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Abstract

This paper introduces and analyzes new approximation procedures for bi-
variate functions. These procedures are based on an edge-adapted nonlinear
reconstruction technique which is an intrinsically two-dimensional extension of
the essentially non-oscillatory and subcell resolution techniques introduced in
the one dimensional setting by Harten and Osher. Edge-adapted reconstruc-
tions are tailored to piecewise smooth functions with geometrically smooth edge
discontinuities, and are therefore attractive for applications such as image com-
pression and shock computations. The local approximation order is investigated
both in Lp and in the Hausdorff distance between graphs. In particular, it is
shown that for general classes of piecewise smooth functions, edge-adapted re-
constructions yield multiscale representations which are optimally sparse and
adaptive approximations with optimal rate of convergence, similar to curvelets
decompositions for the L2 error.

1. Introduction

1.1 Background and motivation

Multiscale representations of images into wavelet bases have been successfully
applied in applications such as compression and denoising. In these applications,
one essentially takes advantage of the sparsity of the representation f =

∑

dλψλ,
i.e. the concentration of the energy of the image f on a small number of coef-
ficients dλ. The detailed analysis of such methods, e.g. in [21], [28] and [15],
demonstrates that their performances are directly related to a mathematical
measure of the sparsity which can be given by two equivalent statements:

(i) The coefficient sequence (dλ) is in wℓp: for all η > 0,

#{λ ; |dλ| ≥ η} ≤ Cη−p. (1)

(ii) The nonlinear best N -term approximation fN obtained by keeping the N
largest |dλ| satisfies

‖f − fN‖L2 ≤ CN−s , s =
1

p
− 1

2
(2)
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We also refer to [14, 18] for a general treatment of nonlinear wavelet approxima-
tion. In recent years, it has been however observed that such approximations
are sub-optimal with respect to edges, in the sense that they essentially per-
form an isotropic refinement which does not take advantage of their geometric
smoothness. This is reflected by the deceiving rate of best N -term approxima-
tion ‖f − fN‖L2 ≤ CN− 1

2 (or equivalently the coefficient sequence is in wℓ1)
when f = χΩ with ∂Ω arbitrarily smooth.

This intrinsic limitation has motivated new directions of research toward
compact representation of geometry:

• Adaptive anisotropic triangulations obtained by thinning algorithms, which
consists in a greedy point removal based on an error criterion such as in
[17], or by adaptive refinement algorithm based on normal meshes such as
in [8].

• Bases or frames with more anisotropic directional selectivity, such as
curvelets [10, 11] and contourlets [20].

• Bandlets transforms [26, 27] which are based on tensor product of wavelet
bases combined with local warping operators adapted to the edge of the
image.

• Edgeprints approximations [9] consisting in wavelet expansions in which
certain coefficients are replaced by their value associated to a wedge func-
tion which locally fits the image.

This paper is concerned with the analysis of geometric representations which
retain the multiscale structure of wavelet decompositions, while incorporating
at the same time a specific nonlinear treatment of edges within the transforma-
tion process. This idea was initially proposed in 1D by Ami Harten who in-
troduced in [24, 25] a discrete multiresolution framework which allows to apply
essentially non-oscillatory (ENO) and subcell resolution (ENO-SR) techniques
(initially introduced in the context of numerical shock computation) within the
decomposition and reconstruction process. In turn, these new transforms can-
not be viewed as change of basis, similar to the more recent work in [6, 7]. A
closely related approach introducing a concept of data-dependent ENO-wavelet
basis was developed in [13]. These ideas have recently been applied to image
compression, in [2] and [1], following a tensor product approach, which leads
to the presence of artifacts near to the edges. An intrinsically bidimensional
approach was proposed in [4, 29] which allows us to remove these artifacts. The
goal of the present paper is to develop a rigorous mathematical analysis of this
approach.

1.2 Harten’s multiresolution framework

In a nutshell, the framework of Harten can be described as follows: we start
from a finite set fJ = (fJ

k ) of discrete data sampled at the resolution 2−J . For

all j, we are given a decimation operator Dj−1
j which extracts from (f j

k) the
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discrete data (f j−1
k ) at the next coarser level, and a prediction operator P j

j−1

which produces an approximation of (f j
k) from (f j−1

k ). These operators are
constructed so to satisfy the consistency condition

Dj−1
j P j

j−1 = I. (3)

We can represent f j in terms of (f j−1, ej−1), where ej−1 = f j −P j
j−1f

j−1 is the

prediction error. This new representation of f j is redundant, since ej−1 belongs
to the null space of Dj−1

j according to (3). This redundancy can be eliminated

by representing ej−1 in terms of a basis of this space, which result in the detail
vector dj−1. Therefore we can represents f j by (f j−1, dj−1). By iterating this
procedure from level J to level j = 0 we obtain the multiscale representation of

fJ ↔ (fJ−1, dJ−1) ↔ (fJ−2, dJ−2, dJ−1) ↔ · · · ↔ (f0, d0, ..., dJ−1). (4)

In the present paper we shall restrict to the particular setting where f j is thought
as the cell-average discretization of an integrable function f(t) at resolution 2−j

which fixes once and for all the decimation operator: in the one dimensional
case

f j
k := 2j

∫

I
j

k

f and f j−1
k :=

1

2
(f j

2k + f j
2k+1), (5)

with Ij
k := [2−jk, 2−j(k + 1)] and in the two dimensional case

f j
k,l := 22j

∫

C
j

k,l

f and f j−1
k,l :=

1

4
(f j

2k,2l + f j
2k+1,2l + f j

2k,2l+1 + f j
2k+1,2l+1), (6)

with Cj
k,l := Ij

k × Ij
l .

The choice of the prediction operator is now crucial, and should typically be
guided by the objective of minimizing the prediction error over a class of signals
and images of interest, in order to obtain multiscale representations which are
as sparse as possible. The purpose of introducing nonlinearly data dependent
prediction operators, such as essentially non-oscillatory (ENO) reconstructions
as proposed in [24, 25], is to improve the prediction near the jumps or singu-
larities of the data, while linear method classically generate large errors and
spurious oscillations (Gibbs phenomenon). We next describe these ideas in the
one-dimensional setting.

1.3 Non-linear 1D reconstruction techniques

The prediction operators proposed by Harten are based on a reconstruction
procedure: from f j , we reconstruct a function Rjf

j of the continuous variable
which agrees with the discrete data in the sense that

2j

∫

I
j

k

Rjf
j = f j

k for all k, (7)
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and we next define the prediction f̂ j+1 := P j+1
j f j according to

f j+1
k := 2j+1

∫

I
j+1
k

Rjf
j . (8)

Note that this always ensures the validity of the consistency property (3). The
accuracy of the prediction operator is therefore tied to the accuracy of the
reconstruction, namely the closeness of Rjf

j to f .
We are thus facing the general problem of accurately reconstructing a func-

tion f from its cell-average data at some scale h > 0 (with h = 2−j in our
multiscale setting),

fk := h−1

∫

Ik

f, Ik := [kh, (k + 1)h], (9)

and we denote by Rh the reconstruction operator now viewed as an approxima-
tion operator acting on the function f (by averaging followed by reconstruction).
A standard choice is to define Rh as a piecewise polynomial function:

Rhf(t) = pk(t) t ∈ Ik (10)

where pk is a polynomial of degree 2m which agrees with f on the centered
stencil Sk := {k −m, · · · , k +m} :

h−1

∫

Ik+l

pk = fk, l = −m, · · · ,m. (11)

The degree of the polynomials determines the order of accuracy: if f ∈ Cs

then the error ‖f − Rhf‖L∞ behaves like O(hr) with r = min{s, 2m + 1}
and more generally if f ∈ W s,p then ‖f − Rhf‖Lp behaves like O(hr) with
r = min{s, 2m + 1}. On the other hand, the presence of an isolated jump
discontinuity of f at a point x deteriorates the local approximation order into
O(1) on the 2m+ 1 intervals Ik such that x ∈ Ik+l for some l ∈ {−m, · · · ,m}
and also results into spurious oscillations (Gibbs phenomenon) in the vicinity
of x.

Essentially Non-Oscillatory (ENO) techniques have been designed to remedy
in part to this drawback. For this purpose, one typically introduces a measure
of the oscillation of the discrete data on the stencil Sk. For each k, we select
among all the stencils {Sk−m, · · · , Sk+m} which contain Ik the stencil S̃k which
minimizes the chosen measure of oscillation. The ENO interpolant is then given
by

Rhf(t) = p̃k(t), t ∈ Ik, (12)

where p̃k is the polynomial which agrees with f on the stencil S̃k. In comparison
with the linear reconstruction based on the centered stencil, the approximation
Rh based ENO reconstruction is a nonlinear operator with the same order of
accuracy and it reduces the effect of an isolated jump singularity, since the
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selected stencil will tend to avoid it. We therefore expect that the precision
only deteriorates on the interval which contains the singularity.

The goal of the Subcell Resolution (ENO-SR) technique is to improve the
approximation properties of the reconstruction even on this interval. It is based
on a detection mechanism which labels as B (bad) an interval Ik which is sus-
pected to contain a singularity, in the sense that the selected stencils for its
immediate neighbors tend to avoid it. Thus Ik is B if S̃k−1 = Sk−m−1 and
S̃k+1 = Sk+m+1. Other intervals are labeled as G (good). On a G interval Ik,
we use the above described ENO reconstruction to define Rhf . On a B interval
Ik, we define Rhf as a piecewise polynomial

Rhf(x) = qk(t) := p̃k−1(t) if t ≤ y, p̃k+1(t) if t ≥ y, (13)

where the jump point y is estimated by solving the algebraic equation

h−1

∫

Ik

qk = fk. (14)

In the case where there is not a unique solution y located inside Ik the interval
is relabeled as G and the ENO reconstruction is used.

An intuitive statement is that ENO-SR reconstruction has an improved order
of accuracy over the linear reconstruction for piecewise smooth functions. In
a recent work [3], we proposed a rigorous analysis of the ENO-SR procedure
(both for point-value and cell-average sampling) that made this statement more
precise: for a function f with s uniformly bounded derivatives on IR−{x} and a
jump discontinuity of height |[f ]| at x, we proved that the singularity is always
detected for h smaller than a critical scale

hc :=
|[f ]|

4 sup
t∈IR−{x} |f ′(t)| , (15)

with accuracy |x−y| ≤ Chs+1. Intuitively, this critical scale represents the min-
imal level of resolution needed to distinguish between the jump and a smooth
region with possibly high gradient. This allowed to establish the expected im-
provement of the rate of convergence of Rhf towards f in the Lp norm for
p <∞, as well as in the metric

d(f, g) = dH(Gf , Gg) (16)

with Gf := (x, f(x))
x∈IR and Gf := (x, g(x))

x∈IR the graphs of f and g and

dH(A,B) := sup
x∈A

inf
y∈B

|x− y| + sup
x∈B

inf
y∈A

|x− y|, (17)

the Hausdorff distance between sets. This metric is a natural substitute to the
L∞ norm for piecewise smooth functions with isolated jumps. In order to obtain
these results, the ENO-SR procedure had to be slightly modified from its original
conception in order to avoid the situation where a B interval which was detected
by a false alarm in a region where f is smooth might be too close to another B
interval which really contains a singularity, in which case the reconstruction on
the first B interval by (13) might be using polynomials built from stencils which
include the singularity. This issue will also be of importance in this paper.
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1.4 Objectives and outline of the paper

Our paper is concerned with a genuinely two-dimensional extension of the ENO-
SR procedure, which was firstly introduced in [29] and [4]. We refer to this
approach as Edge-Adapted reconstruction (ENO-EA), since its goal is to accu-
rately capture the geometrical edges from the cell-average data. Similar to the
one dimensional ENO-SR procedure, a nonlinear operator Rh is defined which
maps the cell-average data

fk,l := h−2

∫

Ck,l

f, Ck,l := Ik × Il, (18)

to a piecewise polynomial function Rhf . While in the one-dimensional case, the
ENO-SR procedure estimates the location of a jump point within the cells that
might contain one, the ENO-EA is based on estimating a line edge in the cells
that might be crossed by an edge. This procedure is by far more complex since
one needs to estimate both the location and orientation of the edge. A first
version of the ENO-EA reconstruction procedure was introduced earlier in [29]
in the particular case of bi-quadratic polynomial reconstruction, but despite its
general good behavior with respect to edges, this procedure does not lead to
optimal approximation results, due to the possibilities of “false alarms” in the
detection of edges singularities. In this paper, we introduce a more elaborate
version of ENO-EA reconstruction that circumvents these difficulties. This new
procedure can be defined for piecewise polynomial reconstruction of any degree.
More precisely we shall use polynomials of global degree 2m, i.e. of the type

p(x, y) =
∑

αx,αy≤2m

aαx
αxyαy , (19)

where m > 0 is arbitrary but fixed.
We describe in §2 the detection-selection mechanism which labels the var-

ious cells as singular or regular, and in §3 the reconstruction procedure which
is operated on these different cells. Our approach to understanding the prop-
erties of these procedures with respect to an edge singularity is essentially a
perturbation analysis between their behavior with respect to a line edge with
piecewise constant values from both side and to the real curved edge. This
analysis allows us to derive various approximation results in §4 for piecewise
smooth functions with piecewise smooth edges. In particular, it is shown that
the multiscale coefficients are in wℓ

2
3 (similar to curvelet coefficients) and that

optimal rates of approximation can be obtained in Lp and in the Haudorff dis-
tance between graphs (16) by an adaptive multiscale method based on ENO-EA
reconstruction. Some numerical tests are performed in §5 which illustrate these
rates of approximation.
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2. The detection and selection mechanism

2.1 Step images vs. piecewise smooth images

The edge-adapted reconstruction procedure is based on a detection and selection
mechanism. The first step of detection generates a set of cells which are sus-
pected to be crossed by an edge. The next selection steps remove certains cells
of this set in order to eliminate the problems generated by false alarms. Our
main point will be to show that all edges are detected and well reconstructed
for h less than some critical scale hc, similar to the analysis performed in [3] for
the ENO-SR method.

Our analysis is based on first understanding the behavior of the procedure
on a step image, by which we mean a two-dimensional function g of the type

g := g+χ
H+ + g−χ

H− , (20)

where H+ and H− are two complementary half-plane separated by a line L. In
all the following shall systematically denote by

δ := |g+ − g−|, (21)

the amplitude of the jump for such a function. The behavior of the procedure
for more general piecewise smooth image with jump discontinuities on curved
edges is then derived by a perturbation analysis. This type of reasoning will be
detailed for the first results of the next section and sketched more briefly for
the next results in order to limitate the length of the paper. Throughout our
analysis C will always denote a generic constant which may vary even inside
a chain of inequality, and whose dependence on the various parameters will be
specified when this is relevant.

Assume that f is a piecewise C1 function with a jump discontinuity on an
edge curve E of C2 smoothness. We denote by γ(t) the arclength parametriza-
tion of E. The ENO-EA reconstruction procedure defines on each cell Ck,l a
reconstructed function Rhf which depends on the cell-average data on a set of
neighboring cells

Ik,l = {Ck′,l′ ; max{|k − k′|, |l − l′|} ≤M}, (22)

where M is fixed and depends on the degree 2m of the polynomials that we use.
We call Ik,l the influence set of Ck,l, and for notational simplicity we identify
it with the spatial domain obtained by taking the union of its (2M + 1)2 cells.
We also define

Ek,l = {t ; γ(t) ∈ Ik,l}, (23)

the set of values of t for which the edge curve crosses the set Ik,l If Ik,l is crossed
by the edge, we can define a step image g by taking for L the tangent line to the
edge at a point (x0, y0) ∈ Ik,l and g+ and g− the limit values of f at this point
from both side of the edge, as illustrated on Figure 1 (a). We also consider the
intermediate image f̃ which has the same edge discontinuity E as f , but with
constant values a and b from both side of this edge.
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For (k′, l′) such that max{|k − k′|, |l − l′|} ≤ M , we have on the one hand
the estimate

|fk′,l′ − f̃k′,l′ | ≤ Ch sup
Ik,l\E

|∇f |, (24)

which accounts for the first order variation of the real image with respect to the
constants g+ and g−, with C = (M + 1)

√
2. On the other hand, we also have

|gk′,l′ − f̃k′,l′ | ≤ Chδ sup
Ek,l

|γ′′(t)|, (25)

which accounts for the second order variation of between the curved edge E
and the line L, with C = (M + 1)2. Here, it is assumed that this set is a
single interval, in other words that there is no re-entrance of the curve in Ik,l

as illustrated on Figure 1 (b). This assumption should be viewed as similar
to the assumption used in the one-dimensional setting that the jump point are
separated by enough cells so that they can be discriminated by the ENO-SR
procedure. Combining (24) and (25), we therefore obtain

|fk′,l′ − gk′,l′ | ≤ Ch
(

sup
Ik,l\E

|∇f | + δ sup
Ek,l

|γ′′(t)|
)

, (26)

an estimate which will play a key role in our analysis. The detection, selec-
tion and edge reconstruction procedures that we shall develop are both meant
to be exact with respect to step images and robust with respect to the local
perturbation expressed by (26).

Figure 1: (a) approximation of an edge by a line (b) forbidden situation

2.2 Detection

We introduce the following detection mechanism based on the first order finite
difference:

1. If |fk+1,l−fk,l| > |fk+n+1,l−fk+n,l| for all n = −2m−2, · · · ,−1, 1, · · · , 2m+
2, then Ck,l and Ck+1,l are labeled horizontally bad (HB).

2. If min{|fk+1,l − fk,l|, |fk,l − fk−1,l|} > |fk+n+1,l − fk+n,l| for all n =
−2m− 3, · · · ,−2, 1, · · · , 2m+ 2 then Ck−1,l, Ck,l and Ck+1,l are labeled
horizontally bad (HB).
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This mechanism therefore generates pairs or triplets of adjacent HB cells. Other
cells are labeled horizontally good (HG). It is readily seen that there always
exists at least 2m+1 consecutive HG cells between pairs or triplets of HB cells.
This property will be important to avoid that false alarms are situated too close
to an edge, although more will be needed as explained in §2.5.

We perform a similar mechanism based on the finite difference in the vertical
direction, which labels the cells as VB or VG. Each cell has now two labels
corresponding to its classification by the horizontal and vertical detection.

Our first result states that with such a mechanism, all the cells crossed by
a line edge in a step image are detected either horizontally or vertically. We
introduce the angle

θ∗ := Arctg(
2

3
) <

π

4
, (27)

which will be of critical importance in all the subsequent analysis.

Lemma 1 Assume that g is a step image of the type (20) and let θ ∈ [0, π
2 ] be

the angle between line L and the horizontal axis. If |θ| ≥ θ∗ then all cells which
are crossed by L are labeled HB. If |θ| ≤ π

2 − θ∗ then all cells which are crossed
by L are labeled VB. Since θ∗ < π

4 all cells crossed by a line edge are detected
horizontally or vertically or in both directions.

Proof: We assume that |θ| ≥ θ∗, the case |θ| ≤ π
2 − θ∗ being treated by similar

arguments. Recall that δ is the amplitude of the jump in g. On a fixed row l of
cell, the line L can cross at most 3 cells Ck,l, due to the limitation on its angle.
We consider these three cases separately:
Case 1. Only Ck,l is crossed by L. Then, we have |gq+1,l−gq,l| = 0 for q ≤ k−2
and q ≥ k + 1. On the other hand, we have

|gk+1,l − gk,l| + |gk,l − gk−1,l| = δ, (28)

and therefore

|gk+1,l − gk,l| ≥
δ

2
or |gk,l − gk−1,l| ≥

δ

2
(29)

It follows that Ck,l is always contained in a HB pair or triplet.
Case 2. Two cells Ck,l and Ck+1,l are crossed by L as illustrated on Figure 2.
Then we have |gq+1,l − gq,l| = 0 for q ≤ k− 2 and q ≥ k+ 2. It is easily checked
that the sum of the areas of the two triangles defined by L in each of the two
cell is smaller than half of the area of one cell. From this it follows that

|gk+1,l − gk,l| ≥
δ

2
, (30)

and therefore

|gk,l − gk−1,l| + |gk+2,l − gk+1,l| ≤
δ

2
, (31)

so that either |gk,l −gk−1,l| or |gk+2,l −gk+1,l| is less than δ
4 . It follows that Ck,l

and Ck+1,l are necessarily a HB pair or inside a HB triplet.
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Case 3. Three cells Ck−1,l, Ck,l and Ck+1,l are crossed by L. Then we have
|gq+1,l − gq,l| = 0 for q ≤ k − 3 and q ≥ k + 2. Elementary, yet tedious,
geometrical consideration show that the differences |gk+2,l − gk+1,l| and |gk,l −
gk−1,l| respectively attain their maximal and minimal value δ

12 and δ
3 in the

configuration which is displayed on Figure 3 which corresponds to the case
where θ = θ∗ and the edge crosses the first cell only at its right corner. By
symmetry, we have

max{|gk+2,l − gk+1,l|, |gk−1,l − gk−2,l|} ≤ δ

12
, (32)

and

min{|gk+1,l − gk,l|, |gk,l − gk−1,l|} ≥ δ

3
. (33)

It follows that Ck−1,l, Ck,l and Ck+1,l are necessarily a HB triplet. ⋄

Figure 2: Crossing of two cells Ck,l and Ck+1,l by L

Figure 3: Extremal configuration of L crossing Ck−1,l, Ck,l and Ck+1,l

Remark 1 A consequence of the above lemma is that if a cell is crossed by L
with θ∗ ≤ |θ| ≤ π

2 − θ∗ then it should be labeled both HB and VB. In turn if a
cell is labeled HB and VG (resp. VB and HG) and if it is crossed by L then we
necessarily have |θ| > π

2 − θ∗ (resp. |θ| ≤ θ∗).

Our next result will show that when the scale h is smaller than some critical
scale hc, the same detection properties hold for a piecewise smooth image f with
a curved edge E. Assuming that the influence set Ik,l of a cell Ck,l is crossed by
an edge E of arclength parametrization γ(t), we define this critical scale hc by

1

hc

:=
supIk,l\E |∇f |
supEk,l

|[f ](t)| + sup
Ek,l

|γ′′(t)|, (34)

where the set Ek,l has been defined by (23)
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Lemma 2 There exists a constant κ such that for h ≤ κhc, the cell Ck,l crossed
by the curved edge E is labeled either HB or VB. More precisely, consider L the
line which is tangent to E at the point which maximizes the jump |[f ]|(t) on Ik,l

and its angle θ with respect to the horizontal axis. If |θ| ≥ θ∗ then Ck,l is labeled
HB. If |θ| ≤ π

2 − θ∗ then Ck,l is labeled VB.

Proof: Assume again without loss of generality that |θ| ≥ θ∗ and define g the
step image which takes on each side of L the corresponding limit values of f at
the contact point. We remark that the condition h ≤ κhc is equivalent to

h
(

sup
Ik,l\E

|∇f | + δ sup
Ek,l

|γ′′(t)|
)

≤ κδ, (35)

where
δ = sup

Ek,l

|[f ](t)|. (36)

Therefore, by (26), this means that

|fk′,l′ − gk′,l′ | ≤ Cκδ, (37)

when sup{|k − k′|, |l − l′|} ≤ M . We then consider the same three cases as in
the the proof of lemma 1. In the first case, we know that |gq+1,l − gq,l| = 0 for
q ≤ k − 2 and q ≥ k + 1, and that

|gk+1,l − gk,l| ≥ δ/2 or |gk,l − gk−1,l| ≥
δ

2
. (38)

Therefore, using (37), we obtain that

|fq+1,l − fq,l| ≤ 2Cκδ (39)

for q ≤ k − 2 and q ≥ k + 1, and that

|fk+1,l − fk,l| ≥
δ

2
− 2Cκδ or |fk,l − fk−1,l| ≥

δ

2
− 2Cκδ. (40)

It follows that if κ is chosen small enough such that 8Cκ < 1, we reach the same
conclusion that Ck,l is always contained in a HB pair or triplet. The two other
cases are treated by a similar perturbation approach. ⋄

Note that our proof actually shows that the whole bad pairs or triplets
around Ck,l coincide for f and g.

2.3 Selection of admissible configurations

As a second step, we perform a selection mechanism introducing the notion of
admissible and non-admissible configuration.

Consider a HB pair or triplet (Ck,l)k
−
l
≤k≤k

+
l
. We say that this set of cell

belongs to an admissible configuration if and only if there exists similar HB
pairs or triplets (Ck,l+n)k

−
l+n

≤k≤k
+
l+n

on the neighboring rows |n| = 1, · · · ,m,
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such that two adjacent rows always have an HB cell at the same column. In
other words, for all p = l−m, · · · , l+m− 1, there exists a k such that we have
jointly

k−p ≤ k ≤ k+
p and k−p+1 ≤ k ≤ k+

p+1. (41)

Of course a similar notion of admissible configuration is defined for VB pair,
by exchanging the roles of rows and columns. An example of admissible and
non-admissible configuration in the case m = 2 is presented on Figure 4.

The HB and VB cells which do not belong to an admissible configuration are
relabeled HG and VG. Note that cells sharing the same pair or triplet always
end-up with the same label.

Remark 2 It is important to note that we do not perform the relabeling in an
sequential way which would correspond to take into account the relabeling of the
previous cells when examining a new cell. Instead, during the whole selection
process, we keep in store all the labels HB and VB which were obtain after the
initial detection step, and we relabel each individual cell simultaneously based
on these initial labels.

S S

Figure 4: Admissible and non-admissible configurations

The next result states that the cells crossed by a line edge in a step image
always belong to an horizontal or vertical admissible configuration.

Lemma 3 Assume that g is a step image of the type (20) and let θ ∈ [0, π
2 ] be

the angle between line L and the horizontal axis. If |θ| ≥ θ∗ then all cells which
are crossed by L belong to an admissible configuration of HB cells. If |θ| ≤ π

2 −θ∗
then all cells which are crossed by L belong to an admissible configuration of VB
cells.

Proof: Assume without loss of generality that |θ| ≥ θ∗. Then, we have already
seen that on each row, the cells which are crossed by the line L are labeled as
HB. Such set of cells always satisfy the property (41) except in the non-generic
case where L touches a corner between four cells as illustrated on Figure 5. In
such a case however, the analysis in the proof of Lemma 1 shows that the four
cells will be labeled as HB. Indeed, in this analysis a cell may still be considered
to be crossed by the line edge even if it is only touched at its corner. This
concludes the proof. ⋄
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S S

Figure 5: Case of a line edge touching a corner: the four S cells are detected

Obviously, the same perturbation analysis as in Lemma 2 allows to extend
this result to piecewise smooth image f with a curved edge E.

Lemma 4 There exists a constant κ such that for h ≤ κhc, the cell Ck,l crossed
by the curved edge E is labeled either HB or VB and belong to an admissible
configuration of similarly labeled cells. More precisely, consider L the line which
is tangent to E at the point which maximizes the jump |[f ]|(t) on Ik,l and its
angle θ with respect to the horizontal axis. If |θ| ≥ θ∗ then Ck,l belong to an
admissible configurations of HB cells. If |θ| ≤ π

2 − θ∗ then Ck,l belong to an
admissible configurations of VB cells.

Proof: As in the proof of Lemma 2, we introduce the step image g and we obtain
that for h < κhc the bad pairs or triplets around Ck,l and its neighboring rows
coincide for f and g. ⋄

2.4 Orientation test

The third step performs an orientation test on the cells which have been labeled
both HB and VB after the selection step has been performed. Assume that Ck,l

is such a cell, we then define its vertical and horizontal gradient by

Hk,l := |fk+2,l + fk+1,l − fk−1,l − fk−2,l|,
Vk,l := |fk,l+2 + fk,l+1 − fk,l−1 − fk,l−2|.

The orientation test simply consists in comparing those two quantities.
If Hk,l < Vk,l the “vertical label” of Ck,l is set to VG, and if Hk,l ≥ Vk,l the

“horizontal label” of Ck,l is set to HG. Therefore, after this test is performed,
all the cells are either horizontally bad (HB-VG), vertically bad (HG-VB) or
good (HG-VG). We therefore denote their simplified labels as HB, VB and G.

Our next result shows that a line edge is still detected after this third step
and that the result of the test gives some information on its orientation.

Lemma 5 Assume that g is a step image of the type (20) and let θ ∈ [0, π
2 ] be

the angle between line L and the horizontal axis. Let Ck,l belong to both a HB
or VB pair or triplet one of which is crossed by L. Then if |θ| ≤ θ∗, we then
have Hk,l < Vk,l and if |θ| ≥ π

2 − θ∗, then Hk,l > Vk,l.

Proof: Without loss of generality we only consider the first case, namely |θ| ≤
θ∗. Due to this angle condition, and the fact that Ck,l belong to both a HB or VB
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pair or triplet one of which is crossed by L, it is readily seen that L necessarily
crosses one of the cells Ck,l−2, · · · , Ck,l+2. Moreover, a simple computation
shows that the segment of L which intersects the VB pair or triplet does not hit
Ck,l−2 on its lower half part: otherwise, we would have |gk,l − gk,l−1| = 0 and
|gk,l−2 − gk,l−3| ≥ 3δ/16 so that Ck,l could not be within a VB pair or triplet.
Similarly, the segment of L which intersects the VB pair or triplet does not hit
Ck,l+2 on its upper half part.

Under these limitations, elementary yet tedious geometrical consideration
show that we always have

Vk,l ≥ Hk,l +
δ

24
, (42)

the case of equality corresponding to the extremal configuration illustrated on
Figure 6 where θ = θ∗ and L contains the center of the cell. ⋄

S

Figure 6: External configuration for the orientation test

Remark 3 A simpler choice for the numerical gradients would be Hk,l :=
|fk+1,l − fk−1,l| and Vk,l := |fk,l+1 − fk,l−1|. The reason for involving two
additional cells in the definition of Hk,l and Vk,l is the need for detecting the
orientation of a line which passes through the singular pair or triplet containing
the cell Ck,l but not through Ck,l itself.

Again, the same perturbation analysis as in Lemma 2 allows to extend as
follows this result to piecewise smooth image f with a curved edge E.

Lemma 6 Let Ck,l belong to both a HB or VB pair or triplet one of which is
crossed by E. Consider L the line which is tangent to E at the point which
maximizes the jump |[f ]|(t) on Ik,l and let θ ∈ [0, π

2 ] be the angle between L and
the horizontal axis. There exists a constant κ such that for h ≤ κhc, if |θ| ≤ θ∗

we then have Hk,l < Vk,l and if |θ| ≥ π
2 − θ∗ then Hk,l > Vk,l.

2.5 Testing the reconstruction stencils

Consider a cell Ck,l which has been labeled HB after the the three previous
steps (detection-configuration-orientation). We know that it is surrounded by an
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admissible configuration of HB cells (Ck,l+n)k
−
l+n

≤k≤k
+
l+n

for |n| ≤ m identified

after the second selection step (some of these cells may actually be labeled VB
after the third orientation step). We introduce the left and right reconstruction
stencils

Sl := {Ck,l+n ; k−l+n − 2m− 1 ≤ k < k−l+n, |n| ≤ m}, (43)

and
Sr := {Ck,l+n ; k+

l+n < k ≤ k+
l+n + 2m+ 1, |n| ≤ m}. (44)

These stencils are depicted on Figure 7 in the case m = 1. It is important to
note that these stencils are connected domains due to the shape properties of
admissible configurations. We shall see further that such stencils are unisolvent
in the sense that their cell-average data defines a unique polynomial of global
degree 2m.

S

Figure 7: reconstruction stencils (in grey) for the HB cell S in the case m = 1

Of course, we define similar stencils in the upper and lower direction in the
case of a cell which has been labeled VB after the three previous steps. Without
loss of generality, we only consider in the following the case of an HB cell, the
other case being treated by symmetry.

From the definition of the detection mechanism in §2.2, it is readily seen
that all the cells in both right and left stencils surrounding the configuration
have been labeled HG since the first detection step. However, some of them
may have been labeled VB. In such a case, it is important that we understand
it one of the stencil might be crossed by the edge, in which case we do not want
to use it for the reconstruction. For this purpose, we introduce two quantities
that will serve us to test the configuration and its surrounding stencil. The first
quantity Jc is defined as the sum of the horizontal jumps inside the central HB
pair or triplet of the configuration, namely

Jc :=

k
+
l

∑

k=k
−
l

+1

|fk,l − fk−1,l|. (45)

The second quantity Js is defined as one half of the sup of the vertical jumps
for each cell within the stencil. Since we have two stencils, we define for each of
them

J l
s :=

1

2
max

Cm,n∈Sl

max{|fm,n+1 − fm,n|, |fm,n − fm,n−1|}, (46)

and

Jr
s :=

1

2
max

Cm,n∈Sr

max{|fm,n+1 − fm,n|, |fm,n − fm,n−1|}. (47)
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If a stencil, say Sl contains an VB cell, we compare J l
s and Jc and relabel Ck,l

as G if J l
s > Jc. Otherwise Ck,l is maintained as HB.

The following result reveals that this test maintains the alarm on the cells
which are indeed crossed by a line edge and eliminates the false alarms which
are too close to a real alarm.

Lemma 7 Assume that g is a step image of the type (20). If the line L crosses
the HB pair or triplet containing Ck,l, then the following properties hold:

(i) |θ| > θ∗,
(ii) L does not cross any cell of the stencils,
(iii) Jc ≥ 5δ

8 and max{J l
s, J

r
s } ≤ δ

3 .
Consequently, the HB label is maintained on Ck,l. On the other hand, if the line
L crosses one of the stencils, say Sl, then the following properties hold:

(i) |θ| ≤ θ∗,
(ii) L does not cross the HB pair or triplet containing Ck,l,
(iii) Jc = 0 and J l

s ≥ δ
3 .

Consequently Ck,l is relabeled as G.

Proof: Assume first that L crosses the HB pair or triplet containing Ck,l. We
show that we then have necessarily |θ| > θ∗. Indeed, assuming that |θ| ≤ θ∗,
elementary yet tedious geometrical considerations show that since L crosses the
HB pair, it also crosses the vertical row containing Ck,l in such a way that
this cell was necessarily also labeled VB after the second configuration test. It
was therefore relabeled HB after the third orientation test, which according to
lemma 5 is in contradiction with |θ| ≤ θ∗. As we already remarked, the cells in
the stencil had to be labeled HG after the first detection test. Since |θ| > θ∗,
this would be in contradiction with the fact that L crosses one them, according
to lemma 1. Therefore, no cell of the stencil is crossed by L.

From this last fact and |θ| > θ∗, it is easily checked that max{J l
s, J

r
s } ≤ δ

3 ,
the equality corresponding to the extremal case where L touches the corner of
a cell in the stencil and |θ| = θ∗. Since L crosses the HB pair, elementary yet
tedious geometrical considerations show that Jc ≥ 5δ

8 , the equality correspond-
ing to the extremal case of a HB pair crossed symmetrically by L as on figure 2
and such that |θ| = θ∗.

Assuming next that L crosses one of the stencils. We then know that neces-
sarily |θ| ≤ θ∗ otherwise the cell which is crossed by L inside the stencil would
have been labeled HB after the first detection test. As already shown above, if L
was crossing the HB pair or triplet, Ck,l would have been also labeled VB after
the second configuration test, and it would have been relabeled HG after the
third orientation test according to lemma 5. Therefore, L does not crosses the
HB pair or triplet which clearly implies Jc = 0. On the other hand, it is easily
checked that max{J l

s, J
r
s } ≥ δ

3 , the equality corresponding to the extremal case
where L touches the corner of a cell in the stencil and |θ| = θ∗. The proof of
the lemma is thus complete. ⋄

Again, the same perturbation analysis as in Lemma 2 allows to extend as
follows this result to piecewise smooth image f with a curved edge E.
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Lemma 8 Let L be the line which is tangent to E at the point which maximizes
the jump |[f ]|(t) on Ik,l and θ its angle with respect to the horizontal axis. There
exists a constant κ such that for h ≤ κhc, the following results hold. If the edge
E or the line L crosses the HB pair or triplet containing Ck,l, then the following
properties hold:

(i) |θ| > θ∗,
(ii) E and L do not cross any cell of the stencils,
(iii) Jc > max{J l

s, J
r
s }.

Consequently, the HB label is maintained on Ck,l. On the other hand, If the edge
E or the line L crosses one of the stencils, say Sl, then the following properties
hold:

(i) |θ| ≤ θ∗,
(ii) E and L do not cross the HB pair or triplet containing Ck,l,
(iii) Jc < J l

s.
Consequently Ck,l is relabeled as G.

3. The reconstruction procedure

The various steps that we described so far have the effect of diminishing the
number of HB and VB cells. According to our results, we are ensured that all
cells crossed by an edge end up being labeled HB or VB under the condition
h ≤ κhc. In other words, we are ensured that if a cell Ck,l is labeled G, it is not
crossed by an edge unless h ≥ κhc.

Our reconstruction procedure will therefore consist in building our polyno-
mial functions from cell-average data on stencils which if possible only consists
of G cells.

3.1 The reconstruction stencils

It is well-known that cell-average data on a (2m+ 1) × (2m+ 1) square stencil
uniquely determines a polynomial of global degree 2m. However, as already
announced in the previous section, we might be led to use stencils which are not
square shaped but of the more general type

S := {Ck+n,l ; lk+n ≤ l < lk+n + 2m+ 1, |n| ≤ m}, (48)

or
S := {Ck,l+n ; kl+n ≤ k < kl+n + 2m+ 1, |n| ≤ m}. (49)

In the following elementary lemma, we prove that cell-average data on such
stencils also uniquely determine a polynomial of global degree 2m.

Lemma 9 There exists a unique polynomial of global degree 2m which agrees
with a set of cell-average over a stencil S of the type (48) or (49).
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Proof: Since the stencil S has the correct cardinality (2m + 1)2, it suffices to
show that a polynomial p of global degree 2m with null cell-averages over S is
necessarily trivial. Without loss of generality, we consider the case of a stencil
of the type (48). If p is a polynomial and pk,l denotes its cell-average on Ck,l,
it is easily checked that

pk,l = p̃(kh, lh), (50)

with p̃ a polynomial of global degree 2m which has the same coefficients as p
for the term of highest global degree. From the assumption that pk,l = 0 when
Ck,l ∈ S we first derive that p̃((k+ n)h, t) = 0 for all t ∈ IR and |n| ≤ m, which
implies that p̃ is identically 0. Consequently p is also identically 0. ⋄

3.2 Reconstruction procedure on a non-singular cell

Consider a cell Ck,l which is labeled G after the four steps of detection and
selection which were described in §2. In such a cell the reconstruction Rhf will
be defined as a single polynomial of global degree 2m+ 1, which is constructed
as follows.

We first consider the square stencil

Sk,l = {Ck+n,l+q ; |n|, |q| ≤ m} (51)

which is centered around Ck,l. In the case where this stencil only consists of G
cells, we take for Rhf the unique polynomial p which agrees with the cell-average
data over the stencil, that is such that

h−2

∫

Ck+n,l+q

p(x, y)dxdy = fk+n,l+q, |n|, |q| ≤ m. (52)

In the case where this stencil contains one or more HB or VB cells, we need to
select more carefully the reconstruction stencil. This situation typically occurs
when Ck,l corresponds to a smooth region which is located close to an edge.
Our labeling procedure does not always ensure the existence of a square stencil
containing Ck,l consisting only of G cells, but we can still select a reasonable
stencil by using a ENO-like strategy: we introduce the cost function defined
by the sum of the vertical and horizontal jumps of the data inside the stencil,
namely

C(Sk,l) :=
∑

−m≤n,q<m

(|fk+n+1,l+q − fk+n,l+q | + |fk+n,l+q+1 − fk+n,l+q|) (53)

and we select among the square stencils (Sk+n,l+q)|n|,|q|≤m which contain Ck,l

the one that minimizes this quantity (in the case of non-uniqueness of the mini-
mizer, we systematically select the one with the smallest value of |n|+ |q| which
has the effect of promoting the centered stencil). We then take for Rhf the
unique polynomial p which agrees with the cell-average data over the selected
stencil S̃k,l.
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3.3 Reconstruction procedure on a singular cell

Consider now a cell Ck,l which was labeled HB or VB after the four steps of
detection and selection which were described in §2. In such a cell the recon-
struction Rhf will be defined as a piecewise polynomial function with a line
edge discontinuity. Without loss of generality, we describe the construction of
this function in the case of a HB label.

We first construct the line edge Lk,l by considering the cell averages on the
three row {l−1, l, l+1}. On each of these rows, we consider the HB pair or triplet
which is contained in the admissible configuration of HB cells surrounding Ck,l

after the second selection step, and we use the cell-average data to identify the
position of the line. Consider for example the central row l and the HB pair or
triplet (Cq,l)q

−
l
≤q≤q

+
l
. With the notations

a := fq
−
l
−1,l, b := fq

+
l

+1,l and c :=
1

q+l − q−l + 1

∑

q
−
l
≤q≤q

+
l

fq,l, (54)

we define the position

xl := h
(

q−l +
(q+l − q−l + 1)(c− b)

a− b

)

. (55)

which corresponds the location of the discontinuity identified by the one-dimensional
subcell resolution procedure: indeed it is such that the piecewise constant func-
tion aχx≤xl

+bχx>xl
agrees with the average c over the interval [hq−l , h(q

+
l +1)]

which corresponds to the HB pair or triplet. We define the point

zl := (xl, (l +
1

2
)h), (56)

which corresponds to the mid-point of the vertical segment crossing the row l
at the position xl. In a similar way, we define xl−1, xl+1, zl−1 and zl+1. A key
observation is the following:

In the case of a step image g(x, y) the points {zl−1, zl, zl+1} are exactly lo-
cated on the line L.

This is easily verified by geometrical reasoning: the one dimensional piecewise
constant function aχx≤xl

+ bχx>xl
has exactly average c over [hq−l , h(q

+
l + 1)]

if and only if zl coincides with the center of the segment of L crossing the row l
since this is equivalent to saying that the two triangles defined by L from both
side of the vertical segment at position xl have the same area, as illustrated by
figure 8. Note that in this reasoning we have used the fact that the line segment
L only crosses the row l inside the HB pair or triplet, according to Lemma 5.

A natural way to build the line Lk,l is therefore to find a line which matches
the points {zl−1, zl, zl+1} (which are not necessarily aligned for cell-average data
that do not come from a step image). A first possibility is simply to take two of
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L

x l

a b

Figure 8: The point zl is located on L for a step image.

these points and consider the line which connects them. For symmetry reasons,
the natural choice is then to use {zl−1, zl+1}. Another possibility which uses the
three points consists in finding the line by a minimization of the least-square
deviation

D = |xl−1 − x̃l−1|2 + |xl − x̃l|2 + |xl+1 − x̃l+1|2, (57)

where {x̃l−1, x̃l, x̃l+1} are the horizontal positions of the centers of the segments
of Lk,l crossing the rows l− 1, l and l+ 1. One last option consists in imposing
that Lk,l contains the point zl and minimizing the least-square deviation

D̃ = |xl−1 − x̃l−1|2 + |xl+1 − x̃l+1|2. (58)

This last option was chosen in the version of ENO-EA which was presented in
[4] and [29]. From a theoretical perspective all possibilities lead to the same
approximation results, and therefore we only consider here the first one - inter-
polation of {zl−1, zl+1} - which is the simplest.

Once Lk,l is defined, we consider the polynomials pl and pr respectively
defined from the stencils Sl and Sr defined by (43) and (44). The reconstruction
Rhf is then defined on Ck,l by pl on the left side of Lk,l and by pr on the right
side of Lk,l.

4. Approximation results

We are now ready to establish approximation results for the ENO-EA procedure
when applied to piecewise Cs images f with piecewise C2 edge discontinuities.
More precisely, it is assumed that f and all its derivatives up to order s are
uniformly over regions which are separated by discontinuity curves of uniform
C2 smoothness. These curves may however intersect at corners or T-junctions.
Except at these isolated points, we have therefore

|γ′′(t)| ≤ ρ < +∞ (59)

with ρ the maximum of the curvature. We always assume 1 ≤ s as well as the
natural limitation s ≤ 2m+ 1 due to the order of accuracy of our method.

We first study the error |f − Rhf | locally on each cell Ck,l in Lp(Ck,l) for
p ≥ 1. The error estimate depends on the position of the cell with respect to the
edges and the corner or T-junctions. From this local study, we then derive global
results on the sparsity of the multiscale representation and the approximation
order of uniform and adaptive methods based on the ENO-EA procedure.
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4.1 Local accuracy of the reconstruction

As announced in §2.5, the definition of Rhf on the cell Ck,l is influenced by
a set of cell Ik,l = {Ck′,l′ ; sup{|k − k′|, |l − l′|} ≤ M}, where M depends on
the polynomial degree 2m+ 1. We make the natural distinction between three
types of cells:

1. Cells Ck,l such that the influence set Ik,l is not crossed by any edge. In such
cells the function is regarded as globally Cs by the ENO-EA procedure.
Therefore, regardless of the labeling of Ck,l, the procedure clearly gives
the optimal O(hs) approximation order

|f −Rhf | ≤ Chs, (60)

where C is proportional to the L∞ norm of the s-derivatives of f over Ik,l.
This implies

‖f −Rhf‖Lp(Ck,l) ≤ Chs+ 2
p . (61)

2. Cells Ck,l such that the influence set Ik,l contains a corner or a T-junction.
These types of discontinuities are not treated properly by the ENO-EA
procedure which is tailored to smooth edge curves. In this case, one can
only guarantee the O(1) approximation order by invoking the crude esti-
mate

|f −Rhf | ≤ C‖f‖L∞ (62)

which holds since the procedure increases the L∞ norm at most by a
constant factor. This also implies

‖f −Rhf‖Lp(Ck,l) ≤ Ch
2
p . (63)

These are the crudest estimates but they only occur at very few cells since
corner and T-junctions are isolated points.

3. Cells Ck,l such that the influence set Ik,l is crossed by an edge but does
not contain any corner or T-junction. We also assume that the edge does
not re-enter Ik,l as illustrated on Figure 1. For such cells, we shall prove
that there is a significant improvement over the O(1) approximation order
which would be achieved by a linear reconstruction method, say using the
centered stencil for all cells.

Our main objective is therefore to establish local approximation results for
the cells of the third type. Assuming that Ck,l is such a cell, we consider several
cases.

Case 1. The scale h is larger than a fixed multiple of the critical scale: h ≥ κhc

with κ a constant to be fixed by the study of the next two cases. In this case, we
use the fact that the method is at least first order accurate (exact for constant
functions) in order to derive the crude estimate

|f −Rhf | ≤ Ch sup
Ik,l\E

|∇f | + δ, (64)
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where δ = supEk,l
|[f ](t)|. The condition h ≥ κhc means that

κδ ≤ h( sup
Ik,l\E

|∇f | + δ sup
Ek,l

|γ′′(t)|) ≤ h( sup
Ik,l\E

|∇f | + δρ) (65)

In particular, for h ≤ κ
2ρ

, we obtain an estimate δ ≤ 2
κ
h supIk,l\E |∇f |, which

combined with (64) yields the O(h) approximation order

|f −Rhf | ≤ Ch, (66)

where C is proportional to the L∞ norm of the gradient of f over Ik,l \E. This
implies

‖f −Rhf‖Lp(Ck,l) ≤ Ch1+ 2
p . (67)

Note that since κ
2ρ

is a fixed constant, we can also say that the O(h) order is

valid for any h < 1 up to changing the constant in (66).

Case 2. h ≤ κhc and Ck,l has been labeled G. This implies in particular
that Ck,l is not crossed by the edge. In the case where the reconstruction on
Ck,l was performed by a square stencil which only consists of G cells, we are
also ensured that this stencil is not crossed by the edge and we therefore obtain
on Ck,l the optimal approximation order (60) similar to the cells of the first
type. However, we need to address the case where such a stencil does not exists,
and analyze the behavior of the stencil selection procedure based on the cost
function (53). This is done in the lemma 10 below, which says that we have the
O(h) approximation order

|f −Rhf | ≤ Ch
(

sup
Ik,l\E

|∇f | + δρ
)

≤ Ch, (68)

which also implies (67) with C depending on ρ and on the L∞ norm of f and
it gradient over Ik,l \ E.

Case 3. h ≤ κhc and Ck,l has been labeled HB or VB. Without loss of gener-
ality, we assume that the label is HB. The reconstruction Rhf is then defined
as a piecewise polynomial function built from the cell-average data on the left
and right stencils Sl and Sr, from both side of the estimated edge Lk,l. Since
Ck,l has been maintained HB after testing the stencils, we know from lemma
8 that the edge does not crosses the stencils Sl and Sr Two subcases have to
be considered. In the first one, the edge does not cross the HB pair or triplet
which contains Ck,l. Since the edge also does not crosses the stencils Sl and
Sr, we are then ensured to obtain on Ck,l the optimal approximation order (60)
similar to the cells of the first type. In the second subcase, the edge crosses
the HB pair or triplet. In this case, consider the line L which is tangent to E
at the point which maximizes the jump over Ik,l, and for which we know by
lemma 8 that |θ| ≥ θ∗. We also denote by δ the size of the jump at the contact
point. Our main observation will be that the estimated line Lk,l is an accurate
estimation of L in the sense that if {xl−1, xl+1} denote the horizontal positions
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of the centers of the segments of L crossing the rows l − 1 and l + 1, we then
have

max{|xl−1 − xl−1|, |xl+1 − xl+1|} ≤ Ch2
( supIk,l\E |∇f |

δ
+ ρ

)

≤ C
h2

δ
. (69)

This is proved in lemma 11 below. From this observation, and since the deviation
between E and L is estimated by Cρh2, it follows that the deviation between E

and Lk,l is also less than C h2

δ
. In turn, the region of Ck,l separating E and Lk,l

over which the reconstruction uses the wrong stencil has area less than C h3

δ
.

On this region, we only have the crude estimate (64) which, since (35) holds,
may be transformed into

|f −Rhf | ≤ Cδ. (70)

On the rest of Ck,l the optimal approximation order (60) is achieved. It follows
that we have for all p ≥ 1

‖f −Rhf‖Lp(Ck,l) ≤ C
(

h3δp−1 + hsp+2
)

1
p ≤ Ch

2
p
+min{ 1

p
,s}, (71)

with C depending on ρ and on the L∞ norm of f and it derivatives up to order
s over Ik,l.

Clearly (67) and (71) improve over the approximation rate (63) on the cor-
ners and T-junctions. Under the assumption that s ≥ 1, the worst estimate is
(71) and it can be rewritten into

‖f −Rhf‖Lp(Ck,l) ≤ Ch
3
p . (72)

We now prove the two announced lemmas.

Lemma 10 In Case 2, the stencil selection based on the cost function (53)
ensures that

|f −Rhf | ≤ Ch
(

sup
Ik,l\E

|∇f | + δρ
)

. (73)

holds over Ck,l.

Proof: Let L be the line which is tangent to E at the point which maximizes
the jump |[f ]|(t), and g the step image which takes on each side of L the corre-
sponding limit values a and b of f at the contact point. We know that Ck,l is
also not crossed by L. It follows that

|f − g| ≤ Ch sup
Ik,l\E

|∇f | (74)

over Ck,l. Denote by S be the stencil which is selected by the ENO procedure
and by RS the interpolation operator which uses the cell-average data over the
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stencil S to reconstruct a polynomial of global degree 2m + 1. We therefore
have Rhf = RSf . It is also clear that for all function u, we have on Ck,l

|RSu| ≤ C max
Cn,q∈S

|un,q|, (75)

and in particular

|RSf −RSg| ≤ C max
Cn,q∈S

|fn,q − gn,q| ≤ Ch
(

sup
Ik,l\E

|∇f | + δρ
)

, (76)

where we have used (26) and the fact that RS is linear once we have fixed the
stencil S. Therefore, in order to prove (73), it suffices to prove that

|g −RSg| ≤ Ch
(

sup
Ik,l\E

|∇f | + δρ
)

. (77)

Since L does not cross Ck,l, there also exists a square stencil S̃ containing it and
which is not crossed by L. We define C(S, f) and C(S, g) as the cost function
(53) for the stencil S with respect to the cell-averages of f and g respectively,
and we define C(S̃, f) and C(S̃, g) in a similar manner. Since L does not cross
S̃, we clearly have

C(S̃, g) = 0. (78)

If L crosses S, we denote by α the area of the smallest of the two parts of S
separated by L. Elementary yet tedious geometrical configurations show that

C(S, g) ≥ δmin(1,
α

h2
). (79)

On the other hand we know that C(S, f) ≤ C(S̃, f). Since according to (26) both

|C(S, f)−C(S, g)| and |C(S̃, f)− C(S̃, g)| are estimated by Ch
(

supIk,l\E |∇f |+

δρ
)

with C some fixed constant, we necessarily have

2δmin(1,
α

h2
) ≤ Ch

(

sup
Ik,l\E

|∇f | + δρ
)

. (80)

In the case where α ≥ h2, we obtain that δ ≤ Ch
(

supIk,l\E |∇f | + δρ
)

, and so

(73) is directly proved by invoking the crude estimate (64). In the case where
α < h2, we denote by g̃ a function which is constant over S with the same value
as g over the largest part of S separated by L. Clearly, we have RS g̃ = g̃ on
S and since α < h2 the cell Ck,l has to be contained in the largest part of S
separated by L so that g = g̃ on Ck,l. It follows that we have on Ck,l

|g −RSg| = |g̃ −RSg|
= |RS g̃ −RSg|
≤ CmaxCn,q∈S |g̃n,q − gn,q|
≤ δ α

h2

≤ Ch
(

supIk,l\E |∇f | + δρ
)

.

which is (77). ⋄
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Lemma 11 In Case 3, we have the estimate

max{|xl−1 − xl−1|, |xl − xl|, |xl+1 − xl+1|} ≤ Ch2
( supIk,l\E |∇f |

δ
+ ρ

)

. (81)

where {xl−1, xl, xl+1} and {xl−1, xl, xl+1} denote the horizontal positions of L
and Lk,l in the middle of the rows l − 1, l and l + 1 respectively.

Proof: For notational simplicity, we prove the estimate for |xl − xl|, the proof
being identical for the rows l− 1 and l+1. Let g the step image which takes on
each side of L the corresponding limit values a and b of f at the contact point.
According to the results of §2.2, we know that L and E both cross the row L
inside the HB pair or triplet (Cq,l)q

−
l
≤q≤q

+
l

which contains Ck,l. Recall that we

have

xl := h
(

q−l +
(q+l − q−l + 1)(c− b)

a− b

)

, (82)

with

a := fq
−
l
−1,l, b := fq

+
l

+1,l and c :=
1

q+l − q−l + 1

∑

q
−
l
≤q≤q

+
l

fq,l. (83)

On the other hand, we have remarked that the edge reconstruction procedure
exactly identifies L in the case where the cell-average data come from the step
image g. Therefore we have

xl := h
(

q−l +
(q+l − q−l + 1)(c− b)

a− b

)

, (84)

with

a := gq
−
l
−1,l, b := gq

+
l

+1,l and c :=
1

q+l − q−l + 1

∑

q
−
l
≤q≤q

+
l

gq,l. (85)

The lemma will therefore be proved if we can show that

∣

∣

∣

c− b

a− b
− c− b

a− b

∣

∣

∣
≤ Ch

( supIk,l\E |∇f |
δ

+ δρ
)

. (86)

For this, we write

∣

∣

∣

c− b

a− b
− c− b

a− b

∣

∣

∣
≤ |c− c| + |b− b|

|a− b|
+

|c− b|(|a− a| + |b− b|)
|(a− b)(a− b)|

. (87)

Remark that |a − b| = δ. Using (26), the first term on the right hand side is
estimated by

|c− c| + |b− b|
|a− b|

≤
Ch

(

supIk,l\E |∇f | + δρ
)

δ
(88)
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which is the desired estimate. For the second term, we remark that since h ≤
κhc, we have by (37)

|a− a| + |b− b| ≤ Cκδ, (89)

and therefore, by choosing κ small enough

|a− a| + |b− b| ≤ δ

2
, (90)

which implies |a− b| ≥ δ
2 . It follows, using both (26) and (37), that

|c− b|(|a− a| + |b − b|)
|(a− b)(a− b)|

≤
C|c− b|h

(

supIk,l\E |∇f | + δρ
)

δ2
. (91)

Since obviously |c− b| ≤ δ, we obtain by (37) that

|c− b| ≤ |c− b| + |c− c| + |b− b| ≤ Cδ, (92)

which combined with (91) gives the desired estimate. The proof of the lemma
is therefore complete. ⋄

4.2 Approximation and sparsity results

We can summarize as follow the error estimates which have been established
for the ENO-EA method applied to a piecewise smooth image: cells of the first,
second and third type respectively satisfy the local error estimates (61), (63)
and (72).

Moreover for an image defined on the normalized square [0, 1]2 we can esti-
mate the number of cells of each type by

N1 ≤ Ch−2, N2 ≤ C and N3 ≤ Ch−1. (93)

It then follows that the global Lp error is estimated by

‖f −Rhf‖Lp ≤ C
(

hsp + h2
)

1
p ≤ Chmin{s, 2

p
}. (94)

In particular for s ≥ 2, we obtain an estimate

‖f −Rhf‖Lp ≤ Ch
2
p ∼ CN− 1

p , (95)

where we have denoted by N the total number of cell-average which are used to
build Rhf . This should be contrasted with the linear reconstruction based on
the centered stencil: with this method we can only rely on a O(1) approximation
order for the cells of the second type, and we then obtain the estimate

‖f −Rhf‖Lp ≤ Ch
1
p ∼ CN− 1

2p . (96)

The operator Rh still represents a uniform approximation, since it is based
on the cell-average data sampled on a uniform grid. We are also interested in
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comparing the ENO-EA procedure with the linear procedure in the context of
adaptive approximation. One natural way of building such approximations is
by using the multiscale framework which was described in §1.2: multiscale coef-
ficients dλ are defined as the error of prediction from level j - which corresponds
to h = 2−j - to the next one. In the case where we used the linear procedure,
the coefficients dλ can be interpreted as the coordinates of the function f in a
wavelet basis. This wavelet basis is usually normalized in L2, which mean that
we have normalized the dλ in such a way that we have in particular

|dλ| ≤ ‖f −Rhf‖L2(Ck,l) (97)

when λ is associated to the cell Ck,l. We proceed to a similar normalization for
the multiscale coefficients obtained with the ENO-EA procedure. Note however
that since this is a non-linear procedure, these coefficients cannot be interpreted
as the coordinates of f in a basis.

Adaptive approximations can be performed by thresholding the wavelet co-
efficients. This is also known as best N -term approximation which corresponds
to keeping the N largest coefficients. When measuring the error in the Lp

distance, this should be performed by sorting the coefficients in the order of
magnitude where they appear when the wavelet is normalized in Lp, see [14, 18]
for more details. Here we simply discuss the case p = 2, which correspond to
the normalization that we have chosen.

As explained in the introduction, the rateN−s of bestN -term approximation
in a basis is reflected by the amount of sparsity in the sequence (dλ) in the sense
that (1) is equivalent to (2). When using the linear reconstruction method in the
computation of the multiscale coefficients, which corresponds to a decomposition
in a biorthogonal wavelet bases, we know that the coefficients sequence is in
general no sparser than wℓ1. Consider now the coefficients sequence associated
to the ENO-EA procedure. In view of (97) and of our previous findings, the

coefficients at level j are estimated by O(2−3j), O(2−j) and O(2−
3j

2 ) for cells
of first, second and third type respectively (we assume here that s ≥ 2 in order
to ensure the first estimate). Using (93), we find that

#{λ ; |dλ| ≥ η} ≤ C
(

∑

2−3j≥η

22j +
∑

2−j≥η

1 +
∑

2−
3j
2 ≥η

2j
)

≤ Cη−
2
3 . (98)

We therefore find that the coefficient sequence has the improved sparsity wℓ
2
3 ,

similar to the coefficients in a curvelet frame [11, 10]. In view of (2), this
suggests that the L2 approximation rate of best N -term approximation should
be O(N−1), which is also attained with curvelet frames (up to a logarithmic

factor) or bandelet bases, and which improves over the rate O(N− 1
2 ) attained

by wavelet N -term approximation. However this fact is not proved and we
conjecture its validity as an open problem. The difficulty is that the non-linear
multiscale transform is not a decomposition in a basis, and the reconstruction
error cannot be controlled in full generality by the ℓ2 error on the coefficients.
This brings out the natural question of the stability of nonlinear multiscale
transforms, on which some partial results have been proved in [16].

27



It is possible however to introduce another adaptive algorithm based on the
ENO-EA procedure for which the optimal approximation rates can be proved.
The algorithm builds up a non-uniform partition of dyadic square cell by the
following adaptive refinement procedure: we fix an accuracy parameter ε > 0,
and starting from the coarsest resolution we iteratively split into four any cell
Ck,l of size h such that ‖f −Rh‖Lp(Ck,l) ≥ ε. The algorithm terminates when
the local Lp error is bounded by ε on each cell of the partition. Such adaptive
refinement procedure are well understood in the case of linear reconstruction
such as projection onto piecewise constant functions, see [19].

In our case, we denote by Aεf the approximation which is defined by the
nonlinear ENO-EA reconstruction on each cell of the adaptive partition. The
number of degrees of freedom Nε that describe Aε is obviously proportional to
the cardinality of the partition. We can estimate it by

Nε ≤ C
(

∑

2
−(s+ 2

p
)j
≥ε

22j +
∑

2
−

2j
p ≥ε

1 +
∑

2
−

3j
p ≥ε

2j
)

≤ Cmax{ε−p

3 , ε−
2p

sp+2 }. (99)

By summing up ‖f − Rh‖p

Lp(S) over all cells S of the adaptive partition, we

obtain that the global Lp error is bounded by

‖f −Aεf‖Lp ≤ ε(Nε)
1
p . (100)

In the case where p = 2 and s ≥ 2, we therefore obtain

Nε ≤ Cε−
2
3 , (101)

and
‖f −Aεf‖L2 ≤ Cε

2
3 ≤ CN−1

ε , (102)

which is the optimal rate of approximation. A similar computation shows that

for more general values of p, we obtain the rate O(N− 2
p ), which improves over

the rate O(N− 1
p ) of adaptive approximation by wavelets.

The rates of approximation in Lp that we have obtained degenerate to O(1)
- that is no convergence - when p = ∞, both with the uniform and adaptive
method. This is no surprise, since we cannot expect convergence in L∞ due
to the presence of the edge discontinuity. As in the one dimensional case with
ENO-SR, it is still possible to study convergence with the Hausdorff distance
between graphs as a natural substitute to the L∞ norm. Note that both uniform
and adaptive method based on classical wavelet or other bases cannot converge
in this metric, due to the presence of Gibbs phenomenon in the reconstruction
near the discontinuity (however, additional processing can be performed in order
to limitate this phenomenon, see [12]). In contrast, we can obtain convergence
rates with the ENO-EA procedure, provided however that we assume that there
is no corner or T-junctions, since Gibbs phenomenon might still appear in the
vicinity of these points.

Consider first the uniform approximation Rhf . Our local error analysis show
that we have always |f − Rhf | controlled by a O(h) bound except in Case 3
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of cells of the third type, for which we have an O(1) error in the region which
corresponds to the mismatch of the real edge E by the line edge Lk,l. However

we have seen that the deviation is controlled by Ch2
( supIk,l\E |∇f |

δ
+ ρ

)

, which

is always O(h) due to (35). It follows that the Hausdorff distance satisfies

d(f,Rhf) ≤ Ch ∼ CN− 1
2 . (103)

An adaptive approximation algorithm based on a splitting procedure can per-
form better, since we have in fact |f − Rhf | controlled by a O(hs) on all the
cells of first type. It follows that the Hausdorff distance ε is achieved with a
partition of complexity

Nε ≤ C
(

∑

2−sj≥ε

22j +
∑

2−j≥ε

2j
)

≤ max{ε− 2
s , ε−1}. (104)

For s ≥ 2, this gives the better rate

d(f,Aεf) ≤ CN−1
ε . (105)

5. Numerical tests

In this section we perform numerical tests which illustrate the results obtained
in the previous sections. We consider the case m = 1 which corresponds to the
use of bi-quadratic polynomials.

We use as test cases the 512 × 512 geometric images displayed in Figure 9.
The first one represents an ideal step edge, the second one a piecewise constant
image having straight edges with a T− junction and the last one a piecewise
smooth image having smooth and curved edges.

Figure 9: Geometric Test Images

Figure 10 displays the bad cells detected by the ENO-EA detection algo-
rithm §2.2 at resolution level j = 8, the finest level corresponding to the pixel
resolution being J = 9. As expected, these cells are exactly located along the
edges. In the case of a real image, the first step of the detection algorithm
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Figure 10: Bad Cells in the Vertical or Horizontal direction

tends to label as bad many cells which are not crossed by edges. However,
the sequence of selection tests described in §2.3, 2.4 and 2.5 has the effect of
eliminating these false alarms.

Figure 11: Coarse resolution images

We perform the reconstruction from the coarse cells of the three images at
resolution j = 7. We display the corresponding low resolution images in Figure
11. Figure 12 displays the ENO-EA image reconstruction. As expected, the
reconstruction is exact in the case of piecewise constant separated by line edges
and highly accurate for curved edges. In contrast, Figure 13 displays the recon-
struction based on the same cells, but using the linear reconstruction procedure
(bi-quadratic polynomials with centered stencil). While the reconstruction is ac-
curate in the smooth regions of the image, we notice that blurring and ringing
artefacts are present on the edges.

Finally, we illustrate the sparsity of multiscale decomposition in the third
geometric image, by displaying in Figure 14 the decreasing rearrangement of
the coefficients sequence in logarithmic scale. The two curves correspond to
the multiscale decompositions based on the linear and ENO-EA reconstruction
procedure respectively. We observe three regimes:

1. The beginning of the curves corresponding to the 200 largest coefficients.
These are typically coefficients corresponding to the coarsest scales for
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Figure 12: Reconstruction results without adding details

Figure 13: Reconstruction results without adding details using linear methods
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Multiscale coefficients in decreasing order for geometric image

ea
bw

Figure 14: Decreasing rearrangement of the coefficients sequence for the geo-
metric image with linear (bw) and ENO-EA (ea) decomposition
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which the ENO-EA reconstruction is not more effective than the linear
reconstruction since the scale is above the critical scale hc and therefore
the cells are too coarse for the algorithm to detect the geometry accurately.

2. The end of the curves corresponding to the smallest coefficients, with rank
higher than 20000. These are typically the very small fine scale coefficients
corresponding to the smooth regions, on which both the ENO-EA and
linear reconstruction do as good.

3. The coefficients between rank 200 and 20000. These are typically the
coefficients corresponding to the cells that meet the edges at sufficiently
small scales so that the ENO-EA reconstruction is significantly better than
the linear reconstruction. We observe that the two slopes in logarithmic
scale are significantly different. A linear regression gives approximately
slope −1.1 for the linear decomposition and −1.5 for the ENO-EA decom-
position, which is in accordance with the improved sparsity result (98)
obtained in the previous section.

Remark 4 Since the multiscale transformation has the same hierarchical orga-
nization as the standard wavelet transform, its complexity remains of O(N) =
CN complexity where N is the the number of pixels in the image. However, in
the implementation of the method which was used in our numerical experiment,
we observed that the multiplicative constant C was increased by a factor around
50 compared to a standard biorthogonal wavelet transform with the (5-7) filter
pair, which is due to the fact that the linear filtering process is replaced by the
more involved detection-selection-reconstruction process which was described in
§2. We expect that this factor can be reduced by optimizing the implementation
of the this process.

Remark 5 Our theoretical analysis and numerical experiments were conducted
in the case of noiseless image data. In the case of an image corrupted by
some additive noise, we have observed that the detection-selection-reconstruction
mechanism is not significantly altered as long as the noise level is neglectable
compared to the the amplitude of the true edge, but it might fail otherwise. Note
that the noise level is meant here at the given scale of consideration, and there-
fore will be lower at coarser resolutions since the pixels have been produced by
an averaging process. More precisely, for an additive white noise of variance σ2

on each fine resolution pixel, the noise level σ at level J becomes 2j−Jσ at level
j < J .

6. Conclusions

In this paper, we present in detail the ENO-EA reconstruction procedure and
prove that its approximation properties are better than those of wavelets in
the case of piecewise smooth functions separated by piecewise C2 edges, and
similar to those of more advanced methods such as curvelets, bandlets, normal
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meshes and wedgeprints in the case of the L2 error. We also establish approx-
imation results in Lp and in the Hausdorff metric. One of the specificity of
our approach is that it retains exactly the same multiscale structure as classical
wavelet transforms, the main change being in the local reconstruction proce-
dure. Also, similar to curvelets and in contrast to bandlets and wedgeprints,
we do not encode any geometrical information such as the orientation of the
reconstructed edges, since this information is in some sense contained in the
cell-average data which are used in the reconstruction process. Let us point out
three intrinsic limitations of our approach:

1. The treatment of edges is done by reconstructing a sharp discontinuity.
This means that our approach is not adapted to the treatment of blurred
edges, in contrast to curvelets and bandlets which can treat these cases.

2. Similar to curvelets, wedgeprints and normal meshes, our approximation
rates are optimal for C2 edges, yet sub-optimal for smoother edges, in
contrast to bandlets. This is due to the fact that we approximate the edge
by a line. It is theoretically possible to develop a similar approach with
the line replaced by a polynomial piece but the identification procedure
for this piece is then much more complex.

3. Although observed in practical numerical experiments, the stability of the
multiscale transform associated with the ENO-EA procedure does not hold
in full generality.

From a more applied perspective, compression algorithms based on the ENO-EA
procedure have already been introduced in [4] and [29]. The optimal encoding
strategy for the multiscale coefficients is still the object of current research.
Other natural applications that will be investigated are zooming (by which we
mean deriving a high resolution image from coarse resolution data) and geomet-
rical interface reconstruction in numerical simulation of PDE’s.
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