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Abstract

We propose a mechanism to reduce defocus blur by reducing the aperture of the camera lens,
and show that it leads to a far more robust recognition. The recognition is demonstrated via a
Neural Network architecture which we have previously proposed for blurred face recognition.
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1 Introduction

It is well known that blur is particularly harmful for recognition [11, 12, 2, 18] Approaches to address

recognition of blurred images can be divided into three groups: implicit, restoration and direct.
Under the implicit approach, blur is not addressed during training and blurred images are tested

as other degraded images. [26, 3, 17]. Under the restoration approach, blurred images are restored
before recognition [25, 13, 11]. The success of this approach is not obvious since image restoration

is an ill-posed inverse problem [4, 7, 20] and restored images may contain artifacts. Under the
direct recognition approach, blur is addressed explicitly in the recognition model [2, 14, 17]. In

this paper, we propose to reduce an aperture of the camera lens in order to reduce the sensitivity
to out of focus blur. The lens aperture controls the amount of light that enters the camera, and

affects the depth of field and the resolution of the image. Depth of field is the range around a
sharply focused object which is in focus. A small lens aperture reduces image resolution but results
in greater depth of field (Figures 1, 5) and eventually leads to improved classification results in a

greater distance range.
The reduced sensitivity to out-of-focus distance is demonstrated on two face recognition tasks

which we have extensively studied in the past [19]. The training of a hybrid neural network
architecture is done on faces that are in focus. Testing is done on in and out-of-focus faces.

2 Optical background

Imaging is one of the most basic applications in optics. The imaging may be obtained by using a
lens. In order to achieve the imaging, one must fulfil a certain relation between the focal length of

the lens f , the distances between the lens and the object do and the distance between the lens and
the detector on which the image is generate di. Such a relation is:

1

do

+
1

di

=
1

f
(1)

If one violates this imaging relation, the obtained image is called to be out of focus. In addition,

the relation between the focal length of the lens and its dimensions is an important factor in
determining the spatial resolution of the captured image. In systematic formulation, the popular

term is the Optical Transfer Function (OTF) which is the spectral response of the imaging system.
Thus, having a certain object which is being imaged by a given lens one may compute the obtained
image by performing a Fourier transform for the object image multiplying it by the OTF and

performing the inverse Fourier transform to return to the image plane. Obviously, violating the
imaging relation and having the image out of focus also depends upon the dimensions of the lens

and its focal length. It is interesting to note that increasing the ratio between the focal length
and the lens aperture decreases the spatial resolution of the imaged picture but it also increases

the tolerance to being out of focus. Meaning: getting out of focus distorts the spatial resolution.
An increase in the ratio between the focal length and the aperture, increases the region in which a

given spatial distortion is obtained in the image plane.
The dependence of the OTF upon all the above mentioned parameters may be formulated as:

OTF (fx, fy) = Λ(
fx

2f0

)Λ(
fy

2f0

) ×
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Out-of-focus images

Lens with a regular aperture

Lens with a small aperture

Figure 1: Images taken by two cameras with square shape lenses. The first image in the top and

bottom figures correspond to the subject being in focus (with distance of 6m between the subject

and the camera). Subsequent images are obtained when the subject gradually moves out of focus

in steps of 0.5m. The regular lens corresponds to a minimal focal number of f# = 3 and the small

aperture to a focal number is f# = 12 (an aperture width is given by D = f/f#, where f is the lens

focus). A small aperture width is 4 times less than for a regular lens. The camera’s focal length is

f = 0.08m. The interplay between low resolution and reduced out-of-focus blur is evident.
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with λ as the wavelength and D as the width of the aperture.

1

do

+
1

di

−
1

f
= ε (3)

f0 =
D

2λdi

. (4)

Λ denotes the triangular function. The last equation may be approximated as:

OTF (fx, fy) = sinc

[

8w

λ

(

fx

2f0

)]

sinc

[

8w

λ

(

fy

2f0

)]

. (5)

Let us now derive the tolerance to getting out of focus. To do so we will assume the geometrical
optics approximation and refer to Figure 2. According to this figure and by using geometrical

Imaging system

Figure 2: Basic setup for estimating the depth of focus range. w is the maximal bluring spot which

is allowed. f is te focal length. D is the aperture. (x1, y1) and (x2, y2) fulfill the imaging relation.

relations we may define:

D

y2

=
w

a − y2

(6)

D

y1

=
w

y1 − a
.
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where f is the focal length of the lens, D is the aperture, a is the distance between the imaging lens
and the detection plane and w is the maximal bluring spot. Using the imaging relations yields:

1

x1

+
1

y1

=
1

f
(7)

1

x2

+
1

y2

=
1

f
.

Thus, the out of focus range becomes:

∆ = x1 − x2 =
2awDf2

a2D2 − 2aD2f + d2f2 − w2f2
, (8)

where w is the allowed resolution distortion in the image plane. The last expression may be

approximated as:

∆ ≈
2awff#

(a− f)2
, (9)

where

f# =
f

D
(10)

As obtained, indeed an increase in the out of focus range is proportional to f#.

This result is the basic motivation for this paper. Increasing the f# decreases the resolution
but it increases the depth of focus range. Thus, training the neural net on images seen through an

imaging system with increased f# will decrease the depth of focus distortions. On the other hand,
such increase reduces the spatial resolution and thus damages the training abilities of the network.
Optimizing the f# parameter allows to obtained improved recognition performance.

3 Neural Network Ensembles

For the face classification task, we have used a feed-forward artificial neural network architecture
regularized by weight decay [16, 5, 9]. We combine networks to simple regression ensembles [17]

which were shown to improve the performance of single experts [24, 10, 15]. The regression ensemble
classification rule is based on averaging the real values of the outputs of all the ensemble members
and then producing a decision by thresholding. The improvement in regression ensembles depends

on the level of independence of the errors made by the experts. This independence reduces the
contribution of the variance portion of the error when ensemble average is used [15]. This also gives

some hints to which networks to combine. We consider two types of regression ensembles with
network outputs averaged over: (Ens. A), this is an ensemble on the initial weights, and (Ens. B)

which averages of different training cross-folds – a “bagging” type of ensemble [1].

4 Data-set description and implementation details

The widely available facial data-set [23] as well as a face data-set locally collected by the Tel-Aviv
University Computer Vision Group [21] were used in our simulations [17]. While there have been
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many successful classification approaches with the Turk/Pentland data, we use it in a reduced
resolution 32 × 32 and under considrable blur (the original resolution is 64 × 64). The data-set

contains 27 images of 15 male faces (we took out the single bearded person). For each person,
we randomly choose 15 images for training (data D) and 12 images for testing (data T). The 15

training samples were split into five cross-folds (by taking out 3 different images per person).
Preprocessing details and earlier results studying effect of background, illumination and com-

parison with PCA for original resolution are given in [6, 17]. The preprocessing partially removes
the variability due to viewpoint, by setting (automatically) the eyes and tip of the mouth to the

same position in all images [22]. Further preprocessing evaluates the difference between each image
and an average over all the training set, leading to the so called ”caricature” images [8].

The second data-set was collected by the Computer Vision group at Tel-Aviv University (TAU).
It is of high resolution 84× 56, and contains images of 37 male and female faces with 10 images per
person. We reduced the resolution to 42 × 28 and split the data into test T (4 images per person)

and training D (6 images per person) sets. Cross-validation with three disjoint groups having a size
of 2 images per person is considered. Preprocessing was similar to the one described above, except

that only the eye locations were fixed [22].
All networks have the same architectural complexity: the number of input units is the same as

the number of image pixels (1176 for TAU data and 1024 for Pentland data); there are 15 hidden
units with sigmoidal activation function in all networks and a number of output classification units

is as the number of classes (37 for TAU data and 15 for Pentland data). A sigmoidal output
activation function assures outputs between 0 and 1. The initial weights of the networks are chosen

randomly out of a uniform distribution between -0.001 and 0.001. A constant learning rate is set
to 0.05 and a weight decay regularization parameter is tuned to 0.05 (Full details of the choice of
these parameters and the cross validation approach are given in [19].) Networks are trained 3000

epochs for Pentland data and 5000 epochs for TAU data. Initial weights are resampled 5 times.

5 Experimental design

We train networks with 5 different initial weight conditions per 3 cross-folds for TAU data and

per 5 cross-folds for Pentland data. Therefore, 15 networks for TAU data and 25 networks for
Pentland are considered in summary. Ensembles of type (A) are obtained by averaging networks

trained on the same cross-folds and with different initial weights, i.e. a number of ensembles of
type (A) coincides with the number of cross-folds used. Therefore, ensemble (A) is run 3 times for

TAU data and 5 times for Pentland data; the number of network members in ensemble A equals 5.
Ensembles of type (B) are obtained by averaging networks trained with the same initial weights but

on different cross-folds, i.e. a number of ensembles of type (B) coincides with the number of initial
weight conditions used. There are 5 ensembles of type B with the number of members equal to 3
for TAU data and 5 ensembles of type B with the number of members equal to 5 for Pentland data

(i.e. ensembles B are run 5 times). Mean and variance statistics over ensemble runs are evaluated
on the separately kept test set T.

To demonstrate our approach networks are trained twice on the focused images “taken” by two
cameras with a lens of a regular and small aperture. Indeed, an original data-set is considered as

an “ideal subject images”. We filter the original data assigned to training by OTF of square shape
lenses in focus (See Figure 3). In the testing stage images assigned for testing are filtered by OTF

corresponding to situation when subject gradually moves out of focus. For simulation we have used
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OTF of square shape lenses

Lens with a regular aperture Lens with a small aperture
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Figure 3: OTF of two cameras with square shape lenses. The OTF in focus are shown by solid lines

and OTF in out of focus by dashed lines. Corresponding filtered images are presented in Figure 1

and camera’s characteristics are the same as indicated in the caption of Figure 1. Pay attention

that though OTF in focus of a small lens introduces much more corruption, its OTF sensitivity to

a shift from the focus is much smaller.

a real camera parameters used in our face recognition application (see Table 1)

Imaging system parameters

focus focal number for focal number for distance a step for

f a regular aperture a small aperture between subject shift from focus

and lens in focus

0.08m 3 12 6m 0.5m

Table 1: Parameters of the imaging system that are used in our simulations. Focal number is a

ratio between the focal length and the aperture: f# = f/D. A small lens has 4 times less aperture

than a regular lens.

6 Results

Figure 4 and a corresponding Table 2 present results on the TAU data-set. These include misclas-
sification error for ensembles A and B for cameras with a regular and small aperture lenses. They

demonstrate that using a small aperture lens leads to robust classification results, i.e. though the
out focus parameter grows, changes in degraded images have a smaller effect on classification.

The sensitivity of our network ensembles to a lens with a regular aperture is very strong: the
error grows from 14.9% to 22.1% for Ens. A and from 10.3% to 17.0% for Ens. B. When objects
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Percent Misclassification Results (TAU data-set)
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Figure 4: Percent Misclassification Results for Ensembles of types A and B. Dashed blue lines

correspond to a camera with the regular lens and red for a camera with a small aperture. Out of

focus parameter is a number of step taken from the focus. In focus this parameter is equal to zero.
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Percent Misclassification Results (TAU data set)

Out of focus parameter

Step 0.5m 0 1 2 3 4 5 6 7 8 9 10 11

Ens. A corresponding to a regular lens aperture

means 14.9 14.9 14.9 16.0 17.8 17.8 18.5 19.8 20.1 20.7 21.2 22.1
std 1.5 1.6 1.6 1.8 2.1 2.2 2.2 2.5 2.6 2.6 2.5 2.2

Ens. A corresponding to a small lens aperture

means 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
std 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

Ens. B corresponding to a regular lens aperture

means 10.3 10.1 10.1 10.4 11.2 12.0 12.0 13.0 13.7 14.5 15.3 17.0
std 0.4 0.5 0.5 0.4 0.5 0.3 0.3 0.4 0.5 0.2 0.7 0.8

Ens. B corresponding to a small lens aperture

means 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5
std 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4

Table 2: Out-of-focus parameter stands for a number of steps of a length of 0.5m taken by subject

when he/she moves out-of-focus. See also corresponding Figures 4–1.

are in focus, their images for a lens with a small aperture has lower resolution than for a regular one
(compare OTF in focus Figure 3). This explains why ensembles corresponding to the camera with
the regular lens have smaller mean classification errors than ensembles corresponding to the camera

with the small lens (Table 2). However, analysis of variances demonstrate that this superiority is
insignificant. In addition, it is easy to see that ensembles of type B lead to better classification

results and this is despite a smaller number of ensemble members. However, one has to take into
account that network members of ensemble B see the whole training data by blocks/cross-folds,

while networks of ensemble A see only a particular cross-fold for which they were trained on.
Similar results for Pentland data-set are presented in Table 3 and Figure 6. This data is easier

to classifity since faces were normalized by both eyes and mouth; and there are less classes. Starting
misclassification percent errors turns out to be small, about 1.7%. Neural networks ensembles A–B

for this data-set are less sensitive to out-of-focus shifting. Nevertheless, the same qualitative result
is found, i.e. using of a lens with a smaller aperture improves classification and ensembles B are
superior to ensembles A. In contrast with TAU data, error means for ensembles A and B for the

lens with the small aperture are less than error means for ensemble counterparts for the regular lens
when images are in focus. This is despite the lower image resolution of focused images for lenses

with smaller apertures. However, analysis of variances shows that this difference is insignificant.
Out-of-focused images for one subject of Pentland data are presented in Figure 5.

7 Conclusions

In this paper we have demonstrated that a trade off axists between depth of focus and spatial
resolution. A decrease in lens aperture increases the depth of focus but also distorts the image

resolution. It was evident that decreasing the aperture of the lens up to a certain level indeed
produced a bit larger classification error for in focus images, however, it maintained significantly

smaller error for much larger depth of focus ranges.
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Blurred images of objects shifted from the focus (Pentland data-set)

Lens with a regular aperture

Lens with a small aperture

Figure 5: Images taken by two cameras with square shape lenses. The first image on the top and

bottom figures correspond to the subject being in focus (a distance between subject and camera

equals 6m). Subsequent images are obtained when subject gradually moves out of focus with a step

0.5m. A regular lens corresponds to a minimal focal number equal f# = 3 and a small aperture to

a focal number equal f# = 12 (an aperture width is given by D = f/f#, where f is a lens focus).

A small aperture width is 4 times less than for a regular lens. Cameras focus is equal f = 0.08m.

Pay attention that though images in focus taken by a small lens have lower resolution, they contain

less blur when subject moves out of focus.

References

[1] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[2] J. Flusser and T. Suk. Degraded image analysis: An invariant approach. pami, 20(6):590–603,
June 1998.



Stainvas et al. Improving Classification by Reducing Lens Aperture 11

Percent Misclassification Results (Pentland data-set)

−2 0 1 2 3 4 5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

Mi
sc
la
ss
if
ic
at
io
n 
er
ro
r 
%

Out of focus parameter 

Ensemble of type A

−2 0 1 2 3 4 5 6 7 8 9 10 11
1.4

1.6

1.8

2

2.2

2.4

Mi
sc

la
ss

if
ic

at
io

n 
er

ro
r 

%

Out of focus parameter 

Ensembles of type B 

Figure 6: Percent Misclassification Results for Ensembles of types A and B. Dashed blue lines

correspond to a camera with the regular lens and red for a camera with a small aperture. Out of

focus parameter is a number of step taken from the focus. In focus this parameter is equal to zero.



Stainvas et al. Improving Classification by Reducing Lens Aperture 12

Percent Misclassification Results (Pentland data-set)

Out of focus parameter

Step 0.5m 0 1 2 3 4 5 6 7 8 9 10 11

Ens. A corresponding to a standard lens aperture

means 1.8 1.9 2.0 2.1 2.3 2.4 2.6 2.8 2.9 3.0 3.4 3.8
std 0.4 0.3 0.2 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.4 0.6

Ens. A corresponding to a small lens aperture

means 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 2.0 2.0 2.0 2.1
std 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.3

Ens. B corresponding to a standard lens aperture

means 1.7 1.7 1.7 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ens. B corresponding to a small lens aperture

means 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7
std 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2

Table 3: Out-of-focus parameter stands for a number of steps of a length of 0.5m taken by subject

when he/she moves out-of-focus.

[3] B. Gidas and A. Zelic. Object recognition via hierarchical syntactic models. In 13th Inter-
national Conference on Digital Signal Processing Proceedings, volume 1, pages 315–18, New
York, NY, USA, 1997.

[4] R. C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley Publishing Company,

1993.

[5] G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the 8th
Annual Conference of the Cognitive Science Society, pages 1–12. Hillsdale: Erlbaum, 1986.

[6] N. Intrator, D. Reisfeld, and Y. Yeshurun. Face recognition using a hybrid super-
vised/unsupervised neural network. Pattern Recognition Letters, 17:67–76, 1996.

[7] A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, London, 1989.

[8] M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure for characterization
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