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Bootstrapping with Noise: An Effective

Regularization Technique

YUVAL RAVIV & NATHAN INTRATOR

Bootstrap samples with noise are shown to be an effective smoothness and capacity control

technique for training feedforward networks and for other statistical methods such as

generalized additive models. It is shown that noisy bootstrap performs best in conjunction

with weight-decay regularization and ensemble averaging. The two-spiral problem, a

highly non-linear, noise-free data, is used to demonstrate these ® ndings. The combination

of noisy bootstrap and ensemble averaging is also shown useful for generalized additive

modelling, and is also demonstrated on the well-known Cleveland heart data.

KEYW ORDS: Noise injection, combining estimators, pattern classi® cation, two-spiral

problem, clinical data analysis.

1. Introduction

The bootstrap technique has become one of the major tools for producing

empirical con® dence intervals of estimated parameters or predictors (Efron &

Tibshirani, 1993). One way to view bootstrap is as a method to simulate noise

inherent in the data, and thus increase effectively the number of training patterns.

A simple bootstrap procedure amounts to sampling with return from the training

data, and constructing several training sets, all with the same size as the original

training set. Later, the variability between the estimated parameters can be

measured, and give some indication about the true variability of the model

parameters arising from the data. Furthermore, variability of the prediction, or

error bars on the prediction, can also be estimated in this way.

One variant of bootstrap involves estimation of a model of the form

y 5 f(x) 1 «

for some parametric family to which f belongs, and a noise « which is assumed to

be small with zero mean. Once an empirical function fÃ has been estimated from n

training samples, there remains a noise vector « 5 ( « 1, ¼ , « n). One can then

sample from the empirical distribution of the noise by sampling (with return) from

« i and constructing new samples of the form (x
*
i , y

*
i ), in which « i was replaced by

« *
i sampled from the above set. Clearly, this approach can be easily extended to a

Y. Raviv and N. Intrator, School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel-Aviv

University, Ramat Aviv 69978, Israel. E-mail: {yuv,nin}@math.tau.ac.il. Present address of N. Intrator,

Institute of Brain and Neural Systems, Box 1843, Brown University, Providence, RI 02912, USA.

0954± 0091/96/030355± 18 $7.50 Ó 1996 Journals Oxford Ltd

D
ow

nl
oa

de
d 

by
 [

 ]
 a

t 0
3:

16
 2

2 
Se

pt
em

be
r 

20
11

 



356 Y. Raviv & N. Intrator

smoothed bootstrap (Efron & Tibshirani, 1993) by samping from the empirical

distribution by « i rather than just sampling from the set of « i’ s. In such case, one

can increase the size of each boostrap set, since due to the noise, the different sets

are suf® ciently independent. It should be noted that if fÃ is biased, the noise vector

may be over-estimated.

For classi ® cation problems, the form

y 5 f(x 1 « )

may be more appropriate. In this case, using noise injection to the inputs during

training can improve the generalization properties of the estimator (Sietsma &

Dow, 1991). Recently, Bishop (1995) has shown that training with small amounts

of noise is locally equivalent to smoothness regularization. In this paper, we give

a different interpretation to noise added to the input during training, and view it

as a regularizing parameter that controls, in conjunction with ensemble averaging,

the capacity and the smoothness of the estimator. The major role of this noise is

to push different estimators to different local minima, and so produce a more

independent set of estimators. Best performance is then achieved by averaging over

the estimators. For this regularization, the level of the noise may be larger than the

`true’ level which can be indirectly estimated. Since we want to study the effect of

bootstrapping with noise on the smoothness of the estimator, separated from the

task of input noise estimation, we consider a highly non-linear, noise-free

classi® cation problem, and show that even in this extreme case, addition of noise

during training improves results signi® cantly.

We chose a problem that is very dif® cult for feedforward neural networks

(NNs). It is dif® cult due to the highly non-linear nature of the decision

boundaries, and the fact that these non-linearities are easier to represent in local

radially symmetric functions rather than in ridge functions such as those given by

feedforward sigmoidal functions. Since the training data are given with no noise,

it seems unreasonable to train a network with noise, but we show that even in this

case training with noise is a very effective approach for smoothing the estimator.

In addition to demonstrating our method on a different class of predictorsÐ the

generalized additive modelsÐ we also apply it to another well-known data setÐ the

Cleveland heart data (Detrano et al., 1989).

2. Theoretical Considerations

There are a number of factors that have to be applied carefully when trying to

regularize an estimator. The regularization is aimed at ® nding an optimal trade-off

between the variance and bias of the estimator (Geman et al., 1992), and for best

performance one has to utilize this decomposition of the error function. The

motivation to our approach follows from a key observation regarding the bias

variance decomposition, namely the fact that ensemble averaging does not affect

the bias portion of the error, but reduces the variance when the estimators on

which averaging is done are independent.

2.1. Bias/Variance Trade-off for Ensemble of Predictors

The classi® cation problem is to estimate a function f X (x) of observed data

characteristics x, predicting class label y, based on a given training set

X 5 {(x1, y1)}, . . . , (XL, YL)} using some measure of the estimation error on X .
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Bootstrapping with Noise 357

A good estimator will perform well not only on the training set, but also on new

validation sets which were not used during estimation.

Evaluation of the performance of the estimator is commonly done via the mean

squared error (MSE) distance by taking the expectation with respect to the

(unknown) probability distribution P of y:

E[(y 2 f X (x))2 u x, X ]

This can be decomposed into

E[(y 2 f X (x))2 u x, X ] 5 E[(y u x])2 u x, X ] 1 E[(f X (x) 2 E[y u x])2]

The ® rst term does not depend on the training data X or on the estimator f X (x);

it measures the amount of noise or variability of y given x. Hence, f can be

evaluated using

E[(f X (x) 2 E[y u ])2]

The empirical MSE of f is given by

E X [(f X (x) 2 E[y u x])2]

where E X represents expectation with respect to all possible training sets X of ® xed

size.

To see further the performance under MSE, we decompose the error to bias

and variance components to get

E X [(f X (x) 2 E[y u x)2] 5 (E X [f X (x)] 2 E[y u x])2 1 E X [(f X (x) 2 E X [fD(x)])2] (1)

The ® rst term on the right-hand side is called the bias of the estimator and the

second term is called the variance. When training on a ® xed training set X ,

reducing the bias with respect to this set may increase the variance of the estimator

and contribute to poor generalization performance. This is known as the trade-off

between variance and bias. Typically, variance is reduced by smoothing; however,

this may introduce bias (since, for example, it may blur sharp peaks). Bias is

reduced by prior knowledge. When prior knowledge is used also for smoothing, it

is likely to reduce the overall MSE of the estimator.

When training NNs, the variance arises from two terms. The ® rst term comes

from inherent data randomness and the second term comes from the non-

identi® ability of the model, namely, the fact that for a given training data, there

may be several (local) minima of the error surface.1

Consider the ensemble average fÅ of several predictors, e.g. NNs with different

random initial weights which are trained on data with added Gaussian noise:

fÅ (x ) 5
1

N O
N

i 5 1

f i (x )

These predictors are identically distributed and, thus, the variance contribution

(equation (1)) becomes (we omit x and X for clarity)

E [( fÅ 2 E [ fÅ ])2 ] 5 E F S 1

N O f i 2 E F 1

N O f i G D 2 G
5 E F S 1

N O f i D 2 G 1 S E F 1

N O f i G D 2

2 2E F 1

N O f i E F 1

N O f i G G
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358 Y. Raviv & N. Intrator

5 E F S 1

N O f i D 2 G 2 S E F 1

N O f i G D 2

(2)

The ® rst term on the right-hand side can be rewritten as

E F S 1

N O f i D 2 G 5
1

N
2 O E [ f

2
i ] 1

2

N
2 O

i , j

E [ f i f j]

and the second term gives

S E F 1

N O f i G D 2 5
1

N
2 O E [ f i ] 1

2

N
2 O

i , j

E [ f i ]E [ f j]

Plugging these equalities in equation (2) gives

E [( fÅ 2 E [ fÅ ])2 ] 5
1

N 2 O {E [ f 2
i ] 2 (E [ f i])2} 1

2

N 2 O
i , j

{E [ f i f j ] 2 E [ f i ]E [ f j ]} (3)

If the predictors { f i } are highly correlated, for example if f i 5 f j 5 f for all i , j , then

the above equation becomes

Var ( fÅ ) 5
1

N
Var( f ) 1

2

N
2

N (N 2 1)

2
Var( f ) 5 Var ( f )

namely, there is no reduction in variance 2 in this case. If the predictors are

identically distributed and independent, then the second term drops and we are

left with

Var ( fÅ ) 5
1

N
Var( f i)

Note that

E [ f i f j ] 2 E [ f i]E [ f j ] 5 E ({ f i 2 E [ f i ]}{ f j 2 E [ f j ]})

Thus, the notion of independence can be understood as independence of the

deviations of each predictor from the expected values of the predictor, which can

be replaced (due to linearity) by

E ({ f i 2 E [ fÅ ]}{ f j 2 E [ fÅ ]})

and is thus interpreted as an independence of the prediction variation around a

common mean.

The success of ensemble averaging of NNs in the past (Breiman, 1994; Hansen

& Salamon, 1990; Perrone, 1993; Wolpert, 1992) is due to the fact that NNs have

in general many local minima, and thus even with the same training set, different

local minima are found when starting from different random initial conditions.

These different local minima lead to somewhat independent predictors, and thus

the averaging can reduce the variance. When a larger set of independent networks

is needed, but no more data are available, data reuse methods can help. Bootstrap-

ping (Breiman, 1994) has been very helpful, since by resampling (with return)

from the training data, the independence of the training sets is increased, and

hence, the independence of the estimators, leading to improved ensemble results.

Smoothed bootstrap (Krogh & Hertz, 1992; Ripley, 1996) is potentially more

useful since larger sets of independent training samples can be generated. The

smoothed bootstrap approach amounts to generating larger data sets by simulating

the true noise in the data.
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Bootstrapping with Noise 359

3. The Bootstrap Ensemble with Noise Algorithm

In the bootstrap ensemble with noise (BEN), we push the idea of noise injection

further; we observe that adding noise to the inputs increases the ® rst term on the

right-hand side of equation (3), i.e. adds variance to each estimator, but, on the

other hand, decreases the contribution of the second term on the right-hand side

as it increases the independence between estimators. Instead of using the `true’

noise (estimated from the data) for bootstrap, we seek an optimal noise level which

gives the smallest contribution to the error from the sum of the two components

of the variance. It is impossible to calculate the optimal variance of the Gaussian

noise without knowing f explicitly; therefore, the value of this variance remains a

regularization term: a parameter which has to be estimated so as to minimize the

total contribution of the variance to the error. Furthermore, since the injection of

noise increases the independence between different training sets, we can use

bootstrap sets that are larger than the original training set. This does not affect the

bias (if the noise is symmetric around zero) but can reduce the variance. Note

that the bias contribution to the error is not affected by introducing the ensemble-

average estimator due to linearity of expectations.

It follows that the BEN approach has the potential of reducing the contribution

of the variance term to the total error. We thus should seek a different trade-off

point between the contribution of the variance and the bias. In other words, we are

able to use large (unbiased) networks without being affected by the large variance

associated with such networks. This observation implies that the estimation of

optimal noise levels should not be based on a single estimator performance, but

rather based on the ensemble performance. The large variance of each single

network in the ensemble can be tempered with a regularization such as weight

decay (Krogh & Hertz, 1992; Ripley, 1996), but, again, the estimation of the

optimal regularization factor should be done on the ensemble-averaged perform-

ance. Breiman (1994) and Ripley (1996) show compelling empirical evidence for

the importance of weight decay as a single network stabilizer. Our results con® rm

this fact under the BEN model.

The BEN Algorithm

· Let {(x i , y i)} be a set of training patterns for i 5 1, . . . , N .

· Let « 5 { « 1, . . . , « J }.

· Let l 5 { l 1, . . . , l I }.

· For a noise level « j estimate an optimal penalty term for weight decay l i :

Ð Fix a size K for the bootstrap sample, such that K @ N (we used K 5 10N ).

Ð Let s 1, s 2 , . . . , s K be a set of indices, chosen from a uniform distribution,

s i , U (1, N ).

Ð For a « j , create a noisy bootstrap resample of the training set inputs:

{ x s i 1 z i } i 5 1,...,K and the corresponding resampled outputs { y s i
} i 5 1,...,K where

z i is a vector whose components are N (0, « 2
j ).

Ð Train several networks with the noisy samples using weight decay l 1, . . . , l I .

Ð Generate an ensemble average of the set of networks.

Ð Choose via cross-validation or a test set, the optimal weight decay l .

· Repeat the process for the new choice of noise « j until there is no improvement

in prediction.

In the simple case, the same noise level is used for each dimension. This is suitable
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360 Y. Raviv & N. Intrator

Figure 1. The two-spirals training data (left). Training points with noise Ð standard

deviation, SD 5 0.3 (right). As can be seen, the noise level that contaminates the data

causes objects to cross the virtual boundary de® ned by the data, i.e. the noise leads

to wrong class labelling for the training data. This reduces performance of single

predictors, but the added independence between the predictors leads to improved

ensemble performance.

for problems in which each of the dimensions are on the same scale, or, more

precisely, when the noise distribution is similar in different data dimensions. When

all covariates have the same interpretation, e.g. similar measurements taken at

different time steps, or when dealing with pixel data, such noise assumption is

adequate; however, when the noise is non-homogeneous in space, has a non-

diagonal covariance matrix or when different dimensions represent completely

different measurements, it is best to estimate the different noise levels in each

dimension separately. When this is too costly, or there is insuf® cient data for

robust estimation, a quick solution is to sphere the data by setting the variance in

each dimension to be the same and with zero mean.

3.1. The Two-spirals Problem

The `two-spirals’ problem consists of a training set with 194 X± Y values, half of

which are to produce a 1 output and half a 0 output. These training posts are

arranged in two interlocking spirals that go around the origin three times, as shown

in Figure 1.

The problem was proposed to the CMU benchmark by Alexis Wieland of

MITRE Corporation (see Appendix A for a description of the problem). It appears

to be extremely hard for backpropogation networks due to its high non-linearity.

It is easy to see that the two-dimensional points of the spirals could not be

separated by a small combination of linear separators. Lang and Witbrock (1988)

proposed a 2± 5 ± 5± 5 ± 1 network with short-cuts using 138 weights. They used a

variant of the quick-prop learning algorithm (Fahlman, 1989) with weight decay.

They claimed that the problem could not be solved with simpler architecture (i.e.

less layers or without short-cuts). Their result on the same data set seems to give

poor generalization results. Baum and Lang (1991) demonstrated that there are

many sets of weights that would cause a 2± 50± 1 network to be consistent with the

training set; however, the single-layer feedforward architecture trained with error

backpropagation was unable to ® nd any of them when starting with random initial

weights.
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Bootstrapping with Noise 361

Fahlman and Lebiere (1990) used the cascade-correlation architecture for this

problem. They got better results, but still little `spiralness’ . Recently, Deffuant

(1995) suggested the `perceptron membrane’ method that uses piecewise linear

surfaces as discriminators, and applied it to the spiral problem. He used 29

perceptrons but had dif® culties capturing the structure of the spirals due to the

piecewise linearity of his decision boundaries.

The two-spiral problem was chosen for this study because it is a hard problem

for backpropagation networks due to high non-linearity, it is a noise-free problem,

and the generalization performance of different predictors can be easily visualized

on the two-dimensional plane.

In Section 5, we demonstrate our method on another well-known machine-

learning problem, the prediction of coronary artery disease based on the Cleveland

heart data, which reside in the University of California at Irvine (UCI) machine-

learning repository (Murphy & Aha, 1992).

4. Results on the Spiral Data

4.1. Feedforward Network Architecture

We used Ripley’ s (1996) S-Plus NNET package, which implements backpropaga-

tion. The minimization criterion is MSE with weight-decay regularization of the

form

E 5 O
p

u t p 2 y p u 2 1 l O
i, j

w
2
i, j

where t p is the target and y p the output for the p th example pattern. w i , j are the

weights and l is a parameter that controls the amount of weight decay regulariza-

tion.

The network architecture was 2± 30± 1 (two inputs, 30 hidden units and one

output). The ® rst and last layers were fully connected to the hidden layer giving

a total of 121 weights. The transfer function of the hidden and output units

was the logistic sigmoidal function. The initial weights were random from

U ( 2 0.7, 0.7). It should be noted here that although we are training 5± 40

networks, the effective number of parameters is not more (and probably even less)

than the number of parameters for a single network. This is because we do not

have the ¯ exibility to estimate an optimal combination of predictors, but rather

take the simple average of them.

Baseline results were obtained by training 40 networks without any regulariza-

tion. We derived then an average predictor whose output is the mean of all the 40

nets’ outputs (Figure 2 (top left)). The predictor had no smoothness constraints

and therefore found relatively linear boundaries (this can also be seen in Figure 3

(top left), where a ® ve-net ensemble average is taken).

4.1.1. Effect of training with noise on a ¯ exible predictor. We trained 30 hidden-unit

networks using the bootstrap method (as described in Section 3), with noise SD

ranging from « 5 0 to « 5 0.8, and K 5 10N . Figure 3 demonstrates the effect of

noise on the predictor. Each image is a threshold output of a ® ve-net ensemble

average predictor. Noise level goes from « 5 0 in the upper left image through

« 5 0.8 in the lower right. The classi® cation results are drawn on a uniform grid

of 100 3 100 points (namely, a much larger test set) so as to get a clear view of the
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362 Y. Raviv & N. Intrator

Figure 2. Summary of 40-net ensemble results. Top left: No constraints (no weight

decay or noise). Top right: Optimal weight decay ( l 5 3e 2 4) and no noise. Bottom

left: Optimal noise (Gaussian SD 5 0.35) and zero weight decay. Bottom right:

Optimal noise and optimal weight decay. The classi® cation threshold in this ® gure

and the following ones is 0.5.

classi® cation boundaries de® ned by the classi® er. It can be seen that for small

noise levels « , the ensemble average predictor is unable to ® nd any smooth

structure in the data and merely over-® ts to the training data. For moderate levels

of noise, a better structure can be found, and for large levels of the noise, the data

are so corrupted that again no structure can be found. The optimal noise SD was

around « 5 0.35.

4.1.2. Effect of weight-decay regularization. Weight-decay regularization involves

® nding an optimal parameter l that controls the amount of weight decay versus the

bias of the net. We trained networks with different l ’ s and found that optimal

values were around l 5 3e 2 4. When comparing the effect of averaging alone with

the effect of regularization via weight decay with no averaging, it turns out that the

bootstrap method (averaged over different initial network weights) has better

generalization properties than the weight-decay method. The weight-decay regu-

larization does not generalize well on the outer points, where the training data are

more sparse.

4.1.3. Applying bootstrap to networks with weight decay. Our best results were

obtained when applying the BEN method to networks with optimal weight-decay

regularization. Figure 4 demonstrates the effect of bootstrap with noise on the

performance of a ® ve-net ensemble trained with optimal weight decay. The effect

of ensemble averaging over networks that were trained with different random

initial conditions only is demonstrated in the top left image which represents no
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Bootstrapping with Noise 363

Figure 3. Effect of training with different levels of Gaussian noise. Ensembles of ® ve

networks with no weight decay and a varying degree of noise (top left is zero noise,

bottom right is noise with SD 5 0.8).

noise during training. Optimal noise values are similar to those obtained when

training with no weight decay, and are surprisingly high (see Figure 1 (right) for

the corruption of noise to the data). Although the results look better than those

with no weight decay, in the sense that the boundaries look smoother, they can still

be improved by averaging on a larger ensemble of networks. This is demonstrated

in the next section (Figure 2).

The effect of averaging is summarized in Figure 2. It can be seen that the

40-net ensemble averaging results, with no weight decay and no noise are better

than the corresponding ones when an ensemble of ® ve nets is used (Figure 3).

Similarly, the results for an ensemble of 40 networks trained with optimal weight

decay with no noise are better than the corresponding ® ve-net ensemble (Figure 4

(top left)). Finally, the combination of weight decay, noise and 40-net ensemble

clearly gives the best results (Figure 2 (bottom right)). Thus, while earlier work

suggested that a single-layer feedforward network is not capable of capturing the

structure in the spiral data, it is evident that a network ensemble with strong

control over its capacity (via weight decay) which is trained with heavy noise can

discover the highly non-linear structure of the problem.
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364 Y. Raviv & N. Intrator

Figure 4. Effect of training with different noise levels on ® ve-net ensemble networks

with weight decay. Noise levels are as before, 0 ± 0.8 from top left to bottom right.

4.2. Generalized Additive Models

In this section, we take a different approach. Instead of analyzing a method that

has a hard time with the spiral data, we study a model that is very natural for it.

We apply bootstrapping to a generalized additive model (GAM) (Hastie &

Tibshirani, 1986, 1990) with a polynomial ® t of degree 1 on the same data. We

had to optimize the degree of the polynomial and the span degree, which

determines the smoothness and the degree of locality of the estimation.3 Due to

these ef® cient controls, this ¯ exible model is much more appropriate for the spiral

data. Furthermore, this algorithm provides a unique model, i.e. for each set of

parameters, there is no variability in the produced models as opposed to the

variability generated by the random initial weights of a feedforward network. All of

this suggests that there should be no reason to bootstrap with noise, since the

smoothness and locality already can control the smoothness of the boundary

surface, and there seems no reason to corrupt the data with unfamiliar noise.

Moreover, there is no need to average over several models since there is no

variability due to different local minima of the resulting model.

It is thus surprising that even in this extreme case, bootstrapping with noise

improved the generalization results. Figure 5 depicts the results for various degrees

of noise added during training. It is clear that the bootstrap improves results, and,

furthermore, small values of the noise sharpen the result.
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Bootstrapping with Noise 365

Figure 5. Model estimation using GAM with bootstrap. Ten GAM predictors are

averaged using bootstrap samples with varying degree of noise. There is no noise (and

thus no averaging) at the top left result.

5. Cleveland Heart Data

In this section, we analyze the Cleveland heart data ( Detrano et al., 1989),

donated by Dr Robert Detrano4 to the UCI machine-learning repository (Murphy

& Aha, 1992). This data concerns diagnosis of coronary artery disease and has

been used in the past by statisticians and by the machine-learning community

(Brazdil & Henery, 1994; Detrano et al., 1989; Gennari et al., 1988; Stensmo,

1995). Further data and pre-processing details are given in Appendix B. The

pre-processing, which included removal of missing values, sphering the data and

creating dummy variables to replace categorial variables, resulted in a dramatic

improvement over past results. Moreover, it revealed that in the new data

representation, the structure is very linear since logistic regression was able to

obtain a nine-fold cross-validation error of about 15.2%. A similar error was

obtained by using extensive pre-processing and temporal-difference reinforcement

learning (Stensmo, 1995). Both results are consistent with our feedfoward archi-

tecture results with no noise injection and are (as far as we know) the current best

results on this data.5

It is thus a very challenging problem to NNs as deviation from linear structure

is very small,6 and highly non-linear estimators such as CART, radial-basis

functions and KNN did not do so well on this data (Brazdil & Henery, 1994). The

problem is complementary to the spiral problem that was considered before; there,

we attempted to improve performance on a highly non-linear data which required

a large capacity network, while here we try to improve performance on a relatively

linear problem using a small capacity network. In both cases, we show that noise

cannot be replaced by network size or weight-decay regularization and is essential

for good performance.

D
ow

nl
oa

de
d 

by
 [

 ]
 a

t 0
3:

16
 2

2 
Se

pt
em

be
r 

20
11

 



366 Y. Raviv & N. Intrator

Figure 6. Results from logistic regression and from feedforward networks with three

hidden units and varying degrees of weight decay. Left: Per cent classi® cation error.

Right: ROC values. All results were obtained with nine-fold cross-validation on the

Cleveland heart data. In both graphs, the ® rst boxplot from the left represents the

generalized linear model results.

Figure 6 summarizes model comparison of results between logistic regression

and nine-fold cross-validation,7 with three hidden-unit networks based on Ripley’ s

NNET package described in Section 4.1. Training was stopped after 400 epochs

or earlier, based on Ripley’ s conditions. The network results were obtained by

training ® ve networks on each of the nine-fold cross-validation sets and averaging

their results. Thus, each classi® cation error is generated out of 45 networks. In

each of the following ® gures, the statistics were obtained from 12± 20 similar runs

differing in random initial conditions and choice of cross-validation sets from the

data. The cross-validation code is based on the public domain version of Tibshi-

rani in Statlib.8 The results are summarized by boxplots9 (Hoaglin et al., 1983).

Each boxplot is based on 500± 900 single network runs. As the ratio between the

two classes is different than one, classi® cation results are not a very robust measure

for model comparison, since they are based on a single classi® cation threshold. For

example, if one class represents only 10% of the data, then setting up the threshold

to 1 will result in a trivial classi ® er that will produce zero regardless of the input

and will have only 10% error. The receiver-operating characteristic (ROC) (Good-

enough et al., 1974; Hanley & McNeil, 1982) is frequently used in such model

comparisons, especially in clinical data (Henderson, 1993). This measure has been

used by the contributor of the data (Detrano, 1989) and in assessing neural

network performance on other heart disease data (Lippmann et al., 1995).

Figure 6 implies that the performance of NNs (without noise injection) as

measured by error rate and ROC values are slightly worse (not statistically

signi® cant) compared with logistic regression, and cannot be improved by weight-

decay regularization alone.

Figure 7 shows the effect of noise injection for various levels of weight decay

for an over-capacity architecture of nine hidden units. Noise levels in all the

following graphs represent the SD of the zero-mean Gaussian noise. Although

noise injection produces signi® cant improvement, the absolute values are sub-

optimal since the architecture is too large. Note, however, that the ROC values for

the 0.75 weight decay net are the highest compared with logistic regression
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368 Y. Raviv & N. Intrator

Figure 8. The effect of noise injection is diminished when no weight decay is used

(compare with Figure 9). An optimal architecture of three hidden units cannot

produce good results without weight decay. Left: Classi® cation error. Right: ROC

values.

(GLM 2 ROC 5 0.903 6 0.001, NNET 2 ROC 5 0.91 6 0.002; t 5 1.766, degrees

of freedom (df) 5 21, P , 0.045; Z 5 1.691, P , 0.045) or with the optimal three

hidden-unit network. We have been using both the t-statistic (Hogg & Craig,

1970) and the Z-statistic of the Wilcoxon test (Lehmann, 1975) which uses a

non-parametric rank to test the difference in the medians, as it is more robust to

outliers. The ROC results suggest that the classi® cation error of this model could

be improved, possibly by averaging over a larger number of networks. To see the

performance of noise injection alone, we present results of noise injection into zero

weight-decay, optimal architecture (Figure 8) and show that even under a low-

capacity architecture, weight decay is essential to stabilize the system.

Optimal results are presented in Figure 9. With optimal weight decay and

architecture, addition of noise achieves results which are better than any other

network, and better than logistic regression. Mean error of logistic regression was

15.27 6 0.18, mean error for zero-noise net was 15.07 6 0.13 and mean error for

noise with SD 5 0.3 was 14.56 6 0.22. The difference between the optimal neural

network and logistic regression is statistically signi® cant (t 5 2.196, df 5 26,

Figure 9. Results for the optimal architecture network. Left: Classi® cation error.

Right: ROC values. Noise injection is helpful and overall performance is optimal.
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Bootstrapping with Noise 369

P , 0.018; Z 5 2.14, P , 0.016) and the difference to zero noise is signi® cant as

well (t 5 2.045, df 5 27, P , 0.025; Z 5 2.029, P , 0.021). To our knowledge,

these are the best results on the Cleveland heart data.

6. Discussion

The motivation to our approach comes from a key observation regarding the

bias/variance decomposition of prediction error, namely the fact that ensemble

averaging does not affect the bias portion of the error, but reduces the variance,

when the estimators on which averaging is done are independent. The level of

noise affects the independency between the training sets, and thus the relative

improvement of ensemble averaging. However, the level of noise also affects the

quality of each predictor separately, increasing its variance by increasing the

variability in the data. Thus, there should be an optimal level of the noise (it may

not correspond to the true noise), which leads to optimal ensemble performance.

This performance can be further improved if the variance of individual networks

can be tempered, e.g. with weight decay.

We have demonstrated the effect of noise injection on prediction in three

different cases. (i) Highly non-linear (spiral) data, using a non-appropriate model

(as the data are almost radially symmetric and the neural net is not). This required

the use of an ensemble of high capacity single predictors and thus made the

regularization task challenging. It was shown that the excess variance of high

capacity models could only be effectively trimmed by a combination of all three

components: weight decay, noise injection and ensemble averaging. (ii) Highly

non-linear (spiral) data with essentially the perfect model for it (GAM with locally

linear units). Even in this case, where regularization provides the perfect bias to the

model, performance could be improved by the combination. (iii) A highly linear

problem, where practically any network has excess capacity. This case is a

representative of a family of clinical data sets, in which (linear) variable selection

was applied to highly dimensional data and resulted in a highly linear low-

dimensional data structure. It was thus challenging to be able to show that the

BEN algorithm is useful in this case, and can lead to improved classi ® cation

results. Performance was also evaluated based on the ROC measure, as it is a

standard model comparison tool for clinical data analysis.

The theoretical analysis suggests that it is best to start with a very ¯ exible

function approximation technique (e.g. a feedforward network with a large number

of hidden units) and then control its capacity and smoothness using noise and

averaging. Our conclusions are not restricted to arti® cial neural network esti-

mation. We show that similar conclusions can be obtained when using a highly

¯ exible GAM (Hastie & Tibshirani, 1986).
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Notes

1. An example of an identi® able model is (logistic) regression.

2. Where Var( f ) is de® ned by E X [( f X (x ) 2 E X [ f X ( x)])
2
].
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370 Y. Raviv & N. Intrator

3. In this case, the model amounts to a sum of locally linear functions around each of the training

samples.

4. VA Medical Center, Long Beach and Cleveland Clinic Foundation.

5. Recent best result of 23.1% on non-normalized data was obtained by a company that provides

classi® cation with its own proprietary software (UDM, 1996).

6. This is a classical problem in clinical data in which variable selection was done by a linear method

and therefore the data contains mostly variables with linear structure.

7. This is a standard use; see, for example, results under the STATLOG ESPRIT project (Brazdil &

Henery, 1994).

8. http://www.stat.cmu.edu.

9. To read the boxplot: the white line in the middle of the box represents the median of the

distribution; the grey box represents the inter-quartile range such that the bottom of the box is the

® rst quartile and the top is the third quartile; the dashed line and its terminating line represent plus

and minus 1.5 inter-quartile distance from the median; points lying outside this range are

considered outliers, each such point is represented by a whisker.

10. Can be obtained from Murphy and Aha (1992).
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Appendix A: The Spiral Data

The two-dimensional spiral data10 (Lang & Witbrock, 1988) are given by a vector

(x i , y i ) de® ned by:

x i 5 r i cos ( a i 1 k p /2), y i 5 r i sin ( a i 1 k p /2) (A1)

where

a i 5 p i /16, r i 5 0.5 1 i /16, i 5 0, . . . , 97 (A2)

and k 5 1 for one class and 3 for the other class.

Appendix B: Details and Pre-processing of the Cleveland Heart Data

The data in the UCI repository contain 13 variables out of about 70 that were in

the original study. The task is to predict the existence of a coronary artery disease

(CAD) based on the measurements. Data for 303 patients were obtained; 44% of

the patients were diagnosed with CAD. The variable attributes are:

(1) Age

(2) Sex

(3) Chest pain type (4 valuesÐ converted to 3 binary variables)

(4) Resting blood pressure

(5) Serum cholesterol in mg dl 2 1

(6) Fasting blood sugar . 120 mg dl 2 1

(7) Resting electrocardiographic results (values 0, 1, 2)

(8) Maximum heart rate achieved

(9) Exercise-induced angina

(10) Oldpeak 5 ST depression induced by exercise relative to rest
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(11) The slope of the peak exercise ST segment (converted to 2 binary variables)

(12) Number of major vessels (0± 3) coloured by ¯ ouroscopy (converted to 3

binary variables)

(13) Thal: 3 5 normal; 6 5 ® xed defect; 7 5 reversible defect (converted to 2

binary variables)

We have added dummy variables to replace the categorial and ordinal variables for

variables 3, 11, 12 and 13 and therefore worked with 19 independent variables.

The continuous variables 1, 4, 5, 8 and 10 were sphered (standardized) by setting

the mean of each of the variables to zero with unit variance. This step was

necessary as the data contain variables that are on different scales, such as age and

blood pressure. The original data contain 76 attributes and have many missing

values. The data used in most of the benchmarks have only 13 attributes and a few

missing values which we simply replaced by their unconditional expectations. The

addition of dummy variables and data sphering had a dramatic effect on the

classi® cation results.
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