Next, we use the Geodesic distance to separate the pixels
on the contour into two groups of axis-based and tarsus-
oriented, respectively.

Axis-based pixels include those pixels that are up to a
threshold away from the axis’ skeleton. Usually, one would
set the threshold according to the averaged stroke width so
that the associated pixels would relate to the axis’ contour.
In this particular case, the strokes gained their width by an

artificial painting procedure and the expected averaged
stroke width is known in advance. Pixels whose distance
from the axis’ skeleton exceeds the threshold identify the
tarsi.

Each subset of consecutive pixels on the contour forms a
separate tarsus. To complete the second task, tarsi whose
size is less than a predefined number of pixels are
considered to be noise. Fig. 9b shows the three tarsi that
were extracted from the image of the word “co”: a true
tarsus and two undersized tarsi (crossed).

The last task is to locate the hanging points along the
axis’ skeleton to which the remaining tarsi’s contours will
be connected. To achieve that each tarsus is heuristically
matched with one pixel on the axis’ skeleton. The tarsus’
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Fig. 6. A demonstration of the isomorphic graph that represents the image of the word “co” in (a) and (b), respectively. Each foreground pixel
(belonging to the word’s body) is associated with a unique node in the graph. All pairs of nodes that represent 8-neighbor foreground pixels are
connected with an edge.

Fig. 7. The image of the word “co” with gray-colored pixels forming the thin representation of the loop in the letter “o” and the isomorphic graph
following the grouping of all the nodes that were associated with these pixels to a single special node pointed by the arrow—in (a) and (b),
respectively. The new special node is connected to each one of the nodes that were connected to the nodes it replaced.

Fig. 8. (a) The light gray-marked shortest path between nodes 1 and 24 that are associated with the leftmost and rightmost pixels, respectively.
(b) The white-colored pixels in the word’s image that are represented by the nodes on the shortest path. This group includes the four pixels of the
loop (15, 18, 19, and 22) that were represented by a single special node (25). All of these pixels form the axis’ skeleton of the word’s image.



contour will be connected to this pixel in the stroke
extraction phase. Let pt be the extremist pixel on the tarsus’
contour (see Fig. 9b), then we heuristically select its closest
pixel pa on the axis’ skeleton (see Fig. 9b) as the connecting
pixel which we term anchor point.

2.6 Stroke Extraction—Getting an Ordered List
of Pixels

Given an axis’ skeleton with several anchor points and a set
of associated tarsi represented by continuous pieces of the
contour, we use the following scheme to extract an ordered
list of strokes from the processed image of the word (see
Fig. 10 with the flow chart and Fig. 11a for a full
demonstration of the ordered pixels):

1. pixel = leftmost pixel (the pixel indexed 1 in Fig. 11a).
2. If pixel is an anchor point, then

a. If anchored tarsus is an ascender, then surround
contour from anchor point ! last pixel on tarsus’

contour ! first pixel on tarsus’ contour ! back to
anchor point in a counterclockwise manner
(pixels indexed 2-7 in Fig. 11a).

b. If anchored tarsus is a descender, then surround
contour from anchor point ! first pixel on tarsus’
contour ! last pixel on tarsus’ contour ! back to
anchor point in a clockwise manner.

3. pixel = next pixel along the axis’ skeleton.
4. While pixel <> rightmost pixel (pixel indexed 21 in

Fig. 11a) goto Step 2.

Note that loops on the axis’ skeleton are surrounded
counterclockwise from the left intersection point with the axis
(“entrance” painted in light gray and indexed 14/18 in
Fig. 11a)! right intersection point with the axis (“exit” painted
in light gray and indexed 16/20 in Fig. 11a)! back to the left
intersection point with the axis ! back to the right intersection
point with the axis (pixels indexed 14-20 in Fig. 11a). This
definition is necessary in order to preserve full connectivity
and continuity without pen-up pen-down motions. We term
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Fig. 9. (a) TheGeodesic distance between the axis’ skeleton (colored inwhite) and each one of the pixels on the contour (colored in light gray). (b) Pixels
whose distance from the axis’ skeleton exceeds the threshold of 1. These pixels identify pieces of the contour that surround tarsus areas (undersized
tarsi are crossed). The extremist pixel on the tarsus’ contour and its closest pixel on the axis’ skeleton are marked as pt and pa, respectively.

Fig. 10. Stroke extraction flow chart starting on the leftmost pixel and following the skeleton of the axis until reaching the rightmost pixel. Upon

meeting an anchor point that denotes an intersection with a tarsus, the pixels on the tarsus’ contour are added to the ordered list of pixels.



the resulting list of strokes that includes the axis and the tarsi
the main body.

2.7 Handling i-Dots

If the word’s image contains a stand-alone i-dot, it does not
appear in the ordered list of strokes that was extracted so far
as itwas not bridged to themain connectivity component that
was handled in the previous stages. We consider i-dots that
are separated from the main body of the word as a special
kind of tarsi. Ordered lists of pixels extracted by surrounding
their contours would represent these components. Each list
should be embedded in the appropriate position within the
ordered list of strokes that has been extracted previously
(Sections 2.4, 2.5, and 2.6). We chose to position the i-dots
immediately following the closest local maxima found in the
main body. By so doing, a pen-up pen-down motion is
created. Fig. 12 demonstrates the positioning of the i-dot
representation in the pseudo-online ordered list of pixels that
was extracted from the word “in.”

2.8 Postprocessing

It turns out that the resulting strokes may contain small
fluctuations (see, for example, the sequence of the first three

pixels, indexed 1-3, in Fig. 11a). Therefore, we utilize a
second order smoothing procedure to correct vertical
fluctuations of single pixels.

Let ðxðtÞ; yðtÞÞ be the ordered list of pixels that create the
pseudo-online representation of a given word, then the new
signal is smoothed as follows:

y0ðtÞ ¼
yðt� 1Þ if ðyðt� 1Þ ¼ yðtþ 1ÞÞ

and ððxðtÞ; yðt� 1ÞÞ 2 IÞ
yðtÞ otherwise

8<
: 2 � t � T � 1:

Fig. 11b shows the smoothed ordered list of pixels.

2.9 The Pseudo-Online Representation

Going back to the examples that were shown in Section 1
—Figs. 1 and 2, we hereby present the pseudo-online
representations that were extracted from these letters—
Figs. 13 and 14, respectively. The pseudo-online transforma-
tion generated an equivalent list of strokes for the two
instances of the “o” and “a,” respectively. The key to the
consistency is the fact that letters are always connected to the
left eitheroriginallyorartificiallyand, therefore, the trajectory
starts on one of the leftmost pixels. From there on, the
similarity between the pseudo-online signals is achieved by
the deterministic flow of the transformation algorithm—see
the charts in Figs. 5 and 10. In this case, the resemblance
between loopsand tarsiof two letters (words)are translated to
similarity in the pseudo-online representations because both
loopsandtarsiarealwaystraversedisomorphic to theirshape.

3 AN INTEGRATION OF ONLINE AND

PSEUDO-ONLINE CLASSIFIERS

The pseudo-online representation is not a substitute for the
genuine online signal. Nevertheless, it may contribute to
improving the recognition rate of an online word recogni-
tion system. In order to achieve this goal, one should
integrate two subsets of classifiers trained on online and
pseudo-online signals, respectively. Thus, recognition is
performed by a mixed combination of classifiers—see Fig. 3.

In order to have a reliable integration, multiple classifiers
of each kind—online and pseudo-online, are required.
Otherwise, it may be difficult to make a decision when
the two classifiers disagree.

The fact that the pseudo-online is also given in the form
of pixels (strokes) as a function of (an imaginary) time
enables one to practice a single online word recognition
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Fig. 11. The resulting ordered list of pixels (colored in white and light gray and indexed 1 to 21) that were extracted from the image of the word “co,”
before and after smoothing—in (a) and (b), respectively. The light gray-colored pixels represent the “entrance” and “exit” of the loop, respectively.
This ordered list of pixels equivalent to strokes is the pseudo-online representation of the word.

Fig. 12. An ordered list of pixels that gives the pseudo-online
representation of the word “in”—(a) and (b), respectively. The i-dot is
represented by an ordered sublist of pixels that surround it. This sublist
is positioned immediately following the closest local maxima found in the
main body and it is separated by a pen-up pen-down motion.



engine to learn both the online and pseudo-online repre-

sentations. In this case, the online classifiers would be the

result of training instances of the recognition engine with

different parameters on the genuine online signal. In a

similar way, the pseudo-online classifiers are consequences

of training the same instances of the recognition engine on

the pseudo-online representation of the same data set.
There are many advantages to a situation where all the

classifiers in a combination rely on the same recognition

engine and are trained on the same data set. It simplifies

maintenance throughout the whole process: training, test-

ing, and usage. Furthermore, the integration is more

straightforward.
The proposed recognition strategy is not limited to a

specific online word recognition engine. The classification

module refers to the recognition engine as a black box. It can

be used with any kind of recognition engine that satisfies the

following requirements: Trainability in the sense of the ability

to learn patterns of original signals that are given in the form

of online signals and Versatility, which means that there are

certain preset parameters that enable training of several

different classifiers where, each one of them ismore sensitive

to different words.
Once there are two subsets of classifiers for online and

pseudo-online, respectively, a combination scheme to fuse

their outputs in order to create an ensemble is required. We

used the following combination schemes investigated by

Kittler et al. ([16]), one at a time:

. Majority vote: The chosen class would be the one
that received the most votes from the mixed set of
classifiers.

. Max rule: The chosen class would be the one with
the highest confidence among all the optional classes
suggested by the mixed set of classifiers.

. Sum rule: The chosen class would be the one that
gained the highest accumulated confidence after
summing up all confidences suggested for the same
class by different classifiers.

When the majority vote is used, it often happens that two

different classes win the same number of votes. Ties of this
kind can be resolved by either one of the max rule or the
sum rule.

4 EXPERIMENTAL RESULTS

This section demonstrates that a combination of online and
pseudo-online classifiers is superior to a combination of

online classifiers solely. The comparison shows that, for
subsets of online classifiers, there exist mixed subsets of the
same size with online and pseudo-online classifiers that

achieve higher recognition rates.
We conducted two series of experiments where, in each

one of them, we have trained a set of online classifiers and a

matching set of pseudo-online classifiers. In the first series,
there were six classifiers of each kind. In the second series,

the number of classifiers was doubled to give a total of
12 classifiers of each kind.
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Fig. 13. Similar pseudo-online representations that were extracted for the two instances of the letter “o” that were originally produced by diverse sets
of strokes (see Fig. 1). The consistency is achieved because the pseudo-online transformation always searches a letter from the leftmost pixel to the
rightmost one in a deterministic way.

Fig. 14. Similar pseudo-online representations that were extracted for the two instances of the letter “a” that were originally produced by diverse sets
of strokes (see Fig. 2). The consistency is achieved because the pseudo-online transformation always searches a letter from the leftmost pixel to the
rightmost one in a deterministic way.



In each series, the results of the first experiment were
confirmed by a second experiment where we have retrained
and retested the same classifiers on different training and
test sets, respectively. The sizes of the data sets that were
used in the second experiment were about two thirds of the
ones used in the first experiment. All test sets that were
utilized throughout the series were disjoint.

In each experiment of the second series, we used the
same training, validation, and test sets that were used in the
corresponding experiment of the first series. The second
series was meant to test the changes in the contribution of
the pseudo-online classifiers when new instances of online
classifiers are introduced and the total number of classifiers
of each kind increases.

The pseudo-online classifiers were trained, validated,
and tested on the transformed data sets that were used by
the online classifiers according to the methodology ex-
plained in Section 3 and the flow chart that was presented
in Section 1 (see Fig. 3).

We used the three combination schemes that were
discussed before: majority vote, max rule, and sum rule.
We have also computed an upper bound to the combined
recognition rate—denoted the “or rule.” A combination
scheme can only recognize an input word that was
recognized correctly by at least one of the classifiers. We
define the upper bound recognition rate that can be achieved
by a subset of classifiers as the percentage of input words
that were recognized correctly by at least one classifier. Let
TPiðjÞ be a binary variable indicating whether classifier i
correctly recognized the input word j and let Wn be the
number of input words, then the upper bound recognition rate
for a combination of classifiers i1; . . . ; in is

TPri1;...;in ¼
XWn

j¼1

TPi1 jð Þ . . .j jTPin jð Þð Þ
�

Wn:

In general, significant improvement over a combination of
online classifiers solely was achieved when some of these
classifiers were replaced with pseudo-online classifiers and
a mixed combination of the same size was formed.

4.1 The Online Word Recognition Engine

Unfortunately, there are not many online word recognition
engines that are public domain and satisfy both the
trainability andversatility requirements.Wechose the engine
developed by Neskovic et al. ([24], [25]). This engine is
inspired by properties of human vision and reading strategy

and is based on a Time Delay (Space Displacement) Neural
Network ([26], [27]). It enables one to train various classifiers
that are distinguished from one another by the size of the
receptive field of eachmodel. The receptive field is analogous
to the neighborhood of a letter in a cursive word where it has
mutual interaction with other letters.

Neskovic et al.’s engine divides the input signal into
strokes that comply with Hollerbach’s observations ([28]).
Each stroke is a line between two consecutive points with
zero velocity in the vertical y direction, i.e., between a local
minima (maxima) point and the local maxima (minima)
point that follows it. All strokes are copied to feature
vectors that are fed to the recognition engine as a stream.

Each stroke is characterized by five features ([29]): the x
and y lengths of the stroke, the net displacement of the pen in
the x direction halfway through the stroke, the velocity in the
x direction at the end of the stroke, and the ratio between the
spatial frequency in the x direction wx and the spatial
frequency in the y direction wy.

The x and y lengths of a stroke are the sizes of its projection
on the x and y axes, respectively. Halfway is determined by
time, i.e., if a stroke starts at t1 and ends at t2, the halfway
would be the point at t ¼ t1 þ ðt2 � t1Þ=2. Spatial frequency is
a parameter that measures the amount of oscillations, i.e., the
proportion between the total and net motion in the direction.
The ratio is given in three quantum values (2:1, 1:1, or 1:2).

Since the pseudo-online signal does not convey real
quantitative temporal information (the time interval between
two consecutive pixels is constant and the absolute distance
between them is always either 1 or

p
2), the velocity along

each axis (x or y) has only qualitative meaning—steady
state (0) or direction ð�1;þ1Þ. Fig. 15 illustrates the
transformation of the data representation into feature vectors
by the recognition engine. It demonstrates the use of extreme
points to segment the feature vectors both in the online and
pseudo-online representations and gives some insight to the
type of features used by the engine.

In comparison with other online engines, the one we have
selected presents a poor feature vector. However, the fact
that it involves only basic stroke-related features enables us
to evaluate the net contribution of the pseudo-online
representation as an alternative ordered list of strokes.

4.2 The Data Set

We have tested our system with a data set of online cursive
words compiled by Rumelhart ([29]). This is an extension of
the HP data set that can be found in the UNIPEN collection
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Fig. 15. An illustration of the main stroke derived from the online and pseudo-online representations of the digit “2.” The local maxima and minima
determine the beginning and end of the stroke. The feature vectors that characterize these strokes are: ð16� 30 ¼ �14; 45� 4 ¼ 41; 26� 30 ¼
�4; 16� 17 ¼ �1; 1 : 1Þ and ð24� 29 ¼ �5; 43� 6 ¼ 37; 30� 29 ¼ 1; 24� 23 ¼ 1; 1 : 1Þ. (a) represents the online strokes and (b) represents the
strokes obtained by the pseudo-online transformation.



([30]). The data set provides one sample for every word per
writer. The collection ofwords creates a lexicon of 862words.
A raw data file representing an input word contains
information about x and y pen positions recorded every
10 milliseconds.

From the online data set, we generated its pseudo-online
clone using the transformation described in Section 2. The
bitmap image of a wordwas produced by a linear concatena-
tionof all neighboringpixels between everypair of pen-down
pen-up operations. Each line was then thickened in order to
gain the real stroke width of three pixels at the average.

4.3 First Series of Experiments

The bases for the first series of experiments were six
instances of the recognition engine that were compiled with
different parameters to simulate different sizes of letter
neighborhoods.

Experiment 1. For the first experiment, we used a training
set of 68 writers and a test set of another independent
18 writers. Since eachwriter produced 862 words, there were
58,616 words in the training set and 15,516 words in the test
set. A subset of the test set—9 of the 18writers—wasused as a
validation set. This group of writers was introduced
throughout the training phase for the purpose of calculating
the variability in the expected error. The validation set was
used for deciding when to stop the training process.

Each instance of the recognition engine was duplicated
and trained separately on the online and pseudo-online
representations of the training set. Thus, we have trained six
online and six matching pseudo-online classifiers with
mean percent recognition rates and standard deviations of
33:9� 14:8 and 31:2� 4:3, respectively.

Table 1 presents the percent recognition rates for the
combination of all six online classifiers in comparison with a
mixed combination of four online and two pseudo-online
classifiers that achieved the highest recognition rate of all
mixed combinations that were tested. The recognition rates

refer to thevariouscombinationschemesthatwerementioned
above. The sum rule showed an improvement of 3.8 percent.
The upper bound recognition ratewas improved by 5.9 percent.

Experiment 2. The next experiment was meant to confirm
the significance of the results that were achieved in Experi-
ment 1. In order to do so, we have repeated the training and
tests done in Experiment 1 another six times with different
cross-validation training and test sets, respectively.

The data set that was used for these trials consisted of 66
out of the 68 writers that were used for training in
Experiment 1. The same lexicon of 862 words was utilized
for each writer. The group of 66 writers was randomly
divided into six disjoint test sets of 11 writers. Each test set
was introduced to classifiers that were trained on 46 of the
remaining writers. In this case, we used the last nine writers
for the on-training validation process that was explained
above. In each trial, we have duplicated and retrained the
six instances of the recognition engine on the online and
pseudo-online representations of the appropriate training
set, respectively. In this way, we have reproduced six online
and six pseudo-online classifiers for every trial.

Table 2 lists the percent mean recognition rates and
standard deviations of the six pure combinations of the six
online classifiers and the six mixed combinations of the four
online and two pseudo-online classifiers under the various
combination schemes. The twopseudo-online classifiers to be
used in the mixed combination were chosen from the
performance of Experiment 1, where a disjoint test set of
18 writers was used. The sum rule provided the best
combination results of 3.4 percent improvement. The upper
bound on combination performance gave 5.1 percent im-
provement. The student t test was used to study the
significance of the improvement in performance when
combining pseudo-online together with online classifiers.
The reported P-values indicate that the improvement under
all combination schemes was significant at P < 0:01 con-
fidence level.
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TABLE 1
A Comparison between the Recognition Rates of Pure Online and a Mixture of Online and

Pseudo-Online Combinations of Six Classifiers Trained on a Data Set of 68 Writers � 862 Words
and Tested on a Data Set of 18 Writers � 862 Words under Various Combination Schemes

TABLE 2
Mean Percent Recognition Rates and Standard Deviations of Six Pure Combinations of Six Online Classifiers

and Six Mixed Combinations of Four Online and Two Pseudo-Online Classifiers

All sets of online classifiers were trained on different data sets of 46 writers� 862 words and tested on disjoint data sets of 11 writers� 862 words. All
subsets of pseudo-online classifiers were trained and tested on the pseudo-online representations of the same data sets. The P-value provides the
significance confidence level of the improvement of themixed combinations over pure online combinations. The student t test was used to calculate the
significance.



4.4 Second Series of Experiments

The second series of experiments extends the first series. In
this case, we tested the progress of the improvement in the
recognition rate of a mixed combination of classifiers when
the number of classifiers increases. In addition to the six
instances of the recognition engine that were used in the
first series, we compiled another six instances to simulate
new sizes of letter neighborhoods.

Experiment 3. Using the same training set of 68 writers
from Experiment 1, we have separately trained a copy of
each one of the six additional instances of the recognition
engine on its online and pseudo-online representations,
respectively. Thus, given the classifiers that participated in
Experiment 1, both the online and pseudo-online sets of
classifiers were extended to the size of 12 members with
mean percent recognition rates and standard deviations of
33:4� 14:2 and 30:6� 3:6, respectively. Next, the additional
classifiers were also tested on the same test set of 18 writers
that was given to the original ones during Experiment 1.

Then, the pure combination of the 12 online classifierswas
compared with a mixed combination of online and pseudo-
online classifiers of the same size that maximized the upper
bound recognition rate among all possible 12-classifier combi-
nations. In this case, the subset of classifiers l1; . . . ; l12
maximizes the upper bound recognition rate among all
combinations of 12 classifiers if

l1; . . . ; l12 ¼ arg max
i1;...;i12

ðTPri1;...;i12Þ 1 � i1; . . . ; i12 � 2 � 12:

There were seven online and five pseudo-online classifiers
in the subset that was found in this way. While this choice
may not be optimal, it suffices to demonstrate significant
improvement.

Table 3 presents the percent recognition rates for the
combination of all 12 online classifiers in comparison with
the mixed combination of the seven online and five pseudo-
online classifiers that maximized the upper bound recognition
rate. The results refer to the various combination schemes
that were used in the first series. In this case, the sum rule

showed an improvement of 2.6 percent and the upper bound
recognition rate was improved by 3.6 percent.

Experiment 4. In a similar way to the one we described in
the first series of experiments, we have repeated the training
and tests done in Experiment 3 with the six cross-validation
data sets. In each trial, we have retrained the 12 instances of
the recognition engine on the online representation of the
same training set of 46 writers that was used in the
corresponding trial of the first series. In addition, we used
the pseudo-online representation of that training set to
retrain the five instances that were required to produce the
five pseudo-online classifiers of the mixed combination that
was selected. In this way, we have produced 12 online and
five pseudo-online classifiers for every trial.

In each trial, we tested both the resulting pure combina-
tion of the 12 online classifiers and the resulting mixed
combination of the seven online and five pseudo-online
classifiers on the same test set of 11 writers that was used in
the corresponding trial of the first series.

Table 4 lists the percent mean recognition rates and
standard deviations of the six pure combinations of the
12 online classifiers and the six mixed combinations of the
seven online and five pseudo-online classifiers under the
variouscombinationschemes.Thesumruleprovided thebest
combination results of 2.5 percent improvement. The upper
bound on combination performance gave 3.5 percent im-
provement. The reported P-values indicate that the improve-
ment under the majority vote and sum rule combination
schemes continues to be significant at P < 0:01 confidence
level.A similar confidencewasobtained for the improvement
in the upper bound recognition rate on combination perfor-
mance. The max rule showed lower improvement and
significance compared with the sum rule and majority vote.

Experiment 5. In the last experiment, we have tested
and compared all possible mixed combinations of the
N-best online classifiers and M-best pseudo-online classi-
fiers ð0 � N;M � 12Þ. The latter are considered fair
approximations for the optimal mixed combinations of
N þM classifiers. The setup of Experiment 3 was used to
train the individual classifiers and test the various
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TABLE 3
A Comparison between the Recognition Rates of Pure Online and a Mixture of Online

and Pseudo-Online Combinations of 12 Classifiers Trained on a Data Set of 68 Writers � 862 Words
and Tested on a Data Set of 18 Writers � 862 Words under Various Combination Schemes

TABLE 4
Mean Percent Recognition Rates and Standard Deviations of Six Pure Combinations of

12 Online Classifiers and Six Mixed Combinations of Seven Online and Five Pseudo-Online Classifiers

All sets of online classifiers were trained on different data sets of 46 writers� 862 words and tested on disjoint data sets of 11 writers� 862 words. All
subsets of pseudo-online classifiers were trained and tested on the pseudo-online representations of the same data sets. P-values were calculated as
in Table 2.



combinations. In this case, only the leading sum rule was
implemented. Fig. 16 provides a contour plot graphical
illustration of the 169 recognition rates that were
achieved. Each dashed diagonal line presents a subset
of combinations with the same number of classifiers. A
“+” marks the top ranked combination in every subset
and the recognition rate it attained. In the mixed
combinations of 8-13 classifiers, we witnessed an im-
provement of 1.4-2.6 percent over combinations of the
same size with maximum online classifiers. In this case,
there were 2-5 pseudo-online classifiers in the top ranked
mixed combinations.

5 DISCUSSION

The resolution of the dissimilarities between the online and
pseudo-online signals is at the letter level. There was some
evidence that pseudo-online classifiers prefer words with
complicated letters like f and k or words that begin with the
letters a,b, h, i, and l. However, in general, the association
between the input words that were better recognized by the
pseudo-online classifiers and specific letters was not con-
clusive.This is likelydue to the fact that therecognitionengine

averages the confidences of all letters in a word and masks
local peaks. Nevertheless patterns of improvement could be
seen at the word as well as the writer levels. The collection of
results obtained in Experiment 4 shows that there were
110 word classes (12.8 percent) in which at least seven word
samples (10.6 percent) were correctly recognized only by the
combination with the pseudo-online classifiers. The ordered
histogram presented in Fig. 17a summarizes, for each word
class, the percentage of word samples that were correctly
recognized only by the mixed combination of classifiers.

At the writer level, we observed that there were 12 writers
(18.2 percent) for whom at least 65 of the words they
produced (7.5 percent) were correctly recognized only by
the combination with the pseudo-online classifiers. More
than a 12 percent difference was obtained for the top two
writers. The ordered histogram that summarizes the percent
differences for all the writers is given in Fig. 17b.

Following the analysis of the mixed combination perfor-
mance, we did some investigation to learn about the
correlation among the pseudo-online classifiers in compar-
ison with the correlation between online and pseudo-online
classifiers, respectively. LetOi andPOi be the number online
and pseudo-online classifiers that correctly recognized the
ith input word, respectively, then the histogram of all
possible positive values of POi �Oið½1; . . . ; 12�Þ that were
observed in the 18-writer test set ð1 � i � 18 � 862 ¼ 15; 516Þ
is given in Fig. 18a. Similarly, the distribution of the input
words forwhichPOi � nð1 � n � 12Þ andOi ¼ 0 is shown in
Fig. 18b. The statistics demonstrate that the pseudo-online
classifiers share unique characteristics that reflect on a
subdomain of recognizable input words. For example, there
were 909 input words (5.9 percent) that were correctly
recognized by at least one pseudo-online classifier and
neither one of the 12 online classifiers.

Fig. 19 presents two of the leading words in this group
that were recognized by at least 10 of the 12 pseudo-online
classifiers.

To complete the picture, we have computed the mean
diversity of the errors between a pair of online, a pair of
pseudo-online and an online plus a pseudo-online pair of
classifiers, respectively. Let CliðjÞ be the word class to
which the input word j was classifieds by classifier i,
then the diversity of the errors made by classifiers i1; i2 is
given by:
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Fig. 16. A contour plot that illustrates recognition rates achieved by
numerous mixed combinations of the N-best online classifiers—y-axis
and M-best pseudo-online classifiers—x-axis ð0 � N;M � 12Þ. The
dashed diagonal lines represent subsets of combinations with the same
number of classifiers. The “+”s mark the top ranked combination in every
subset and the recognition rate it attained.

Fig. 17. (a) Percentage of word samples per word class that were correctly recognized by a mixed combination of seven online and five pseudo-
online classifiers and were not recognized by a combination of all 12 online classifiers. The histogram summarizes recognition results on a data set
of 66 writers � 862 word classes. (b) Percentage of word samples per each writer that were correctly recognized by a mixed combination of seven
online and five pseudo-online classifiers and were not recognized by a combination of all 12 online classifiers. The histogram summarizes
recognition results on a data set of 66 writers � 862 word classes.



DIV i1;i2 ¼

PWn

j¼1

Cli1 jð Þ ¼ Cli2 jð Þ TPi1 jð Þj ¼ 0ð Þ

PWn

j¼1

Cli1 jð Þ ¼ Cli2 jð Þð Þ
:

The results show correspondence among the various online
and pseudo-online classifiers—86:4%� 6:1 and 80:0%� 5:9,
respectively. This is the antithesis of the high diversity that
was found between pairs of online and pseudo-online
classifiers—94:3%� 3:3.

6 CONCLUSIONS

The recognition rates that were achieved by the mixed
combinations of online and pseudo-online classifiers im-
prove previous results that were accomplished on this data
set ([24], [25], [29]). We have demonstrated that the pseudo-
online representation is useful and provides additional
information that can be easily translated into significant
recognition rate improvement. We have shown that the
variability in the recognition rate improvement is reduced
when more classifiers (with different letter neighborhood
sizes) are used. In the latter case, the number of pseudo-
online classifiers that were part of the optimal combination
was increased, emphasizing the important contribution of
the pseudo-online representation to the genuine online
signal. Moreover, it proves that the improvement was

orthogonal to the improvement that could be obtained by
introducing only new online classifiers.

This is further supported by the fact that the significance of
the improvementwasnot changedwhencombining 12 classi-
fiers, while the absolute recognition rate has jumped from
76.5 percent to 82.3 percent (in the case of the sum rule
combination scheme). The upper bound recognition rate, which
indicates thebestperformancethatcouldbeachievedfromthe
collection of classifiers at hand (while not indicating a specific
strategy for achieving such combination), retains the sig-
nificance in the improvement while indicating far better
absolute recognition results. For example, in the case of
12 classifiers, the upper bound recognition rate is over 92.9 per-
cent compared to 85.3 percent in the case of 6-classifier
combination. As an optimal combination scheme is outside
the scope of this paper, this result is sufficient to indicate that
the pseudo-online representation does add information that
cannot be obtained by optimizing a combination of online
classifiers only.
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