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Abstract. Subdivision schemes with matrix masks are a natural extension of
the well studied case of subdivision schemes with scalar masks. Such schemes
arise in the analysis of multivariate scalar schemes, in subdivision processes
corresponding to shift-invariant spaces generated by more than one function, in
geometric modeling where each component of the curve/surface is designed by
a different linear combination of the control points, and in the case of schemes
which interpolate function and derivatives values simultaneously. The limit of
a matrix subdivision scheme can be expressed as a combination of shifts of a
refinable matrix function ®. It is shown that if ® is stable in the sense of a
new stability notion for matrix valued functions, then the scheme is uniformly
convergent. Also it is shown that the stability of a maximal submatrix of ® is
related with the linear dependence of its rows, and hence of any vector valued
function generated by the subdivision scheme. Finally it is shown that by proper
renormalization of the process relative to the vanishing rows of @, it is possible to
generate vector limit functions with components, which are the first derivative of
certain linear combinations of the other components. The same approach allows
to analyze the smoothness of .

§1 Introduction

Matrix subdivision schemes play an important role in the analysis of multivari-
ate subdivision schemes [7], in the construction of multiple-knot splines and in Her-
mite type subdivision [11]. They also have strong connections with multiresolution
approximation of multiplicity more than 1 ([15],[16],[19],[20]) and multi-wavelets
([17],[18],[21]).

The purpose of this work is to understand the characteristics of the different
types of matrix subdivision schemes.
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A uniform stationary matrix subdivision scheme is defined by a set of real n xn
matrix coefficients {A; : j € Z}, with a finite number of non-zero A4;’s, generating
control points in IR™ f* = {f]k 1] € Z} ,k > 0, recursively by

FEP =) Aiaff ,icZ . (1.1)
JEZ

In (1.1) we find two rules, or masks, for even and for odd ¢, involving the non-zero
matrix coeflicients A; with even and with odd j’s respectively.
We say, that S is a convergent subdivision scheme, or that S is C?, if for every

set of control points fO = {f;) € IR™ : j € Z} there is a continuous function
f : IR — IR™ such that
Jim sup [|(S*f°); — F(27*5)| =0, (1.2)
—)ooj'ez

and f # 0 for at least one initial data f°. We denote the above function f by
S f° and call it a limit function of S or a function generated by S. In matrix
subdivision schemes theory it is also convenient to consider n X n matrix valued
functions, generated by applying the scheme to sets of matrix control points F° =
{F](-) € IR" xIR™ : j € Z}. The basic limit vector functions of a convergent matrix
subdivision scheme are the rows of ® = S®Ag where A; = {8 iI}jcz, I = Inxn.
As in scalar subdivision schemes, the matrix function ® satisfies a two-scale
refinement equation
O(z) = ) (22 —j)4; . (1.3)
JEZ
Hence, each row of ®, i.e., each basic limit vector function satisfies a refinement
equation with the A;’s as coefficients. By the finite support of the 'mask’ {4, : j €
Z} it follows that elements of ® are functions of compact support. The interest in
the basic limit vector functions is due to the fact that the vector limit functions of the
subdivision process are in the span of the integer shifts of the columns of ®. That is,
if we start the subdivision process (1.1) with an initial set f® = {f? € R" : i € Z}
we get
F=8%f =8 A= &(-—i)f . (1.4)
€% 1<y 4
Thus the k-th component of the limit vector function f is in the span of the integer
shifts the k-th basic limit vector function,

fe(@) = D) el — ) (f])e - (1.5)
1€EZ (=1

Therefore, it is important to know if

Uk:{fbk,g(-—i):lgﬁgn,iEZ}, (16)
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is a stable basis, say in L?(IR) or L™(IR). Another interesting issue is the inter-
dependence of the coordinates in the limit vector function f, which plays an im-
portant role when the coordinates of the vector subdivision are intertwined as in
certain signal processing applications [21]: assuming that the limit function is not
identically zero, at least for some initial data f°, we would like to know when are
the functions f; linearly dependent.

In §2, we show that the number of inter-dependence relations between the
coordinates of f is related to a generalized stability notion for the matrix function
®. We also show that this stability property implies convergence of the subdivision
scheme.

We restrict to the study of convergence and stability in the L* sense. More
general LP results of the same type, as well as specific criterions on the mask that
ensure stability and regularity of ®, will appear in [22].

Note that the relations between stability and rank property have been stud-
ied in the L? framework in [15], but in the case of stable refinable vectors that
corresponds, as we shall see, to having inter-dependence between every pair of co-
ordinates of f. Also in the case of refinable vectors, conditions on the mask for
stability have been obtained in [23].

Inter-dependence can also be expressed by the fact that a coordinate in the
limit vector function is uniformly zero. We analyze such a situation in §3 and show
that a proper renormalization of the process relative to the vanishing rows of ®
generates vector limit functions with components related to the first derivative of
certain linear combinations of the other components.

§2 Relations between inter-dependence and stability

We start with the assumption that the scheme (1.1) is C°, i.e., convergent. The
relation (1.1) represents two rules, one generating the even entries {féci"i'l Yicz, using
the even coeflicients {Ay;};cz, and the other generating the odd entries {fzkzill Yiez,
using the odd coefficients {A3;11};cz. Important to this investigation are the
matrices

Bo=) Asi, Bi=)> Ay, M(0)=%(Bo+Bi), (2.1)
e Z 1€EZ

2
The following two Theorems are the matrix analogue of the necessary condition
for scalar C° schemes, namely, that the sum of the even coefficients and the sum
of the odd coefficients are both 1. The proof of the first Theorem is as the proof of

the scalar case (Proposition 2.2 in [7]).

where M (w) = 1 diem Aje v,

Theorem 2.1 If § is C° then By and B; have a common eigenvector with an
eigenvalue 1.
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Let W denote the space of all common eigenvectors of By and B; corresponding
to the eigenvalue 1, and let m be its dimension. Let us also introduce the matrix

V= ('u(l)...'u(m)), where {v(),...,9(™)} is a basis of W.

Theorem 2.2 If S is C° then W is also the space of eigenvectors corresponding to
the eigenvalue 1 of the matrix M(0) . Moreover, M(0) has n — m eigenvalues with
modulus less than 1 .

Proof: Clearly, W is included in the space W of eigenvectors with eigenvalue 1 of
M(0). Now we observe that

T =275 (8%Ag); — J = / & (z)dz ,

icZ R

where & = S®Aq, and that 2*J; is the sum of the matrices of the k-iterated
scheme. Thus Jy = M(0)* and M(0)* — J. Since M(0)* exists, its columns are in
W while those of J are in W. Therefore W = W and M(0) has n — m eigenvalues
with modulus less than 1 . [ |

In the following we assume that W is the eigenspace of M(0) corresponding to
the eigenvalue 1 .

Theorem 2.3 Let m < n, then any m + 1 elements of f = S®f° are linearly
dependent.

Proof: By the continuity of the limit it follows from (1.1) that Bof(z) = B1f(z) =
f(z) for any € IR. Thus f(z) € W. The matrix V is of rank m, hence any m + 1
rows of V are linearly dependent. Since f(z) = Vu(z) with u(z) € R™, any m + 1
elements of f are linearly dependent. [ |

Definition 2.1 We say that hq, ..., h, constitute a stable basis if their integer shifts
constitute a Riesz basis of span{h;(- —1):1<j<r, 1€ Z}.

Theorem 2.4 _ _
A. The 1-periodic matrix function ® = ), ®(- — i) satisfies 8V = V where
d =S®A,.
B. Let dimW = m, 2 < m < n, then within each basic limit vector function of S
there exist n — m + 2 elements which do not constitute a stable basis.

Proof: The property dV =V follows directly from (1.4) when taking the constant
initial data fO = v(9), 0 < j < m, since by (2.1) S®v(9) = v(9), For part B let us
assume, w.l.o.g., that the upper m x m part of the n x m matrix Vis I = I,xm ,

ie.,, V= (I | U)t. Viewing the equality ®V = V we have

MY Fule—i)WVij=Vij, 1<k<n,1<j<m, (2-2)
1€EZ L=1
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where for each k only n — m + 1 elements of the kth row of ® take part in the sum.
Now, if V4 ; = 0 then obviously those n —m 41 elements cannot constitute a stable
basis. If Vi ; # 0 for 1 < j < m we take a linear combination of the equalities (2.2)
for j = 1,2 to get a zero in the r.h.s., using n — m + 2 elements of the kth row of

d. |

Corollary 2.5 If one basic limit vector function is stable then m = 1 and any limit
function of the subdivision is of the form f(z) = h(z)v with v € IR".

Since by Corollary 2.5 only in the special case m = 1 a basic limit vector
function can constitute a stable basis, we suggest to consider the stability of ® as a
matrix function.

Definition 2.2 We say that an m X n matrix function G(z) is stable if its integer
shifts constitute a stable basis (in L) of span{®(- — ) : 1 € Z}. i.e., for any
{¢r} € boo, "

c1 sup{[lgill} < sup{|| Y G(z — k)gr} < c2 sup{llxll} - (2.3)
kEZ z€R = keZ

It should be noted that a matrix function is stable if a matrix consisting of a
subset of its rows is stable. With this definition at hand, the proof of Theorem 2.4
can be further exploited to give:

Theorem 2.6 Any matrix function consisting of k < m rows of ® = §®/A, is not
stable.

As a direct consequence of Theorems 2.3 and 2.6 we get,

Corollary 2.7 Let ® = S§®Ay be stable, and let m be the minimal number of rows
of ® which constitute a stable matrix. Then any m 4+ 1 components in any vector
valued function generated by S are linearly dependent.

In the rest of this section we consider refinement equations of the type (1.3),
with masks satisfying the requirements of Theorems 2.1 and 2.2, and prove that if
a compactly supported continuous solution of such a refinement equation is stable,
then the corresponding subdivision scheme is uniformly convergent. This result
extends a known result of a similar nature for scalar schemes [2].

Proposition 2.8 Let ¥ be any compactly supported C(IR) solution of the refinement

o~

equation (1.3), then ¥(z) = ¥(0)V N(z) where N is an m X n matrix function.

Proof: Applying the Fourier transform to (1.3) we obtain

U(w) = U(w/2)M(w/2), (2.4)
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and by iteration,

w) = TO)[[] M2 Fw)]. (2.5)

k=1

/P_G\)

The convergence of

P(w) = [[ M2 *w) = lim [M(27"w) - M(w/2)],

n—oo
k=1

is ensured by the spectral properties of M(0). Note that P(0) = M(0)® is a
projection operator onto the subspace W. Moreover, by definition,

P(w)= lim [P27"w)M (27 "w) - M(w/2)] = P(0)P(w),

n— oo

and hence by (2.5) R R
U(w) = ¥(0)P(0)P(w). (2.6)

We conclude by noting that P(0)P(w) can be written in a unique way as VQ(w),
where Q(w) is an m X n matrix. B

Proposition 2.9 Let ¥ be a compactly supported stable C(IR) solution of the
refinement equation (1.3). Then there exists a non-singular n X n matrix C, such

that ® = CV is a stable solution of (1.3) satisfying EI;(J:)V =V and C/I;(O)V =V.

We call ® a normalized solution.

Proof: jFrom the refinement equation (1.3)

Uz) =Y Ule—i)= > > U2 —2i—j)4;

1<y 4 1E€EZ jJEZ
=> V(20 Ap g
leZ €%

Therefore, E’(m)V = @(21:)1/, implying that E’(m)V = EI(O)V, by the continuity of

¥. Now, if ¥ is stable, then for any vector u

> (e —i)Vu=T(0)Vu#£0.

Hence, rank (EI(O)V) = m and there exists a non-singular martix C' such that
CE’(O)V = V, and hence Cil(m)V = V. The stability of C¥ follows from that
of ¥ and the non-singularity of C. Moreover, since ¥(z)V is a periodic matrix

function which is constant, then Cf’(m)V = (I\I(O)V , which completes the proof of
the proposition. [ |
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Theorem 2.10 Let ® be a continuous compactly supported stable solution of
the refinement equation (1.3). If the necessary conditions in Theorems 2.1-2.2 are
satisfied then the corresponding subdivision scheme (1.1) is convergent.

Proof: We can assume that ¢ is a normalized stable solution of the refinement
equation. It is enough to check the convergence with the initial condition F° = A,.
Using (1.3) we find out that

=) 2%z — ) (S*Ao); . (2.4)

iEZ
Also, using ®(z) = VN(z) and ®V =V, we have

Z ®(2%z — i)®(z) = ®(2"2)VN(z) = VN(z) = &(z) . (2.5)

Thus it follows that

0="> &@2"z—14)[(S"*A0)i — &(z)]

iEZ

=3 @(2kz —i)[(S*Ao); — ®(27Hi))

iEZ

+ ) 82k —0)[@(274) - &(2)] . (2.6)

iEZ

By the continuity of ® and its compact support, for any ¢ > 0 dK s.t. for k > K

1) @(2%z — i)[®(27%) — (2)][|leo < - (2.7)

iEZ

Now, from (2.6) and (2.7)

1Y @252 — i)[(S*Ao)i — (27%4)]|leo <€ for k> K, (2.8)
1€EZ

and by the stability of ®
18* A0 — ®(27F)||w < € for k> K . (2.9)

Hence S is convergent in the sense of (1.2) and S®Aq = ®. [ |
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§3 Analysis of smoothness and differential inter-dependence

It is convenient for the analysis of matrix subdivision schemes to introduce the
following transformation:

Let @ be an n X (n — m) matrix such that 7" = (V | Q) is a non-singular n X n
matrix. Define the matrix mask

A, =T AT, j€Z, (3.1)

and consider the subdivision scheme S and the refinement equation corresponding
to this matrix mask. Now the matrices

Fo = ZZZZ s Fl = ZZZ’H'l s (32)

e Z 1=y 4

have the standard unit vectors el?), 1 < j < m as eigenvectors with eigenvalue 1,

and correspondingly we define V = (e(l)...e(m)). Thus

B;= (eM..e™ E), i=0,1. (3.3)

An appropriate choice of the matrix () is that consisting of the n — m eigenvectors
and possibly generalized eigenvectors of M(0) corresponding to eigenvalues with
modulus less than 1 . With this choice of @ , M(0) is a diagonal matrix or a Jordan
matrix.

Let ¥ be a solution of (1.3), then ¥ = T~1¥T satisfies
T(a) = 3 T2z — j)4; | (3.4
JEZ
and if U is stable then ¥ is stable. Also, if we perform the subdivision
—k+1

B =N AT iem. (3.5)

JEZ
starting with the initial vector f = T71f° then
TSF = 8>f° . (3.6)
Thus, to simplify notations, we can assume that the original mask is such that
V= (e(l) ...e(m)). In this case, the last n—m rows of ® are identically zero. With this

special form of V' we can easily derive appropriate difference and divided difference
schemes for the scheme (1.1) for analyzing its convergence and the smoothness of
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its limit vector functions. As in [11] we use a corresponding matrix-valued Laurent

polynomial
Az) = Z A2t
iEZ

to represent the matrix subdivision scheme (1.1). Now we define the Laurent poly-
nomial

D(z) =2E(2)A(2)E(z*) " = ) Diz*, (3.7)

iEZ

where E(z) = ((z_1 — e, (271 = l)e(m),e(m+1)...e(")). The corresponding mask
{D;} is of finite support by (3.3). It generates a stationary matrix subdivision
scheme Sp transforming the values {g*},

gzlc = 2k(( ikii—l)l - (fik)la--'a( i]:—l)m - (fik)ma(fik)m-l-la---a(fik)n)t (38)

into the corresponding values at level k + 1, namely {gf"’l}.
As in the scalar case we have the following relation between S and Sp .

Theorem 3.1 If%SD is contractive then S is C° . If Sp is C° then S is C*. Moreover
with the initial data G° consisting of the first m rows of A_; — A and the last
n—m rows of Ag , the first m rows of S’ G° are the derivatives of the corresponding
elements in the first m rows of ® . Also, ®p = SF Ay is related to the non-trivial
part of ® by

®;; =(®p)i,j * X0, » 1<%,5<m, (3.9a)

(I),IL-’]-:((I)D).L"]', lg’igm, m—l—lgjg’n, (39b)
where x[o,1] is the characteristic function of the interval [0,1] .
In the following we analyze properties of Sp determined by those of S .

Theorem 3.2 Let m' denote the dimension of the common eigenspace Wp of
Béj = Ziez Dsy; and BlD = ZieZDZi-H corresponding to the eigenvalue 1. If Sp
is C° , then m' > m , and the first m rows of any basis Vp of Wp are linearly
independent.

Proof: Starting from the initial data G° as defined in Theorem 3.1, we get by
Theorem 3.1 that SFG° is a matrix function whose first m rows are the derivatives
of the first m rows of ® = S®A, . Suppose the first m rows of SFG° are linearly
dependent then we get

m
Y ai®; =0, 1<j<n. (3.10)
=1

Thus Y v, a;®;; =c;j, 1 <j<n, and since these functions are of compact

support, it is possible only if all are identically zero, which contradicts the form of
V. Thus the first m rows in a limit matrix function generated by Sp are linearly
independent, implying that m’ > m , and that the first m rows in any basis Vp of
Wp are linearly independent. [ |
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Theorem 3.3 Assume S is C!, and that ® is stable. Then Sp is C° and the first
m rows of ®p constitute a stable matrix. Moreover m' = m.

Proof: To prove that Sp is C° , it is sufficient by Theorem 2.10 to construct
a continuous compactly supported stable solution of the corresponding functional

equation. Let us define the first m rows of ®p by (3.9), and denote it by <I>[[7,n] It
is easy to see that since ® is of compact support (3.9a) can be rewritten as

Bp)i; = i (-~ 1) . (3.11)
£=0

Thus, the elements of <I>[[7,n] are in C°(IR) . To show the stability of <I>[[7,n] assume
that it is not stable. Then there is @« = {a; € IR" : j € Z} , satisfying 0 <
sup;cz ||a;j|| < oo , such that

Y aBI(—j)a;=0. (3.12)

jEZ

In case all the first m components of all the vectors {a; : i € Z} are identically
zero we get by integrating (3.12) form —oo to z that

> (-~ fas =, (3.13)

JEZ

where ®[™ stands for the first m rows of ® . But since ® is of compact support ¢ = 0
in (3.13) in contradiction to the stability of ® . If some of the first m components
of the vectors {a; : j € Z} are non-zero, we integrate (3.12) from z — 1 to z and

get
Z q)[m](. — )i =0, (3.14)
JEZ
with v; having the same m components of a; and the last n — m components of
a;j —ajy1 . It is clear that 0 < sup,cz||v;|| , and hence (3.14) contradicts the

stability of ® . Thus <I>[[7,n] is stable.
[m]

In the following we show that ®,~ solves the functional equation corresponding
to Sp . Since ® satisfies (1.3) we obtain that

P(w) = ®(w/2)M(w/2) . (3.15)

In view of the definition of the mask of Sp by (3.7), we obtain that wdlm (w)&(w )
satisfies a functional equation of the type (3.15) with Mp(w) = 2E(w) M (w)E(2w)™?
where £(w) = E(e~%) . It follows from (3.9) and the form of E(z) that

~

wdl™ (W)E(2w) ! = oM (W), (3.16)



Stability and rank properties of matriz subdivision schemes 11

and hence <I>[[7,n] solves the functional equation corresponding to Sp . Now, defining

¢p = VD<I>[[T,n] , we obtain a stable continuous compactly supported solution of the

functional equation corresponding to Sp , with the first m rows of the solution

being a stable matrix function. This together with Theorems 2.6 and 3.2 implies

that m' =m . B
As a consequence of the above three theorems we get

Corollary 3.4 Assume S is C!, and that ® is stable. Let
P =T, Sk keZ.,
where T}, is an n X n diagonal matrix with elements
(T)ii=1, 1<i<m, (Tp)i:i=2F, m+1<i<n. (3.17)

Then the sequence {hk}kez+ converges uniformly in the sense of (1.2) to a contin-
uous limit vector function h. The first m components of h are in C*(IR) . Moreover
there is a matrix 8 € IR"™™ x IR™ , dependent on S only, such that

hi:Z@-,kh;, m+1<i<n. (3.18)
k=1

Proof: By Theorem 3.3 Sp is C° . Let G® be as in Theorem 3.1, then SFG°
exists and is continuous. Also we get in view of (3.8), that the elements of the
first m rows of SFGP are the derivatives of the corresponding elements in the
limit matrix function H generated by the sequence H* = TyS*Ay , k€ Z, ,
while the last n — m rows of SFG® consist of the corresponding rows of H . This
together with Theorem 3.2 and Theorem 3.3 guarantees the existence of a matrix

B € IR" ™ x IR™ , such that

Hijj=) BixHp;, m+1<i<n, 1<j<n, (3.19)
k=1

implying (3.18). [ |

One should note that this analysis can be pushed further: if the renormalized
scheme is also C'! with one of its coordinates converging to zero, a proper renormal-
ization will make this coordinate converge to a combination of the second derivatives
of the non-zero components of the original scheme, and the same property will hold
for higher derivatives. Also higher smoothness of the non-zero components of the
original scheme can be derived, by a repeated application of (3.7), with appropriate
matrices A(z) and E(z), corresponding to the structure of the derived scheme in
the previous step.

Specific criterions on the masks that ensure the smoothness of the limit function
are given in [16] and [23] in the case of refinable vectors and in [22] for refinable
matrices.
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