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Abstract—The ability to deal with object structure — to determine what is where in a given object,
rather than merely to categorize or identify it — has been hitherto considered the prerogative of
‘structural description’ approaches, which represent shapes as categorical compositions of generic
parts taken from a small alphabet. In this note, we propose a simple extension to a theoretically
motivated and extensively tested appearance-based model of recognition and categorization, which
should make it capable of representing object structure. We describe a pilot implementation of the
extended model, survey independent evidence supporting its modus operandi, and outline a research
program focused on achieving a range of object processing capabilities, including reasoning about
structure, within a uni� ed appearance-based framework.

Keywords: Object recognition; view-based representation; coarse coding; structure; binding by
retinotopy.

Intelligent processing of visual shapes implies the ability to solve the following core
problems:

² Recognition — how to deal with novel views of shapes (generalization
across viewpoint changes);

² Categorization — how to deal with novel instances of shape categories
(generalization across shape changes), and how to treat radically novel
inputs which may belong to none of the familiar categories;

² Representation of structure — how to encode and refer to (i) the arrange-
ment of parts in an object, and (ii) the arrangement of objects in a scene.

Some theorists claim that the only computational approach to object vision that
is in principle capable of addressing all three of these problems is structural
decomposition (Biederman, 1987), in which ‘atomic’ (i.e. perceptually primitive,
indivisible) parts entering into categorical spatial relationships to each other are used
to describe potentially complex shapes.
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Such a representation scheme can, in principle, support generalization across
viewpoints, by abstracting away unnecessary details through the imposition of
categorical constraints on the primitives (parts and their relationships). By the
same token, generalization to novel instances of familiar categories may be possible.
Due to the compositional nature of this classical structural scheme, an open-ended
variety of complex shapes and scenes can be described, just as tens of thousands of
spoken words can be described using a small number of phonemes as components
(Biederman, 1987).

In the study of human vision, two related examples of the classical compositional
approach are the ‘structural description’ theory (Marr and Nishihara, 1978) and the
Recognition By Components model based on it (Biederman, 1987; Hummel and
Biederman, 1992). The RBC model, speci� cally, postulates a few dozen generic
shape parts (geons), joined by categorical spatial relationships chosen from an
equally small � xed set. The predominant role of this model and of its successors
(Stankiewicz and Hummel, 1996) in theorizing about the representation of structure
is rarely questioned. One may observe, however, that the structural description
idea, seen as a model of human performance in viewpoint generalization and
categorization tasks, has been vigorously challenged (Tarr and Bülthoff, 1995;
Edelman, 1999), and defended (Biederman and Gerhardstein, 1995; Hummel,
1999). It would be interesting to see whether in structure representation too the
theoretical discussion can be revitalized. Indeed, can a computationally viable
and empirically supportable challenge to the classical compositional approach to
structure representation be mounted? In this short note we suggest that it can.

1. CHORUS OF FRAGMENTS

We propose to derive an alternative to conventional structural representations from
an established model of recognition and categorization: the Chorus of Prototypes
(Edelman, 1998). The extended model, which, following Edelman (1999, p. 247),
we call the Chorus of Fragments (CoF), is based on the idea of combining ‘what’
and ‘where’ information within the same representational units. CoF aims at
supporting all three core recognition-related tasks listed above, without recourse to
a generic alphabet of atomic parts, or to symbolically bound structural descriptions.

To see how that may be possible, let us consider � rst the Chorus of Prototypes — a
holistic appearance-based approach to recognition and categorization, implemented
by Duvdevani-Bar and Edelman (1999). Brie� y, it recognizes novel views of an
object by interpolating (Poggio and Edelman, 1990) its view space from a few
examples, that is, entire stored views (hence the label ‘holistic’ ). Following the same
principle, a novel object belonging to a familiar class is categorized by interpolating
the shape space of the class, and by pinpointing the stimulus location in that space
on the basis of its proximities (similarities) to view spaces of several prototypical
members. These similarities can be computed by modules coarsely tuned to the
prototypical reference shapes (Duvdevani-Bar and Edelman, 1999). (Consider the
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space of measurements performed on the image of an object by a visual system;
the output of a bank of � lters whose receptive � elds cover the retinal image is a
good example of this notion. The view space of an object is the manifold formed
within the measurement space as the object undergoes a viewpoint transformation
such as rotation. The shape space is spanned by an object that deforms instead of
transforming, and may be seen as the union of the view spaces of all members of a
certain shape category.)

The third core problem in object vision — explicit representation (and, generally,
intelligent treatment) of object structure — does not seem to lend itself to the kind
of holistic treatment on which the Chorus of Prototypes is based (Hummel, 1999).
The reasoning behind this claim is related to the observation (Fodor, 1998) that the
main dif� culties in the processing of structure lie in achieving systematicity and
productivity , two traits commonly attributed to human cognition. In the context of
visual recognition, the systematicity challenge is, simply put, this: a system that can
really make sense of object O1 D .circle above square/ must also be able to
make sense of O2 D .square above circle/ (Hummel, 1999). Continuing this
example, the productivity challenge is to make a � nite-resource system — one that
has seen n objects, fOiji D [1 : : : n]g — open-ended (i.e. capable of representing
an arbitrary new OnC1 ).

The development of computationally viable methods that store and interpolate
among (entire) views does alleviate the productivity problem: new objects can be
represented by their similarities to familiar ones (Edelman, 1998; Duvdevani-Bar
and Edelman, 1999). It does not, however, remove the systematicity problem:
holistic view processing lets one realize that O1 6D O2, but stops short of
determining in what respect O1 and O2 are similar.

Because the challenge posed by systematicity is focused on spatial structure, it
seems reasonable to conjecture that endowing a Chorus-like model with the ability
to address separately different locations in the visual � eld would bring it closer
to being systematic. Given that even precise spatial location (or, for that matter,
any other visual quality) can be coarsely coded by a population of widely tuned,
overlapping receptive � elds, the introduction of location coding into Chorus need
not result in a combinatorial explosion of the requisite resources. Importantly, if the
resulting scheme proves to be able to attain systematicity, it would do so without
resorting to ‘discrete’ part-based structural descriptions.

Consider a modi� cation of the Chorus of Prototypes approach, in which each
shape-tuned module is also selective, to a certain degree, to the location of its
preferred shape, as suggested in the last chapter of (Edelman, 1999). The (scalar)
output of such a ‘what C where’ unit (to borrow a label from Rainer et al., 1998)
represents simultaneously two kinds of quantities: how similar is the current shape
to the optimal one, and how close is its location to the receptive � eld peak (which
need not coincide with its geometrical center). The pattern of activities across a
collection of such units — a Chorus of Fragments (see Fig. 1) — should suf� ce
to specify, in a manageably low-dimensional format, what shapes, exactly, are ‘out



258 S. Edelman and N. Intrator

there’ in the image, and where each of them is located, to give a description as good
as that promised by the classical structural methods.

A formalization of this line of reasoning is outside the scope of the present article,
and can be found in (Edelman and Intrator, 2000). In the following two sections, we
provide an intuitive description of an implemented version of the CoF model, and
examine its implications in the light of recent results from the psychophysics and
the neurophysiology of object vision, and from computer vision.

2. A PILOT IMPLEMENTATION OF COF

We have implemented a pilot version of the CoF model, aimed at determining
whether responses to queries such as ‘do O1 and O2 share parts?’ could be obtained
from ‘what C where’ information, as suggested in Fig. 1. The implemented system
contained three modules, each comprising four ‘what C where’ units (one per
quadrant of the visual � eld). The units were trained (1) to discriminate among three
objects, (2) to tolerate translation within a receptive � eld roughly corresponding
to one of the four quadrants of the image, and (3) to provide an estimate of the
reliability of its output, through a separate autoassociation mechanism attempting
to reconstruct the stimulus (Stainvas et al., 1999).

Within each quadrant, the outputs of the units provided a consistent coarse
coding of novel objects belonging to the familiar category, which was useful
for translation-tolerant recognition. The reliability estimates carried information

Figure 1. Left: a structured stimulus (square above circle). Right: a sketch of a Chorus of
Fragments system used to represent the stimulus. The ‘what C where’ units (top row) encode both
shape and location information. Two sets of such units are shown, one tuned to a shape resembling a
balloon (a prototypical sphere), and the other to a TV set (a prototypical box). Views of entire objects
play the role of fragments in this illustration, to facilitate the understanding of the distribution of their
responses to the stimulus (indicated by the open bars); in principle, snapshots of object fragments
should do equally well. The response pattern of the ‘what C where’ units constitutes a structural
description of the stimulus; it can be used to extract separate ‘what’ and ‘where’ cues (bottom row),
� nd out whether the stimulus is a .circle above square/ or the other way around, etc. Note that
coding by graded similarities to an ensemble of concrete localized prototypes obviates the need for
generic parts and for categorical localization.
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about category, allowing outputs for objects from other categories to be squelched.
Most importantly, due to the spatial localization of the units’ receptive � elds the
system could distinguish between different con� gurations of the same shapes (e.g.
sphere over cube vs. cube over sphere) while noting the component-wise (actually,
quadrant-wise) similarities.

The results of this initial exploration of the ideas behind the CoF model are
encouraging. The ability of the pilot implementation to maintain a systematic
representation of structured objects is illustrated in Fig. 2. The � gure shows the

Figure 2. An illustration of the systematic treatment of the sphere/ cube objects by the CoF model.
In this example, the system consists of three modules, tuned, respectively, to .cube above top/,
.sphere above top/, and .cylinder alongside top/ objects. Each module consists, in turn,
of four ‘what C where’ units, tuned spatially to the four quadrants of the visual � eld, as indicated
in the � gure. The upper part of the � gure shows the distribution of responses of the 3 £ 4 D 12
units for a .sphere above cube/ stimulus, presented so as to fall within quadrants I and II,
straddling the horizontal meridian. The lower part of the � gure shows the system’s response to a
.cube above sphere/ stimulus. The systematic nature of the model’s treatment of the two structured
objects is manifested in the similarity between the response pattern of units of quadrant I in the upper
row and that of units in quadrant II in the lower row, and vice versa. We remark that the representation
of this kind should be considered systematic even if the response patterns in question (e.g. I, top
and II, bottom) are dissimilar, as long as they are related by a well-de� ned invertible mapping (which
can, of course, be learned from examples). A discussion of systematicity and details concerning the
architecture of the ‘what C where’ units and their training appears in Edelman and Intrator (2000).
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model’s responses to two distinct arrangements of the same three-dimensional parts,
a sphere and a cube, as in Hummel’s (1999) example. A comparison of the response
patterns evoked by the two stimuli indicates that the representation formed by CoF
does contain the information necessary for determining that the two stimuli are
similar in that they contain similar parts (in different con� gurations).

It is important to realize that this representational ability does not require prior
knowledge of the parts. Indeed, each of the three members of the basis used by
CoF to span the space of shapes within each quadrant consists of two-part objects.
Thus, the sphere in quadrant I in the upper row in Fig. 2 is represented by its
similarities to three entire objects (.cube above top/, .sphere above top/, and
.cylinder alongside top/). We do not take a stance at this point regarding the
optimal choice of shape primitives (objects that could be represented by a very small
number of units rather than in a distributed fashion), because we believe that such
primitives should be determined by the statistical properties of the stimuli and of
the representational ‘front end’. Meanwhile, in the present implementation, shapes
people call ‘simple’, such as a sphere or a cube, are represented in a distributed
fashion, merely to show that this is possible. An extensive discussion of this
issue, and, generally, of the representational abilities of the CoF model, along with
examples that involve animal-like shapes, can be found in (Edelman and Intrator,
2000).

3. INDEPENDENT EMPIRICAL SUPPORT FOR COF

Results of recent studies in several disciplines dealing with visual representation,
mentioned very brie� y below, provide further grounds for our optimism concerning
the representational power of the CoF model.

3.1. Computer vision

The computational feasibility of the holistic similarity-based model that served as
the precursor to CoF has been reported in Duvdevani-Bar and Edelman (1999).
The encouraging performance of that implementation is consistent with the gradual
consolidation of appearance-based methods as the predominant and the most
successful algorithmic approach to recognition in computer vision. The idea behind
CoF — representing an object by a collection of fragments that are data driven, not
generic, and are positioned roughly, not precisely — recurs in several such methods.

For example, the method developed by Nelson and Selinger (1998) starts by
detecting contour segments, then determines whether their relative arrangement
approximates that of a model object. Because none of the individual segment
shapes or locations is critical to the successful description of the entire shape, this
method does not suffer from the brittleness associated with the classical structural
description models of recognition. Moreover, the tolerance to moderate variation in
the segment shape and location data allows this method to categorize novel members
of familiar object classes (Nelson and Selinger, 1998).
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In a related development, (Burl et al., 1998) combine ‘local photometry’ (shape
primitives that are basically templates for small snippets of images) with ‘global
geometry’ (the probabilistic quanti� cation of spatial relations between pairs or
triplets of primitives). Likewise, Camps et al. (1998) represent objects in terms of
appearance-based parts (de� ned as projections of image fragments onto principal
components of stacks of such fragments) and their approximate relations. In
both these methods, the interplay of loosely de� ned local shape and approximate
location information leads to robust algorithms supporting both recognition and
categorization.

3.2. Psychology

An early indication that at least in some recognition-related tasks ‘what’ and
‘where’ cues are intimately intertwined was provided by the work of Wallach and
Adams (1954), who found that the interpretation of an ambiguous shape could
be biased by priming with an unambiguous version, but only if both appeared
within the same visual quadrant. A similar con� nement of the effect to a quadrant
was found, in a subliminal priming task, by Bar and Biederman (1998). In a
same/different discrimination task using articulated animal-like 3D shapes, Dill
and Edelman (1997) found that performance was fully transferred across retinal
location if local cues were diagnostic, but not if the decision had to be based on
relative location of various fragments. In other words, the subject’s visual system
did not encode relative location, that is, spatial structure, independently of absolute
location. This issue was addressed speci� cally by Edelman and Newell (1998), who
found priming by shape and location (‘what’ and ‘where’), but not by shape alone,
in a 4AFC task. These � ndings are not generally compatible either with the classical
structural description theories of representation (which predict priming by geons, or
‘disembodied’ parts, independent of location) or with the holistic theories (which
do not predict priming by ‘shapeless’ location on its own). They may be interpreted
in terms of a hybrid model such as CoF, according to which conjunctions of shape
and location are explicitly represented, and therefore amenable to priming.

3.3. Neurophysiology

Neuronal mechanisms corresponding functionally to shape-tuned modules and to
their building blocks (that is, cells selective to a speci� c object irrespective of
view, or to some particular views of an object) have been described by Logothetis
et al. (1995). This � nding, replicated since by several groups, complements the
numerous earlier reports of face and object selectivity, as reviewed, for example, in
Logothetis and Sheinberg (1996), Rolls (1996), Tanaka (1996). The ‘whatCwhere’
cells needed speci� cally for implementing the CoF scheme have also been found,
in V4 and posterior IT by Kobatake and Tanaka (1994), and in prefrontal cortex
by Rainer et al. (1998). Cells in V4 that modulate their response depending on
the current location of the receptive � eld relative to the focus of attention, have
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been reported by Connor et al. (1997); note that responses of such cells can be
used to encode the structure of the stimulus in object- rather than view-centered
coordinates. Finally, a close correspondence between the predictions of CoF and
neuronal response patterns is apparent also in the study of Tsunoda et al. (1998).
They combined Tanaka’s stimulus reduction technique (Tanaka et al., 1991) with
optical imaging of cortical activity (Wang et al., 1996), and found that clusters of
neurons in IT respond to ‘moderately complex’ geometrical features, and that their
responses are combined to form representations of structured objects.

4. SUMMARY

The traditional structural description route to a versatile representation of structure
(one that exhibits systematicity and productivity) is via hierarchical part-based
compositionality (Bienenstock and Geman, 1995; Fodor, 1998) — an approach
shared by Biederman’s Recognition By Components theory mentioned in the
introduction (Biederman, 1987), and by many others. In this note, we argued that
a representational system can be both productive and systematic, and can address a
range of recognition- and structure-related tasks, without relying on classical rigid
compositionality based on generic categorically de� ned parts and relations.

Although the CoF model is, in a sense, compositional (see Edelman and Intrator,
2000, for a discussion of this issue), it differs from the classical structural descrip-
tion approaches (such as that of Biederman, 1987) in three important respects:

(i) The shape primitives in CoF can be fragments of actual object images, and
need not be generic ‘parts’. Moreover, the presence of a fragment in an
image is construed in CoF as a graded quantity, not as an all-or-none event.
As a result, both the acquisition of the shape primitives and their subsequent
‘detection’ in the stimulus image become computationally tractable.

(ii) The spatial relations in CoF are continuous and coarsely coded, not discrete
and categorical. Consequently, the characterization of the spatial relations
prevailing among fragments of the stimulus image is more robust than in the
classical structural description case.

(iii) The binding of primitives in CoF occurs naturally, by virtue of their existing
placement in the image, and needs not to be imposed by an external mecha-
nism. Thus, at least one variety of the binding problem (Treisman, 1996) is
obviated by retinotopy (Edelman, 1994).

The approach we advocate is supported by the success of ‘local photometry C global
geometry’ schemes in computer vision, by the discovery of ‘what C where’ neurons
in the monkey cortex, and by the evidence in favor of localized fragment-like shape
primitives stemming from psychological studies. A comprehensive program for its
implementation and testing is now under way.
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