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1 Introduction

Discrimination problems differ in nature from reconstruction tasks. While in reconstruction, it
is the mean squared error that is often used to measure the quality of the scheme, classification
requires a different measure which often is not related to the former. The discrimination power of a
certain basis or a set of basis function is not necessarily connected to the quality of reconstruction
associated with this set. Furthermore, the degree of relevance of the orthonormality constraint
to the quality of the discrimination is questionable. For example, linear discriminant analysis [1]
searches for linear projections which maximize the between-class variance divided by the sum of
within-class variance. Such projections do not necessarily coincide with the principal components
of the data which are the directions that optimize MSE reconstruction.

A successful approach to discrimination is based on an appropriate preprocessing to create an
efficient signal representation, which then leads to an efficient dimensionality reduction. The next
step is again some combination of feature extraction and classification. In this paper we briefly
review several methods for finding data representation via optimal decomposition of wavelet basis
functions and discuss their reconstruction properties. We then discuss some signal decomposition
methods for the purpose of discrimination. This is followed by a brief discussion on a combination
of feature extraction and classification scheme and with discrimination results on two acoustic
data-sets.
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2 Optimal basis function decomposition for reconstruction

2.1 Entropy based algorithms

Coifman and Wickerhauser [2] presented a simple and fast algorithm for finding the local best basis
(BB) in a wavelet packet (WP) library basis functions. The search is very simple and fast due to
the orthogonality condition between the basis functions at each level and the inclusion properties
of basis functions between different levels. Choosing between different possible bases is done via
the entropy of the coefficients, namely the speed of decay in coefficient values, which indicated the
degree of compression of the representation.

2.2 Basis pursuit

Unlike the search in orthogonal bases as done in the best basis method, one can search in an
overcomplete dictionary of basis functions. This has been proposed by Daubechies and termed
the Method of Frames [3]. Among different representations for the same signal, one searches
for a representation whose vector of coefficients has the smallest [? norm. This approach leads
to a quadratic optimization problem that is solved via a system of linear equations. Recently
Chen et al. [4] presented a Basis Pursuit method (BP) that is very similar to the methods of
frames; It decomposes a signal using dictionary elements so that the coefficients have the smallest
I' norm among all such decompositions. This optimization can be performed by advanced linear
programming techniques [5]. Chen et al. demonstrate that for certain signals, the convergence of
a basis pursuit algorithm is faster than that of a best basis representation.

2.3 Matching pursuit

The Matching Pursuit algorithm [6] is an iterative algorithm, which does not explicitly seek any
overall goal, but merely applies a simple and local rule repeatedly. It is a forward model selection
that adds at each step the single most correlated new atom among all those not included yet in
the model. The algorithm is very powerful for orthogonal basis selection, but may fail for non-
orthogonal dictionaries.

3 Optimal basis decomposition for discrimination

3.1 Local discriminant bases

The local discriminant base (LDB) [7, 8] creates a time-frequency dictionary such as WP or local
trigonometric functions (CP), from which signal energies for each basis coordinates are accumulated
for each signal class separately. Then, a complete orthonormal basis is formed using a distance
measure between the distributions of those energies from each class.

The original algorithm [7] attempted to extract best basis from the energies (squared values)
of the WP, which is the direct approach to finding a best basis for a class of patterns [2]. Unfor-
tunately, when the distance measure is applied to these energy coefficients, or more generally to
the distribution of the energies, then the interpretation of the new basis is not clear anymore and
the optimality properties are not so apparent. Moreover, noticing that the energies may not be
so indicative for discrimination, Saito and Coifman [8] have suggested to use a different non-linear
function of the basis function of the coefficients (instead of a just square values) so as to alleviate
this problem. However, this approach takes us even further away from interpretation and optimality
of the best basis approach.
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3.2 Discriminant pursuit

Buckheit and Donoho [9] have introduced the discriminant pursuit (DP) algorithm which follows
the approach of basis pursuit, in the sense that it is not constrained by seeking only orthogo-
nal discriminant basis functions, but can search in the overcomplete WP or CP dictionary. The
discrimination power of each basis function is measured by:

|Ex [wpi()] — Ey[wpi(y)]|

Di(X,Y) = STDx (wpi(z)) + STDy (wp;(y))’ v

which is a 1-dimensional form of Fisher discriminant analysis criterion [1]. It is our experience that
often, the additional flexibility leads to inferior results. This happens when the dimensionality is
high and the number of training patterns is relatively small. If the WP representation is sparse,
then for every basis function there are very few patterns which contribute to its value, thus the
variability is large and outliers are more likely to cause trouble. There is another problem associated
with this approach; Since the wavelet packet transformation is linear, it follows that Ex[wp;(z)] =
wp;(Ex|z]). Thus, if the mean of each signal set is zero, there is no discrimination power in the
means. A simple example is the discrimination between two signals of the form: sin(wt 4+ u) and
sin(2wt + u), where u ~ U|0, 27].

4 Hybrid dimensionality reduction/discrimination scheme

Because of the potential benefits of bringing all possible kinds of information to bear on the problem
of dimensionality reduction, numerous attempts have been made to combine unsupervised with
supervised learning for that purpose. Typically, these approaches use a hybrid Iearning rule to
train a network, which then develops a reduced-dimensionality representation of the data at its
hidden layer. We have presented a general framework based on projection pursuit regression,
in which a penalty term may be added to the cost function minimized by error back propagation,
for the purpose of measuring directly the goodness of the projections [10] (see Figure 1). This

Synaptic modification based
on back-propagation rule
and the EPP learning rule
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Representation
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Figure 1: A hybrid EPP/PPR neural network (EPPNN).

emphasizes the choice of the “right” prior, as a means to improve the bias/variance tradeoff [11]

which is much more crucial in overparametrized problems. Penalty terms derived from projection
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Whale/Porpoise Discrimination

Coiflet-3/3
BB 10.5(0.3)
LDB 52.4(1.3)
Wavelet 12.6(0.5)
Quadratic 30.4(0.7)
LDA 13.9(0.7)
BB 9 11.9(0.4)
BB Daub-4 | 14.8(0.8)

Table 1: Percent classification error rate of whale porpoise discrimination using various discriminant
basis representations from a Coiflet-3 mother wavelet. The discrimination is performed from most
discriminative 3 coefficients extracted by each method.

pursuit constraints tend to be more biased towards the specific problem at hand, and therefore are
more likely to better control the variance while not inflating the bias contribution to the error.

Such an architecture which combines feature extraction and classification was found to be
superior to sequential methods of first extracting features and then classifying in several real-world
applications [10, 12, 13]

4.1 Non-linear feature extraction from wavelet representation

This sections briefly discusses an unsupervised learning rule that is combined with the supervised
learning rule (as described above). This unsupervised rule searches for multi-modality in the
projection space. Exploratory projection pursuit theory [14, 15] tells us that search for structure in
input space can be approached by a search for deviation from normal distribution of the projected
space. Furthermore, when input space is clustered, a search for deviation from normality can take
the form of search for multi-modality, since when clustered data is projected in a direction that
separates at least two clusters, it generates multi-modal projected distributions.

It has been recently shown that a variant of the Bienenstock, Cooper and Munro neuron (BCM)
[16] performs exploratory projection pursuit using a projection index that measures multi-modality
[17]. This neuron allows modeling and theoretical analysis of various visual deprivation experiments
and is in agreement with the vast experimental results on visual cortical plasticity. A network
implementation which can find several projections in parallel while retaining its computational
efficiency, was found to be applicable for extracting features from very high dimensional vector
spaces [18, 17]. This method is applied to feature extraction in the problems discussed in the next
section.

5 Mammal acoustic signal discrimination

The types of signals explored in this study are the marine mammal sounds of porpoise and sperm
whale which were recorded at a sampling rate of 25 kHz at various locations such as the Gulf of
Maine, the Mediterranean and the Caribbean sea. We consider large data files where the signal
consist intermittently of mammal sounds and background noise. Each of these files contains whale
or porpoise sounds, but not both. Several data sets of length 32768 samples corresponding ap-
proximately to 1.3 seconds, were extracted from these large files. These data sets which contained
mammal sounds mixed with background noise, were used for training and testing.
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Full discussion of the results appears in [13]. In this paper we present results from different
choices of basis functions using a discrimination measure. These were not the best results obtained
on this data (about 5%) which used a (nonlinear) discrimination based on linear combinations of
basis functions from a fixed (wavelet) basis [13]. What is of interest here, is that although the signal
is acoustic, better results were obtained with a Coiflet mother wavelet and the large variability in
results based on different basis-search approaches. These results should then be contrasted with
the active sonar results presented in the next section.

6 Backscattered sonar data discrimination

Acoustic backscattered data representations
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Figure 2: A typical signal from the data-set. Top left: Raw signal, right: Best Basis from Local
Cosine. Bottom left: Local Cosine packet, right Wavelet Packet (Symmlet-6).

This application involved an active backscatter data set of mine-like objects. The data was collected
at the Naval Surface Warfare Center (NSWC) by Gerald Dobeck. The task was to distinguish be-
tween man-made and non-man-made objects. There were six objects in the data: metal cylinder,
cone-shaped plastic object, water-filled barrel, limestone rock, granite rock, and a water-logged
wooden log. The data-set contained seven different frequency bands, however in this preliminary
study, only one frequency band, an FM sweep between 20 to 60 kHz was used. The targets were sus-
pended in a large water tank, while cylindrical objects were suspended horizontally. Measurements
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were collected in 5 degree increments on a rotating target around a vertical axis. Every second
measurement was used for testing, thus the train and test data were interleaved and both included
measurements at 10 degree increments. The signal/noise ratio was between 12-20db, where the

Backscattered data classification

Local Cosine | Symmlet-6 | Coiflet-3
BB 18.6(1.2) 33.1(1.4) | 41.1(1.4)
LDB 18.7(0.8) 40.0(1.4) | 39.9(1.6)
Wavelet 28.9(1.3) 42.7(1.8) | 41.8(1.0)
Quadratic 18.7(1.5) 29.9(1.3) | 30.3(0.8)

Table 2: Percent classification error rate of mine-like object discrimination using various discrim-
inant basis representations from a Coiflet-3 and Symmlet-6 mother wavelets and a local cosine
wavelet packet. The discrimination is performed from most discriminative 15 coefficients extracted
by each method.

noise was an accurate modeling of the bottom reverberation. It appears that there is very little
sensitivity to the noise level between these levels. Further details about the data as well as other
classification results are given elsewhere in this volume [19]. Figure 2 depicts various signal repre-
sentations of the backscattered data. Next to the raw signal at the top, a best-basis representation
based on Coifman’s algorithm [2] is shown. This basis was extracted from a local cosine packet that
is presented at the bottom left panel. A wavelet packet representation using a Symmlet-6 mother
wavelet is shown on the bottom right.

The results of the backscattered data are in Table 2. It appears that a local cosine representation
is more appropriate for this acoustic signal and several discriminant basis selection yield similar
results. These results reflect an improvement of around 3% which is due to BCM constraints and
ensemble averaging over noise injected inputs [20, 21, for implementation details]. The results are
generated assuming that false positive and false negative errors have the same weight. Surprisingly,
linear discrimination from wavelet packet representation as suggested by [9] did not yield good
results in any of the wavelet representations. This may be due to the small size of the training set
which may lead to a very sparse representation in which a small number of training patterns cause
a nonzero value for some of the wavelet basis and appear to have a high discrimination value.

It can be expected that combining information from several frequency bands will improve these
results.
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