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1 Introduction

When parameter estimation is based on a set of training patterns with size that is of the order of
the number of free parameters, estimation may become very unreliable. Until recently, estimation
in such cases had sounded unrealistic, but it has now been accepted that such estimation is possible
under certain conditions. For example, linear discriminant analysis (Fisher, 1936) requires some
adjustment when the input dimensionality is large (Buckheit and Donoho, 1995) to account for
the added variability of the covariance matrices. In simple terms, innovative ways to reduce the
variance portion of the error are requried, as well as methods to impose (reasonable) bias.

One fundamental assumption concerns the ‘true’ dimensionality of the data. Although the data
may be represented in a high-dimensional space, it is often the case that the actual dimensionality
is much smaller. Clearly, a dimensionality reduction method which does not ‘throw the baby out
with the bath water’, but retains important information in the data, leads to smaller number of
parameters for the required prediction and thus may be more robust.

This chapter reviews several ways to robustify estimation and prediction in many-parameter
models. We start with a short review of the bias/variance dilemma and then address separately
ways to control the variance portion of the error and the bias. A central issue in variance control
methods is that of ensemble averaging. We shall expand on this to present methods for extracting
additional information from ensembles of experts by exploiting the variability in responses for
estimating the confidence of a certain group of experts. The control or introduction of bias into the
model leads naturally to dimensionality reduction. We make this connection and discuss methods
for hybrid dimension reduction and classification, and we spend some time on dimension reduction
methods. Throughout, we demonstrate the methods with real-world applications.

2 The Variance-Bias Dilemma

The motivation of our approach follows from a key observation regarding the bias/variance decom-
position, namely the fact that ensemble averaging does not affect the bias portion of the error, but
reduces the variance, when the estimators on which averaging is done are independent.

The classification problem is to estimate a function fp(z) of observed data characteristics z,
for predicting a class label y, based on a given training set D = {(#1,¥1),...,(zL,yr)}, using some
measure of the estimation error on D. A good estimator will perform well not only on the training
set, but also on new wvalidation sets which were not used during estimation.

Evaluation of the performance of the estimator is commonly done via the mean squared error
distance (MSE) by taking the expectation with respect to the (unknown) probability distribution
P of y:

El(y — fo())’|z, D).

This can be decomposed into
El(y - fo(z))*|2, D] = E[(y — Elylz])’|z, D) + E[(fp(z) — Ely|z])*].

The first term typically depends on neither the training data D nor the estimator fp(z), it measures
the amount of noise or variability of y given . Hence f can be evaluated using

E((fp(2) - Elylz])’].
The empirical mean squared error of f is given by

Ep[(fp(z) — Elylz])?,
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where Ep represents expectation with respect to all possible training sets D of fixed size.
To investigate further the MSE performance we decompose the error into bias and variance
components (Geman et al., 1992) to obtain

Ep[(fp(z) - Elylz))*] = (Eplfp(2)] - Elylz])* + Ep|(fp(z) - Ep[fp(z)])’]- (1)

The first term on the right-hand side is called the bias term (strictly, the squared bias) of the
estimator and the second term is called the variance term. When training on a fixed training set D,
reducing the bias with respect to this set may increase the variance of the estimator and contribute
to poor generalisation performance. This is known as the trade-off between variance and bias.
Typically, variance is reduced by smoothing, but this may introduce bias since, for example, it may
blur sharp peaks. Bias is reduced by incorporating prior knowledge. When prior knowledge is used
also for smoothing, it is likely to reduce the overall MSE of the estimator.

When training neural networks such as multilayer perceptrons, the variance arises from two
terms. The first term comes from inherent data randomness and the second term arises from the
non-identifiability of the model, in that, for a given training dataset, there may be several local
minima of the error surface.

Consider the ensemble average f of @ predictors, which in our case can be thought of as neural
networks with different random initial weights which are trained on data with added Gaussian
TIoise:

_ 12
f(z) = agﬁ(w)-

These predictors are identically distributed, and thus the variance contribution to equation (1)
becomes

BI(F - B = Bl(g Y fi- Blg Y £
— BlG X £+ (Blg X £) - 265 X £BIG 3 4]
= BlG Y17~ (Fig X £)s (2)
we omit mention of z and D for clarity. The first term in (2) can be rewritten as
Bl Y 1= g LB+ o > Bl
and the second term gives

(B £) = = (812 + 25 Y BIFIELS
Q Q Q&
Plugging these equalities into (2) gives

BU(F -] = gz SAEU - (BUA) Y+ G SABUAS) - BB, ()

1<
Set
v = Var(f;) + (Q — 1)max; ;(E[fi f;] — E[fi]E[fi])-
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It follows that!

1 - 1

aVar(fi) < Var(f) < 57 < max Var(f;). (4)
This analysis suggests a simple extrapolation to large values of @) by giving an upper bound of
1/Q~ to the variance behaviour under large network-ensembles from small-size ensembles (Naftaly

et al., 1997). Note that

E[f:f;] - EIfB(f}) = E({f: - BLIEIMS, - BIf]}).

Thus, the notion of independence can be understood as independence of the deviations of each
predictor from the expected value of the predictor, which can be replaced, because of linearity, by

E({f: - EIfIHS; - BIY),

and is thus interpreted as an indication of the prediction variation around a common mean.

3 Variance Control via Various Ensemble Averaging Methods

The success of ensemble averaging of neural networks in the past (Hansen and Salamon, 1990;
Wolpert, 1992; Breiman, 1996; Perrone, 1993) is due to the fact that that error surfaces used to
estimate the weights (parameters) of neural networks have in general many local minima, and thus,
even with the same training set, different local minima are found when starting from different
random initial estimates. These different local minima lead to somewhat independent predictors,
and thus the averaging can reduce the variance. When a larger set of independent networks is
needed but no more data are available, data reuse methods can be of help. Bootstrapping (Breiman,
1996) has been very helpful, since, by resampling from the training data without replacement, the
degree of independence among the training sets, and hence among the resulting sets of estimators,
is increased, leading to improved ensemble results. Smoothed bootstrap (Efron and Tibshirani,
1993) is potentially more useful since a wider range of sets of independent training samples can be
generated. The smoothed bootstrap approach amounts to generating larger datasets by simulating
the true noise in the data. The next section demonstrates what can be done with networks trained
on the same data, and the following section demonstrates ways to increase the independence between
networks and associated considerations.

3.1 Exhaustive training

The analysis presented in Section 2 suggests that training an ensemble of predictors should be done
in a different way from training single predictors. This is because an ensemble of predictors has a
lower overall bias, and thus the optimal trade-off between variance and bias should correspond to
a lower level of bias so as to balance the contribution to error from the lower variance. In neural
networks, trained by methods such as iterative gradient descent, this is achieved by stopping the
training process at a later point, thus overfitting the individual training dataset somewhat, thereby
leading to lower bias but higher variance. Naftaly et al. (1997) have recently demostrated the
effect of training on single and ensemble errors, using the well known sun-spots data (Murphy and
Aha, 1992). After giving some technical details, we briefly review their results. For full details

'We use the fact that ab < <4 thus, E[f:f;] — E[f:]ELfi] = E({f.' — BlfilHfi - E[fj]}) < max; Var(f:).
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and comparison with other approaches see (Naftaly et al., 1997). As in (Weigend et al., 1990),
feed-forward, simple-recurrent (Elman and Zipser, 1988) networks with 4 sigmoidal hidden units
were used with data from 12 consecutive time points as inputs. In other words, the neural network
was used as a nonlinear predictor of the number of sunspots in a given month, using the data from
the 12 previous months as covariates/predictors. The prediction error was measured according to
the average relative variance (ARV). Training was done via the error back-propagation algorithm

ARV as a function of ensemble size and training time
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Figure 1: ARV vs. training time in kilo epochs (KE) for the sun-spots data (From (Naftaly et al.,
1997)). The curves are shown for different choices of ensemble sizes: Q = 1,2,4,10, 20 from top to
bottom. The lowest curve is the extrapolation to Q — oo (See (Naftaly et al., 1997).) Left: Results
for a cross-validation set of 35 points. Right: Results on a test set. Note the difference in minimum

error between a single predictor and an ensemble and the shallower curve as ), the ensemble size,
increases.

(Rumelhart et al., 1986) with a fixed learning rate of 0.003. A validation set containing 35 randomly
chosen points was left out during training to serve for performance validation. The only difference

between the members of the ensemble of networks was that different sets of weights were used to
intialise the training algorithm.

3.2 Estimating the variance reduction for large ensembles

Naftaly et al. (1997) presented a very simple way of estimating what the variance portion of
the MSE will be for large ensemble sizes, based on the performance of small ensemble sizes: see
Section 2. Figure 1 depicts results from (Naftaly et al., 1997) based on the validation set (Left) and
on the test set (Right). Values of ARV are shown as a function of the number of training epochs.
The highest curve in each figure corresponds to ) = 1, i.e. the case of single networks. Below it
appear the curves of Q) = 2,4, 10, 20, followed by the extrapolation to ¢ — oco. The extrapolation
over ensemble size is demonstrated in Fig. 2, where ARV values obtained for training time ¢t = 70
and t = 140 KE for the test set are depicted as a function of % It is quite clear that a linear
extrapolation is very satisfactory.

The amount of variance due to initial conditions can be found by subtracting the ) — oo result
from that for @ = 1 (Fig. 2). Although this variance is due to choice of initialising estimates and
not to different training sets, it does increase with time, as would be expected from the variance
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Linear extrapolation of Error vs. 1/Q
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Figure 2: Extrapolation method used for extracting the @ — oo prediction (From (Naftaly et al.,
1997)). The results for different @ at two different training periods, ¢ = 70 (top) and 140KE
(bottom), can be extrapolated by a linear regression in 1/Q.

due to different training sets.

3.3 Noise injection

In the previous section we have emphasised the reduction in the variance portion of the error
resulting from ensemble averaging. This reduction was a result of the independence between the
errors made by different predictors. While the use of initial random weights may lead to some
independence, training on different datasets improves the independence even further. Bootstrapping
(Breiman, 1996) is most appropriate for small datasets since, by resampling with replacement from
the training data, the independence between the training sets is increased, yet each predictor has
more than a 1/Q fraction of the training set on which to train. Smoothed bootstrap (Efron and
Tibshirani, 1993) is potentially more useful since larger sets of independent training samples can be
generated. The smoothed bootstrap approach amounts to generating larger datasets by simulating
the true noise in the data. In this section, we demonstrate that training with added noise that is
more variable than the true data-noise, and which increases the variance of individual predictors,
can still be helpful, as it also increases the degree of independence between the training sets and,
therefore, the degree of independence between predictors. A simple bootstrap procedure amounts
to sampling with replacement from the training data and constructing several training sets, all of
the same size as the original training set. Later, the variability between the sets of estimated
parameters can be measured, and gives some indication about the true variability of the estimates
of model parameters computed from the orginal data. Furthermore, variability or error-bars of the
predictions can also be estimated in this way.
One version of bootstrap involves estimation of a model of the form

y=f(z)+e (3)

for some parametric family to which f belongs, and a noise variable ¢ which is assumed to have
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small variance and zero mean. An estimate f of f is obtained from n training samples, leading
to fitted residuals € = (é,...,€,). One can then sample n times with replacement from the ¢;,
giving € = (€f,...,€), and construct new samples of the form (z;,y’), in which ¢; is replaced
by € sampled from the above set. Clearly, this approach can be easily extended to a smoothed
bootstrap version (Efron and Tibshirani, 1993). In such a case, one can increase the size of each
bootstrap set, since because of the noise the different sets are sufficiently independent. It should
be noted that, if f is biased, the noise variance may be over estimated.

For classification problems, the form

y:f(w-l'ﬁ); (6)

may be more appropriate. In this case, applying noise injection to the inputs during training, one
can improve the generalisation properties of the estimator (Sietsma and Dow, 1991). Recently,
Bishop has shown that training with small amounts of noise is locally equivalent to regularisation
(Bishop, 1995). Here, we give a different interpretation of the addition of noise to the inputs
during training, and view it as a regularising parameter that controls, in conjunction with ensemble
averaging, the capacity and the smoothness of the estimator. The major role of this noise is to
push different estimators to different local minima and thereby produce a more independent set of
estimators. Best performance is then achieved by averaging the estimators. For this regularisation,
the level of the noise may be larger than the ‘true’level which can be indirectly estimated. Since we
want to study the effect of bootstrapping with noise on the smoothness of the estimator, separately
from the task of input noise estimation, we consider a highly nonlinear, noise-free classification
problem, and show that, even in this extreme case, addition of noise during training improves
results significantly.

We chose a problem that is very difficult for feed-forward neural networks to deal with. It is
difficult because of the highly nonlinear nature of the decision boundaries, and the fact that these
nonlinearities are easier to represent in terms of local radially symmetric functions rather than
ridge functions such as those given by feed-forward sigmoidal functions. Since the training data are
given with no noise, it seems unreasonable to train a network with noise, but we show that, even
in this case, training with noise is a very effective approach for smoothing the estimator.

In the bootstrap ensemble with noise (BEN) (Raviv and Intrator, 1996), we push the idea of
noise injection further. We observe that adding noise to the inputs increases the first term on the
right-hand side of (3), in that it adds variance to each estimator, but it decreases the contribution
of the second term as it increases the degree of independence between estimators. Instead of using
the ‘true’ noise, estimated from the data, for bootstrap, we seek an optimal noise level which
gives smallest contribution to the error from the sum of the two components of the variance. It
is impossible to calculate the optimal variance of the Gaussian noise without knowing f explicitly,
and therefore the value of this variance remains a regularisation term, a parameter which has to be
estimated so as to minimise the total contribution of the variance term to the total error measure.
Furthermore, since the injection of noise increases the degree of independence between different
training sets, we can use bootstrap samples that are larger than the original training set. This does
not affect the bias, if the noise is symmetric around zero, but it can reduce the variance. Note that
the bias contribution to the error is not affected by introducing the ensemble-average estimator,
because of the linearity of the expectation operator.

It follows that the BEN approach has the potential to reduce the contribution of the variance
term to the total error. We should therefore seek a different level of trade-off between the contri-
bution of variance and bias. In other words, we are able to use large (unbiased) networks without
being affected by the large variance associated with such networks. This observation implies that
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the estimation of optimal noise levels should not be based on the performance of a single estimator,
but rather based on the ensemble performance. The large variance of each single network in the
ensemble can be tempered with a regularisation term such as weight decay (Krogh and Hertz, 1992;
Ripley, 1996), but again the estimation of the optimal regularisation factor should be based on the
ensemble-averaged performance. Breiman (Breiman, 1996) and Ripley (Ripley, 1996) present com-
pelling empirical evidence of the importance of weight decay as a single network stabiliser. Our
results confirm this fact under the BEN model. When no noise is injected, it was found that the
non-regularised ensembles perform better (Taniguchi and Tresp, 1997).

The BEN algorithm
Let {(z;,y:)} be a set of training patterns fori =1,..., N.

Let e = {e1,...,€5}.

Let A= {Aq,..., Ar}.
e For a noise level ¢; estimate an optimal penalty term for weight decay A;:

— Fix a size K for the bootstrap sample, such that K > N (we used K = 10N).

— Let s1, 89,...,8K be a set of indices, each chosen independently at random from
{1,...,N}.

— Create a noisy bootstrap re-sample of the training set inputs, of the form
{zs; + (i}i=1,.. x and the corresponding re-sampled outputs {y,; }i=1,.. x, where
¢i is a vector whose components are N (0, e?)

— Train several networks with the noisy samples using weight decay parameters
Ay AL

— Generate an ensemble average of the resulting set of networks.

— Choose the optimal weight decay parameter A via cross-validation or a test set.

e Repeat the process for a new choice of noise ¢; until there is no improvement in
prediction.

In the simplest version, the same noise level is used for each input dimension. This is suitable
for problems in which all of the inputs are on the same scale, or, more precisely, when the noise
distributions are similar in the different data dimensions. When all covariates have the same
interpretation, e.g. similar measurements taken at different time steps, or when dealing with pixel
data, such a noise assumption is adequate. However, when the noise is non-homogeneous in space or
has a non-diagonal covariance matrix, or when different dimensions represent completely different
measurements, it is best to estimate the different noise levels in each dimension separately. When
this is too costly, or there are insufficient data for robust estimation, a quick solution is to sphere the
data, that is, transform the variables so that the sample covariance matrix is the identity matrix.

3.3.1 The Two-Spirals Problem

The following two-spirals problem was chosen for the demonstration of the influence of added noise
because (a) it is a hard problem for back-propagation networks because of its intrinsic high nonlin-
earity and radial symmetry, (b) it is a noise-free problem, and (c) the generalisation performance of
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Original and noisy Two-Spirals data
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Figure 3: The Two-Spirals Training data (left). Training Points with noise - SD=0.3 (right). As can
be seen, the noise level that contaminates the data, causes objects to cross the virtual boundary
defined by the data, namely the noise leads to wrong class labeling for the training data. This
reduces performance of single predictors, but the added independence between the predictors leads
to improved ensemble performance.

different predictors can be easily visualied in two dimensions. This problem consists of a training
set of 195 points, half of which are to produce an output value of 1 and half an output of 0. These
training points are arranged in two interlocking spirals that go around the origin three times, as
shown in Fig. 8. The example was first proposed by Alexis Wieland of MITRE Corp. It is easy to
see that the two sets of points in the spirals cannot be separated by a combination of a small number
of linear separators. Lang and Witbrock (Lang and Witbrock, 1988) proposed a2 -5 —5—5 —1
multilayer network with logisitc sigmoid activation functions and ‘short-cuts’ using 138 weights.
They used a variant of the quick-prop learning algorithm (Fahlman, 1988) with weight decay. They
claimed that the problem could not be solved with simpler architecture involving fewer layers or
without short-cuts. Their resulting predictor applied to the original dataset seems to give poor
generalisation results. Baum and Lang (Baum and Lang, 1991) demonstrated that there are many
sets of weights that would cause a 2 — 50 — 1 network to be consistent with the training set, but
when such a network was trained with error back-propagation, starting with random initial weights,
none of these desirable solutions was found.

Fahlman (Fahlman and Lebiere, 1990) used the Cascade-Correlation architecture for this prob-
lem, obtaining better results, but still little ‘spiralness’. Recently, Deffuant (Deffuant, 1995) sug-
gested the ‘Perceptron Membrane’ method that uses piecewise linear surfaces as discriminators,
and applied it to the spiral problem. He used 29 Perceptrons but had difficulties capturing the
structure of the spirals because of the piecewise linearity of his decision boundaries.

The minimisation criterion dictating the training process is mean squared error with weight
decay regularisation:

E:Z|tp_yp|2+)"zwi2,j’ (7)
P iJ
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where ¢, is the target and y, the output for the pth example pattern. The w; ; are the weights and
A is a parameter that controls the amount of weight decay regularisation. This minimisation was
achieved using Ripley’s S-Plus ‘nnet’ package (Ripley, 1996), which implements back-propagation,
along with our code for boosting, noise injection and ensemble averaging.

The network had two inputs, 30 hidden units and one output. The first and last layers were
fully connected to the hidden layer, giving a total of 121 weights. The activation function at the
hidden and output units was the logistic sigmoidal function. The initialising weights were chosen
randomly from U(—0.7,0.7). It should be noted here that, although we are training 5-40 networks,
the effective number of parameters is not more, and is probably even less, than the number of
parameters for a single network. This is because we do not have the flexibility to estimate an
optimal combination of predictors, but rather take the simple average of them.

Baseline results were obtained by training 40 networks without any regularisation. We derived
then an average predictor whose output is the mean of the ouputs of the 40 nets (Figure 5, top left).
The predictor had no smoothness constraint and therefore found relatively linear boundaries.

3.3.2 Applying bootstrap to networks with weight decay

The best results (Raviv and Intrator, 1996) were obtained when applying the bootstrap ensem-
ble with noise (BEN) method to networks with optimal weight-decay regularisation (A = 3e=%).
Figure 4 demonstrates the effect of bootstrap with noise on the performance of a 5-net ensemble
trained with optimal weight decay. Each image is a thresholded output of a 5-nets ensemble average
predictor. Noise level goes from ¢ = 0 in the upper left image through ¢ = 0.8 in the Iower right.
The classification results are drawn on a uniform grid of 100 x 100 points (representing therefore
a much larger test set) so as to get a clear view of the classification boundaries defined by the
classifier. The effect of ensemble averaging over networks that were trained with different random
initial conditions only is demonstrated in the top left image, which represents the case of adding no
noise during training. It can be seen that, for small noise levels ¢, the ensemble average predictor is
unable to find any smooth structure in the data and merely over-fits the training data. For moder-
ate levels of the noise, better structure can be found, and, for large levels of the noise, the data are
so badly corrupted that again no structure can be found. The optimal noise standard deviation,
o, was around o = 0.35. Optimal noise values are similar to those obtained when training with
no weight decay, and are surprisingly high (see Fig. 3, (right) for the result of adding noise to the
data). Although the results look better than those obtained with no weight decay, in the sense that
the boundaries look smoother, they can be further improved by averaging over a larger ensemble
of 40 networks. This is demonstrated in Fig. 5 which summarises the effect of averaging. There
was a clear improvement in all results with the large ensemble size as well as the addition of either
noise or weight decay regularisation. Finally, the combination of weight decay, noise and a 40-net
ensemble clearly gives the best results (Fig. 5, bottom right). Thus, while earlier work suggested
that a single-layer feed-forward network is not capable of capturing the structure in the spiral data,
it is evident that a network ensemble with strong control over its capacity (via weight decay) which
is trained with heavy noise can discover the highly nonlinear structure of the problem.

3.3.3 Properties of variance regularisation via noise

The motivation of our approach comes from a key observation regarding the bias/variance de-
composition of prediction error, namely the fact that ensemble averaging does not affect the bias
portion of the error but reduces the variance, when the estimators on which averaging is done are
independent. The level of noise affects the level of independence between the training sets, and
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Different Levels of Gaussian Noise
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Figure 4: Ensembles of 5 networks with fixed weight decay and a varying degree of noise (top left
is zero noise, bottom right is noise with SD=0.8.) The classification threshold is 0.5.

thus the relative improvement of ensemble averaging. However, the level of noise also affects the
quality of each predictor separately, increasing its variance by increasing the variability in the data.
Thus, there should be an optimal level of the noise, which may not correspond to the true noise
level and which leads to optimal ensemble performance. This performance can be further improved
if the variance of individual networks can be tempered, e.g. with weight decay.

Raviv and Intrator (1996) demonstrated the effect of noise injection on prediction in three
different cases. (i) The highly nonlinear (spiral) data, using a suboptimal model; the data are
almost radially symmetric and the neural net is not. This required the use of an ensemble of high
capacity single predictors and thus made the regularisation task challenging. It was shown that the
excess variance of high capacity models could be effectively trimmed only by a combination of all
three of weight decay, noise injection and ensemble averaging. (ii) Highly nonlinear (spiral) data
with essentially the perfect model for it, namely a Generalised Additive Model (GAM) with locally
linear units (Hastie and Tibshirani, 1986). Even in this case, where regularisation provides the
perfect degree of bias to the model, performance could be improved. (iii) A highly linear problem,
where practically any network has excess capacity, that is, is overparameterised. This case is a
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Summary of 40-Net Ensemble-Average Results

Figure 5: Top left: No constrains (no weight decay or noise). Top right: Optimal weight decay
(A = 3e™*) and no noise. Bottom left: Optimal noise (Gaussian SD=0.35) and zero weight decay.
Bottom right: Optimal noise and optimal weight decay.

representative of a family of clinical datasets, in which (linear) variable selection was applied to
a high-dimensional dataset and resulted in a highly linear low-dimensional data structure. It was
thus challenging to be able to show that the BEN algorithm is useful in this case, and can lead
to improved classification results. Performance was also evaluated using the Receiver Operating
Characteristic (ROC) measure (Hanley and BJ, 1982), which is a standard model comparison tool
for clinical data analysis.

Theoretical analysis suggests that it is best to start with a very flexible function approximation
technique (e.g. a feed-forward network with a large number of hidden units) and then control its
capacity and smoothness using noise and averaging. These conclusions hold also for other models
such as generalised additive models.

4 Integrating Ensembles of Estimators

After having established that ensembles of estimators are very useful for variance control and having
discussed ways to increase the level of independence between ensemble members, as well as optimal
stopping criteria for ensembles, we study the possible additional benefits of ensembles of experts.
In particular, we would like to assign different ensembles to different regions in input space, or
different representations of the input space, constructed by various types of preprocessing, in an
attempt to exploit the independence between different ensembles. We start with a review of current
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related methods and demonstrate our ideas on a specific seismic classification problem. Full details
of the algorithms and application to this problem are given in (Shimshoni, 1995; Shimshoni and
Intrator, 1998).

The lack of a-priori knowledge about the true underlying model of the data in the seismic
classification problem, as in many other real-life problems, leads practitioners to examine various
sub-optimal classifiers. Different classifiers can exploit various types and sets of features, and
hence combining multiple estimated classifiers might yield better performance than the best single
candidate. In the Neural Network and Machine Learning literature there are several methods for
combining estimators, and important questions such as what types of estimator to combine and
how to do it are currently getting considerable attention.

A well known class of combined models contains methods such as the Adaptive Mixture of
Experts (AME) (Jacobs et al., 1991) and Hierarchical Mixture of Experts (HME) (Jordan and
Jacobs, 1994), which are both based on the divide and conquer approach where a mixture of
experts compete to gain responsibility in modelling the output in a portion of the input space. The
system’s output is obtained as a linear combination of the experts’ outputs, where the weights are
computed as a parametric function of the inputs by a gating module. The underlying probabilistic
model is based on the assumption of mutual exclusivity, i.e. a single expert is responsible for each
data point. In mixture models like AME and HME the different experts are usually trained on
a single dataset simultaneously by minimising a combined cost function. The final combination
of the experts is determined by the gating module, which is constructed during the same training
session. When training all the experts on the same dataset with the same data representation, the
dependence of errors among experts is high, thus diminishing their collective contribution.

A different aspect of the multiple model concept is introduced by using a committee of classifiers,
also called an ensemble (Hansen and Salamon, 1990; Perrone and Cooper, 1993). Consider a trained
classifier as a realisation of a generic model trained on the given data. Thus, different datasets would
yield different realisations, all of which are members of the post training distribution of the possible
solutions. As the solution space is generally highly degenerate and includes many local minima, it
is more robust to use a sample from this solution space (i.e. ensemble of estimators) rather than a
single representative (Hansen et al., 1994). The ensemble of classifiers can be averaged to produce
an aggregated classifier, or any linear combination of the realisations can be used.

When all the classifiers give similar results, the accuracy of their combined classification depends
largely on their bias, because of the bias-variance tradeoff (Geman et al., 1992). Whenever the bias
of a generic model is high, the multiple classifications of its ensemble might all be wrong even if the
variance is low, in which case no combination operation will help. On the other hand, when the
bias is small and the variance is high, one could expect the ensemble to disagree whenever the input
signals are ambiguous. In such cases the ensemble’s result, i.e. the aggregated classification, will
have the same bias but a reduced variance. Hence, combining multiple classifiers can eliminate the
need to regularise over-fitted models with high variance (Sollich and Krogh, 1996). Moreover, the
classification confidence can be evaluated from the variance which represents the agreement within
the ensemble, regarding signals with high classification variance as being treated with suspicion.

Estimation of the optimal combination of the experts should be done in a robust way, i.e. by
averaging or cross-validation techniques rather than by parametric estimation based on the same
training data (LeBlanc and Tibshirani, 1993). It has been shown that, in order for the combination
of experts to be optimal, the experts should be made as independent as possible (Krogh and
Vedelsby, 1995; Meir, 1994; Jacobs, 1995; Raviv and Intrator, 1996). Another method which uses
multiple classifiers in a sequential training scheme is that of ‘Boosting’ (Schapire, 1990; Drucker
et al., 1994). In this method, which is typically suitable for very large training sets as in optical
character recognition (OCR) problems, each classifier is trained on patterns that have been filtered
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by the previous classifier. Thus, the result is a combination of classifiers that have been trained on
statistically different datasets in a sequential process.

A more general framework for combining multiple estimators is that of ‘Stacked Generalization’
(Wolpert, 1992), in which each estimator is trained with a different subset of the data and the
optimal combination is estimated using cross validation methods. A formulation of this method
for regression estimators was presented by (Breiman, 1993) and was compared with other methods
by (LeBlanc and Tibshirani, 1993). ‘Bagging’ is a method which produces an aggregated estimator
using bootstrap replicas of the training data (Breiman, 1996). It is reported to be useful whenever
the estimator is unstable, i.e. when perturbing the training set can cause significant changes in the
constructed classifier. Notice that this condition corresponds to the requirement mentioned earlier
of maximum independence among the experts. Several ways have been suggested for making the
experts less dependent, for example injecting noise during training, as in smoothed bootstrap (Raviv
and Intrator, 1996).

Since the search for an optimal classifier is tied to the search for an optimal data representation
(i.e. an optimal transformation of the input signals with respect to the classification task at hand), it
is advisable to examine and possibly use more than one signal representation. In order to maximise
both the information extracted from the data and the gain of combining multiple classifiers, we
suggest constructing a ‘Redundant Classification Environment’, which allows for different signal
representations to supply a wide coverage of the effective feature space.

4.1 Creating a Redundant Classification Environment

The hierarchical scheme proposed by Shimshoni and Intrator is based on experts which are en-
sembles of Artificial Neural Networks (ANN), each of which is associated with a specific data
representation and network architecture. The redundancy is pronounced within these ensembles,
which are collections of ANN realisations trained on different subsets of the data. Each ensemble

is trained using the same data representation i.e. a unique Time-Frequency decomposition and
smoothing level of the input signals. The network architecture (number of hidden units) is also
fixed for all members in an ensemble. The redundancy is even more pronounced, as we use various
combinations of Time-Frequency decompositions, smoothing levels and network architectures to
create and train several such ensembles. The different training conditions yield relatively inde-
pendent classifiers, that might produce different classification results given an ambiguous signal.
The Integrated Classification Machine (ICM) that is formulated next integrates the different en-
sembles in this Classification Environment and produces a final classification which achieves better
generalisation performance than the single classifying components; see the results in Section 4.4.

The Integrated Classification Machine is constructed from a hierarchy of classifiers as shown
in Figure 6. The smallest building block of the ICM is a neural network (feed-forward multilayer
perceptron with logistic sigmoidal activation functions). All networks are trained to predict the
class label of a given signal. As mentioned, we use several representations for the input signals,
so that the input layers of the neural networks in the ICM have different dimensionalities (N)
according to the input representations used. The hidden layer can contain various numbers (H) of
sigmoidal units and the output layer contains two sigmoidal units.

4.1.1 The Network’s Prediction Value

The desired output of the networks for a given signal can be either {1,0} for Natural events or {0,1}
for Artificial events. The sigmoidal output units of the trained networks will produce continuous
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values in the range of 0 to 1 according to the network weights:

H N
=0 ( Z Wi O'(Z wsi; + wio) + Wlo) l=1,2. (8)
=1

i=1

Let us define the (signed) difference between the two output units, y = (O' — O?), to be the
prediction value of the network. Hence, y € [—1,1] and the predicted class label is given by
thresholding y at zero, assigning positive values to the class of Natural events and negative values
to the class of Artificial events. Each network is trained on T repeated trials, changing only the
initial random weights; in our implementation 7" = 5. We define the prediction value of the network
component in the ICM with respect to a signal z as the average prediction value y(z) from the T

training trials: yVET (z) = L S0 yi(x).

4.1.2 The Ensemble’s Prediction Value

Each Ensemble is a collection of B networks, where each network is trained on one of the B replicas,
D% b=1,...,B, of the original dataset for a specific data representation r; we used 30 bootstrap
sets, which is fewer than suggested in (Efron and Tibshirani, 1993) (x~ 200), but was found to be
sufficient. Details of the replication of the data into bootstrap sample sets (Efron and Tibshirani,
1993) are given in (Shimshoni and Intrator, 1998).

All the networks in an ensemble share the same data representation and the same network
architecture. The prediction value of an ensemble with respect to a signal z is defined as the
average over all the prediction values of the participating networks, as in the method of ‘Bagging’
(Breiman, 1996):

B
yENS Z ET |Db (9)

4.1.3 The Integrated Prediction Value

A collection (K) of ensembles, which use different input representations, i.e. Time-Frequency de-
compositions or smoothing levels, and different network architectures, i.e. number of hidden units,
form the Integrated Classification Machine (ICM) shown in Figure 6. The integrated prediction
value of the ICM with respect to a signal z is defined by

=D ok Bi(2) g o (2)- (10)

keK

Here oy is a prior reliability measure of the kth ensemble, which can be determined from the
training data or from prior knowledge, with oy = % as a default value. The quantity Sg(z) is
a posterior classification confidence measure that is specific to each signal and is discussed in the
next section. Both measures are normalised and together determine the strength of the ‘vote’ of
ensemble k in the ‘classification committee’ for signal .

In order to detect signals with ambiguous class membership and to rank the different ensembles
in terms of their accuracy of classification, we have constructed a confidence measure for the ensem-
ble’s classification. This posterior confidence is based on the variance of the networks’ prediction
values,

CONF"N*(z) = [ Var(y"*"(z)) |, (11)
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The Integrated Classification Machine (ICM)
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Figure 6: Several representations of the waveform are fed into different Ensembles, then integrated
to produce the final classification. (In level II, the regular arrows are the Ensembles’ prediction
values and the dashed arrows are the attached confidence values).

where yV¥T(z) is the network’s prediction value. The CONF score represents the amount of
‘agreement’ among all the participating networks in the ensemble (Krogh and Vedelsby, 1995;
Hansen et al., 1994). It should be remembered that, when the bias of the networks is high, such
a measure will not convey confidence (i.e. when all members agree on the same wrong class).
Therefore, one should examine the classification results carefully to check whether or not there is

a correlation between the confidence scores and the errors of the combined classification.

4.2 Combining the Hierarchy of Classifiers

The ICM shown in Figure 6 is a hierarchy of classifiers with two levels at which multiple classifiers
are combined. At the first level, for each ensemble, B networks are combined using simple averaging
to construct an aggregated ensemble classification (Eq. 9). These networks are in fact multiple
realisations of the same classifier trained on different Bootstrap samples.

The second level integrates ensembles into the final classification. Integrating ensembles involves
an estimation of g (), namely the strength of the ‘vote’ of the kth ensemble (Eq. 10). This is done
by applying a Least-Squares calculation with non-negativity constraints (Breiman, 1993). Finally,
prior weights can also be used to combine the ensembles.

Unlike the integration of networks into ensembles at the first level, where each network is
the same apart from being trained on a different subset of the data, in the second level it is
less likely that a fixed weighting will produce better classification results than those of all single
ensembles. There might be some ensembles which use inferior data representations or less suitable
model architectures, which will have disturbing effects on the weighted result. In practice, we have
noticed that, for fixed weighting methods like those mentioned above, the integrated classification
results were often worse than the best participating single ensemble.

Given a low signal-to-noise ratio and non-stationarity of the signal space, along with a shortage
of training data, it is furthermore desirable not to base the choice of averaging weights on the
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characteristics of the currently available dataset. Therefore, we suggest using the signal z to
find the optimal set of weights for its own ‘classification committee’, namely to apply a non-fixed
weighting of the classifiers. One can use the ensemble’s prediction value yZ5(z) as the basis for
the weighting, or decide how to weight the votes using the classification confidence CON FENS ()
(Tresp and Taniguchi, 1995). Application of the maximum entropy principle (Jaynes, 1982) suggests
that an optimal combination of ensembles should set

B(z) = exp[-Var(y™ ¥ ())]. (12)

We have used a non-fixed weighting strategy which is a dynamic Winner Takes All procedure. In
order to integrate the different ensembles in the ICM for a specific signal z, all classifiers (ensembles)
are ranked and the optimal one is selected. The ranking is governed by the overall reliability of the
classifiers and the selection is based on the classification confidence CON FEN5(z) supplied by the
ensembles along with their classification (see Figure 6). This approach, which will be elaborated
in the next section, is different from the linear non-fixed weighting that was suggested by (Tresp
and Taniguchi, 1995) for combining ANN'’s, where all classifiers participate in the committee with
weights inversely proportional to the variance; this is similar to the use of CON F values here, but
the weights are estimated in a different way as they use single ANN classifiers rather than ensembles.
The next section discusses a similar approach, but exploits further the variability between members
of each ensemble.

4.3 Competing Rejection Algorithm (CRA)

Generally, a signal is said to be rejected by a classifier if some measure representing the quality
of its classification falls below a pre-defined threshold. Obviously, the higher the threshold, the
more signals will be rejected and the smaller will be the misclassification rate over the remaining
un-rejected signals. Shimshoni and Intrator (1997) have presented an algorithm which performs
a sequence of classifications by polling the group of K classifiers with respect to the signal at
hand. Each classifier (ensemble) in turn can either classify or reject the signal. A key motivating
observation is that some classifiers perform globally better than others. Nevertheless, classifiers
can occasionally outperform ‘superior’ classifiers, and should therefore be given the opportunity to
compete and possibly to ‘steal’ a classification even if signal is rejected by those ‘superior’ classifiers.

Implementation of this idea requires a prior reliability ranking of the classifiers and a definition of
a rejection criterion. The rejection is done by thresholding the confidence measure CON FENS(g),
defined in (11), so that a classification is rejected when its confidence value is lower than the
it ‘reject’ threshold. FEach ensemble k, has its own threshold, ®f, depending on its accuracy
and variability, that fixes the minimum level of confidence ‘allowed’ for its classifications. Oy is
calculated as a certain upper percentile of the confidence scores CON FZN5(z), of an unlabelled
dataset D* as follows:

Oy, = percentile{CON F*(z), Reject-Ratey}. (13)

The ‘Reject-Rate’ of a classifier represents its global credibility and can be determined either from
its performance on training data or by using subjective information. One simple approach is for all
ensembles to have the same credibility, and thus a uniform Reject-Rate is set, for example based
on the upper 20th percentile. When all classifiers reject a signal, it can be either ‘globally rejected’
or classified by the Ultimate Classifier, which is optionally pre-defined by the user. The global
rejection rate cannot be determined by the user and is usually much smaller than the individual
Reject-Rates.
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This selection algorithm,along with the whole ICM structure, is easily scalable, and no re-
training is required when new classifiers are added. It is also flexible, in the sense that it is
straightforward to incorporate other types of experts, including human ones, as long as they produce
suitable prediction-values and CON F values.

4.4 Results on seismic data classification

The Integrated Classification Machine was applied to a dataset consisting of 380 seismic events,
including all the natural local earthquakes that occurred between January, 1990, and June, 1993,
inside an area of 22500 km? in the northern part of Israel. The seismic dataset is available from
ftp://www.math.tau.ac.il/$\sim$shimsh/pub/seismic-data/. A similar number of artificial
explosion events were randomly sampled from the same spatio-temporal window. All events have
magnitude My < 2.7, while 77% of the events are below 2.0 and the mean magnitude is 1.53.
Results from these data (Shimshoni, 1995; Shimshoni and Intrator, 1998) indicate that the ICM
could further improve results of the best ensemble by dynamically combining results from inferior
ensembles using the algorithms discussed above. Comparison to other ensemble methods and more
classical statistical methods further demonstrates the strength of this method as a general mixture
of experts machine.

5 Bias control: Imposing prior knowledge

Smoothness constraints (Wahba, 1990; Poggio and Girosi, 1990) are often used as variance con-
straints. Similarly, in training neural networks, weight decay, which attempts to shrink the weights
to zero or to a single value (Hinton, 1986; Krogh and Hertz, 1992) is often used. In other statisti-
cal contexts, such as regression or generalised linear models, this method is often called shrinkage
(James and Stein, 1960). The resulting constraint on the weights effectively reduces the number of
free parameters in the model. A brute force method for reducing the number of model parameters
is ‘optimal brain damage’ (Le Cun et al., 1990), in which weights which become smaller than a
predefined threshold are set to zero. Other related methods include weight sharing, in which a
single weight is shared among many connections in the network (Waibel et al., 1989; Le Cun et al.,
1989). An extension of this idea is ‘soft weight sharing’ which favours irregularities in the weight
distribution in the form of multi-modality (Nowlan and Hinton, 1992). This approach may improve
upon generalisation results obtained by weight elimination. Both these methods make an explicit
assumption about the structure of the weight space, independently of the structure of the input
space.

We now turn our attention to the second part of prediction error, namely the bias. It may
sometimes appear difficult to distinguish between bias constraints and variance constraints. For
example, how do we treat smoothness constraints? While it reduces the variance, it clearly enforces
a bias towards smooth models. Since we are dealing with additive constraints, as will be clear
from the way that parameter estimates are calculated (see equation (18)), we can offer a simple
distinction. If the update rule leads to no meaningful result when only the additional (bias/variance)
constraint is effective, we regard it as a wvariance constraint. When some meaningful result is
obtained via this unsupervised constraint only, we regard it as a bias constraint. Thus, classical
constraints such as smoothness, as well as assumptions about the distribution of the parameters, e.g.
favouring small weights via a weight decay or favouring particular distributions such as mixtures
of Gaussians (Nowlan and Hinton, 1992), are actually variance constraints. The next section
discusses a general framework for imposing bias constraints and describes some specific examples
of such constraints.
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5.1 Projection Pursuit

A general framework for additive and semi-linear dimensionality reduction is projection pursuit.
It is useful when a low dimensional representation is embedded in high-dimensional data. The
supervised version, called Projection Pursuit Regression (PPR) (Friedman and Stuetzle, 1981), is
capable of performing dimensionality reduction by composition, in that it constructs an approxima-
tion to the desired response function using a composition of lower-dimensional smooth functions.
These functions depend on linear-dimensional projections through the data.

When the dimensionality of the problem is in the thousands, even projection pursuit regression
methods are almost always over-parameterised and lead to data over-fitting. At that stage we
must impose prior knowledge on the desired low dimensional representation. The unsupervised
version, called Exploratory Projection Pursuit (EPP) (Friedman and Tukey, 1974; Friedman, 1987)
becomes relevant. It searches in a high-dimensional space for structure in the form of (semi-)linear
projections with constraints characterised by a projection index, which measures the goodness of
a projection. The projection index may be considered as a universal prior for a large class of
problems, or may be tailored to a specific problem based on prior knowledge.

5.2 Brief Description of Projection Pursuit Regression

Let (X,Y) be a pair of random variables, with X € R? and Y € R. The problem is to approximate
the d dimensional regression surface,

f(z) = EY|X = 2], (14)

on the basis of n observations (z1,91), ..., (Zn, Yn)-
Projection Pursuit Regression tries to approximate f by a sum of ridge functions, i.e. functions
that are constant along lines:

&)~ 3 gs(ale). (15

The fitting procedure alternates between estimation of directions by a; and estimation of smooth
functions by g;. At stage j, the sum of squares of the residuals

rij(@i) = rijo1 (i) — §;(a] ) (16)

is minimised. The process is initialised by setting r;o(z;) = y;, for each ¢. Usually, the initial values
of a; are taken to be the first few principal components of the data.

Estimation of the ridge functions can be achieved by various nonparametric smoothing devices
such as locally linear functions (Friedman and Stuetzle, 1981), k-nearest neighbour methods (Hall,
1989), splines or variable degree polynomials. Imposition of a smoothness constraint on §; implies
that the actual projection pursuit is achieved by minimising, at iteration j, the sum

Y rii(@:) + C(g5), (17)
i=1
for some smoothness measure C.

Since the estimation of the nonparametric ridge functions is not decoupled from the estimation
of the projections, over-fitting is very likely to occur in one of the low-order §;, thereby invalidating
subsequent estimation stages. Obviously, if §; is not well estimated, the search for an optimal
projection direction will not yield good results.
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Artificial neural network architectures are closely related and offer some properties which im-
prove their variance control in high dimensional cases. In feed-forward neural nets, the family
of ridge functions is limited to sigmoidal functions with variable threshold. This avoids the non-
parametric or semi-parametric estimation of the ridge functions, but may require a large number
of projections, as in the example in Section 3.3.1. Secondly, the estimation of several projections
is performed concurrently. This allows one to find a low dimensional representation which cannot
be found if the search is done sequentially (Huber, 1985).

5.3 Hybrid attempts at dimensionality reduction

A hybrid EPP/PPR neural network (EPPNN)

Synaptic modification based
on back-propagation rule
and the EPP learning rule

Internal
Representation
Unit

Figure 7: The modification of the hidden units’ weights is achieved by back-propagation of the
error from the output layer (via the chain rule) and by the gradient of the projection index.

There have been various attempts to combine unsupervised learning with supervised learning (Ya-
mac, 1969; Gutfinger and Sklansky, 1991; Bridle and MacKay, 1992). The formulation discussed
below is based on projection pursuit ideas, which generalise many of the classical statistical meth-
ods, and, in our case, suggest a well-defined statistical framework that allows formulation and
comparison between various methods. Consider the artificial neural network architecture presented
in Fig. 7. The only difference from a classical feed-forward architecture (Rumelhart et al., 1986)
is the additional modification term among the hidden units. We consider the hidden unit repre-
sentation as a new, reduced-dimensionality representation of the data. As described in the context
of projection pursuit regression (Intrator, 1993), we add a penalty term to the energy functional
minimized by error back-propagation, for the purpose of measuring directly the goodness of the
projections sought by the network. This puts the emphasis on choosing the right prior, as a means
to improving the bias/variance tradeoff.

Since our main interest is in reducing over-fitting for high dimensional problems, our underlying
assumption is that the surface function to be estimated can be faithfully represented using a low-
dimensional composition of sigmoidal functions, namely, using a feed-forward architecture in which
the number of hidden units is much smaller than the number of input units. Therefore, the penalty
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term may be added to the hidden layer only; see Fig. 7. The synaptic modification equations for
the hidden units’ weights become

Ow;; e [38(111, z)
ot B 6wij
op(wi, ..., wy)
+ Ow;;
+(Contribution of cost/complexity terms)], (18)

where £ is the error function and p is the explicit measure of goodness of projections (bias con-
straints), while the contribution of the cost/complexity terms (variance constraints) are also addi-
tively imposed.

5.4 Specific bias constraints

Exploratory projection pursuit is based on seeking interesting projections of high-dimensional data
(Kruskal, 1969; Switzer, 1970; Kruskal, 1972; Friedman and Tukey, 1974; Friedman, 1987; Jones
and Sibson, 1987; Hall, 1988; Huber, 1985). The notion of interesting projections is motivated by
an observation that, for most high-dimensional data clouds, most low-dimensional projections are
approximately normal (Diaconis and Freedman, 1984). This finding suggests that the important
information in the data is conveyed in those directions whose univariate projected distribution is
far from Gaussian. Various projection indices differ in the assumptions about the nature of the
deviation from normality, and in their computational efficiency. They can be considered as different
priors motivated by specific assumptions on the underlying model.

Since the Gaussian distribution maximizes entropy, subject to specified mean and variance, it
is possible to test deviation from Gaussianity by the difference between the entropy of a Gaussian,
with the same variance, and the given distribution. This measure is non-negative and provides a
measure of the information content of the distribution relative to the maximal content of a Gaussian
with the same variance. The index is given by

Ji(p) = lltf(pc)—H(p)
= log(2ne) + log(e) + [ p(a) logp(a)ds, (19)

where p is the probability density function and o is the standard deviation of the distribution of
interest. This index also leads to redundancy reduction and independent component analysis; see
below.

As the density p(z) is unknown, it has to be estimated from the data. This is computationally
expensive and not very robust. Although it is possible to use the data to estimate the density
nonparametrically, for example using the kernel method (Wand, 1994; Viola and Wells, 1995), it
is usually preferred to estimate the integral in (19) by some other approximation to the density.
When the third and fourth cumulants (Kendall and Stuart, 1977),

Ky = ———3
kg = W28 g (20)

of the distribution are known, it is possible to estimate the integral using some approximation to the
probability density function. Comon(1994) proposed using the Edgeworth expansion (Stuart and
Ord, 1994), but recently the Gram-Charlier expansion (Stuart and Ord, 1994) has been proposed
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(Amari et al., 1996) as it explicitly depends on the third and fourth cumulants of the distribution.
This Gram-Charlier approximation has the form

P(e) =~ a(2){1+ 5  Ha(e) + 7, Ha(2)}, (21)

where a(z) = 2 exp(—22%/2) and Hi(z) are Chebyshev-Hermite polynomials, given in our case
Vr &

by

H3(z) = 4a® - 3z,

Hy(z) = 8z* —8z%+1. (22)
The exact measure of deviation from a Gaussian distribution is clearly expressed in approximation

(21) in terms of the skewness and kurtosis of the distribution. If we substitue this approximation
into (19) we obtain

A K3)? Kq)? 1
ety = o - ok S st s (23)
This expansion suggests natural bias constraints on projected distributions.

Recently, Intrator (1990) has shown that a BCM neuron can find structure in the input dis-
tribution that exhibits deviation from a Gaussian distribution in the form of multi-modality in
the projected distributions. (BCM stands for Bienenstock, Cooper and Munro (Bienenstock et al.,
1982). It is a learning rule that was constructed to model early visual cortical plasticity. Current
versions of this rule, including mathematical properties, statistical motivation and network exten-
sions, are discussed in (Intrator and Cooper, 1992).) Since clusters cannot be found in the data
directly, because of its sparsity, this type of deviation, which is measured by the first three moments
of the distribution, is particularly useful for finding clusters in high-dimensional data, and is thus
useful for classification or recognition tasks. It thus renders this feature extraction technique also
appropriate for bias constraints. We present some of the constraints here in a form that exhibits
their relation to the BCM feature extraction rule. Connections with independent components anal-
ysis and results on natural scene feature extraction are described in (Blais et al., 1998). Results on
classification of faces are described in (Intrator et al., 1996; Stainvas et al., 1997).

We are interested in finding projections that indicate interesting structure. Furthermore, we
are not interested in deviation in the form of asymmetry, but more in deviations in the tails or
in manifestations of multimodality. We also want to avoid sensitivity to outliers and therefore
we use a rectified activation function (this rectification has little effect on the ability of kurtosis
rules to find interesting projections (Blais et al., 1998)) denoted by ¢ = ¢(d - m) and assume that
the sigmoid o is a smooth monotone function with a positive output, although a slight negative
output is also allowed; o’ denotes the derivative of the sigmoid. The rectification is required for
all rules that depend on odd moments, because these vanish in a symmetric distribution such as is
commonly used in contexts involving natural scenes (Blais et al., 1998).

Skewness 1 This measures deviation from symmetry (Kendall and Stuart, 1977) and is of the
form

Sy = E[*)/(E[])*/*. (24)
Maximisation of this measure via gradient ascent uses

VS, = ﬁE e (c - BI/ELY) 'd], (25)

where Oy is defined as E[c?].
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Skewness 2 A similar measure which requires some stabilisation mechanism is given by
Sy = E[c®] - Es/z[cz]. (26)
This measure has a gradient of the form

VS, =3F {c (c — \/@) tr'd] ) (27)

Kurtosis 1 Kurtosis measures deviation from a Gaussian distribution mainly in the tails of the
distribution. It has the form

K, = E[c*]/E?*[c?] - 3. (28)
This measure has a gradient of the form
1
VK1 =g 5F [ (¢ - Ble*)/E[cY) o'd] . (29)

Kurtosis 2 As before, there is a similar form which requires some stabilisation:
K, = E[c*] - 3E?[%). (30)
This measure has a gradient of the form
VK, =4E |c(c — 30u))0"d| . (31)

With all the above, maximisation of the measure can be used as a goal for projection seeking,
so the variable ¢ can be thought of as a (nonlinear) projection of the input distribution on to
a certain vector of weights, and the maximization then defines a learning rule for this vector of
weights. Under this framework, it is easy to stabilise the above learning rules by requiring for
example that the vector of weights, which we denote by m, has a fixed norm, || m |= 1, say. The
multiplicative forms of both kurtosis and skewness do not require this type of stabilisation, because
of the normalising factor 1/0 /" in each rule.

Quadratic BCM The Quadratic BCM (QBCM) measure as given in (Intrator and Cooper, 1992)

is of the form

QBCM — %E[cf'»] - %Ez[&]. (32)
Maximising this form using gradient ascent uses the gradient function

VQBCM = E[c(c — Op)o'd]. (33)

The Quadratic BCM rule does not require any additional stabilisation. This turns out to be an
important property, since additional information can then be transmitted using the resulting norm
of the weight vector m (Intrator, 1996).

Applicability of such bias constraints has been demonstrated in various real-world applications.
Entropy constraints have been used in image compression, with a penalty aimed at minimizing the
entropy of the projected distributions (Bichsel and Seitz, 1989). BCM constraints have been used
in face recognition (Intrator et al., 1996) and more recently for partially occluded and blurred face
recognition (Stainvas et al., 1997). These constraints are also useful for acoustic signal classification
from wavelet representations (Huynh et al., 1998). Kurtosis constraints have been used in conjunc-
tion with reconstruction to find sparse representations (Olshausen and Field, 1996), and recently
kurtosis and skewness have been found to be useful for neg-entropy calculations and independent
components analysis; see (Yang and Amari, 1997) for a review.
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6 Summary

Our aim in this chapter has been to suggest several ingredients which may be crucial for multi-
parameter model estimation. As computational power and database availablity increase, real-world
problems like these will be encountered increasingly often, and methods such as these can lead to
significant improvement in their treatment.
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