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Abstract

This paper proposes a multiresolution procedure adapted to triangular cell-
averages to improve the performance of finite volume schemes by reducing flux
evaluation cost, using the approach introduced by A. Harten. A specific coarse
to fine prediction scheme is proposed that ensures the stability of the compu-
tations, even when a large number of scales are involved. Numerical tests are
presented that illustrate the computational gain as well as the order of accuracy
of the scheme.



1. INTRODUCTION

Multiscale methods are a powerful tool in mathematical analysis and applications
such as signal processing and numerical simulation. The theoretical background
underlying these methods has been substantially reinforced since the emergence of
wavelet theory in the 80’s.

One of the particular interest of multiscale discretizations into wavelet bases is
that, by a simple thresholding of its coefficients in such a basis, a function is auto-
matically represented by a coarse scale discretization, together with some additional
details at finer scales which are only needed near the singularity of the function. This
is directly used in signal processing for data compression purpose. In the area of
numerical simulation, this suggests that multiscale methods can be used to approx-
imate the solution of a physical problem at a low memory and computational cost,
if it is smooth except at some isolated singularities.

Note that the first applications of multilevel techniques in numerical simulation
had a different objective: in the context of elliptic problems, multigrid methods were
developed since the 70’s for the purpose of preconditioning rather than compression
(see [5] and [7] for a general survey of multiscale and wavelet methods in numerical
analysis).

In the context of hyperbolic equations or systems of conservation law, the intro-
duction of multiresolution methods is mostly due to A. Harten [12], and is somehow
more closely related to the idea of compression. In particular, such equations are
known to develop discontinuities, so that one can think of exploiting a multiscale
structure to concentrate the fine grid computations mostly near the edges. This
appears as a simple alternative to adaptive or moving grid techniques which are
difficult to operate, especially in several space dimensions.

Let us explain in a nutshell the strategy proposed by Harten. At the start one
is given a finite volume scheme associated to a fine mesh Q% of resolution say 2~
for approximating the solution of a conservation law. At time nAt the approximate
solution is represented by its averages (@} )pcor on the various cells of QL. The
values (@} ™),cqr are evolved from the previous one through the evaluation of the
flux at the interfaces between each cells. The idea is then to use a wavelet-like
multiscale decomposition of the solution at time n as a smoothness indicator in
order to reduce the computation of the flux: in the regions where the details above
some scale ¢ < L are small (i.e. below some preassigned threshold), the flux is
assumed to be smooth enough so that we can replace its exact evaluation by an
interpolation from its values on the mesh QF.

At this point, we can make two remarks:

e The accuracy of this scheme is intrinsically limited by the finite volume scheme
at the finest resolution 27: the idea is not to improve the accuracy but rather
to gain computational time while keeping the same order of accuracy.

e While the flux is computed adaptively, the evolution of the solution at each
time step still takes place on the finest grid Q¥ which limits the potential
computational gain, even when most details are considered as negligible.

Therefore, a first important trend is the development of fully adaptive multires-
olution schemes for which the complexity is not tied to the finest grid. The main



difficulty is to obtain an accurate computation of the flux in the coarse regions with-
out the help of the fine cells. Some strategies to solve this problem have recently
been proposed in [11] and [6].

Another remark is that the effectiveness of Harten’s scheme is related to the abil-
ity of the multiscale representation to compress the solution: typically (see [12]) an
additional truncation error occurs, which corresponds to discarding the details be-
low the threshold. While this error should remain of the same order as the standard
error of the finite volume scheme, the computational gain on the flux evaluation is
reflected by the proportion of details which are above the threshold. This is even
more true in the perspective of a fully adaptive scheme, where this proportion should
reflect the overall computational gain.

For this, it is crucial that the reconstruction operators linking cell-averages from
coarse to fine scales have both certain polynomial exactness properties (ensuring
that details are small in the smooth regions) and stability properties (ensuring that
we can control the perturbation of the solution resulting from thresholding the
small details). These requirements are easy to fulfill in the context of uniform one
dimensional or tensor product grids as considered in [3, 16, 8], in which case the
multiresolution is a particular instance of biorthogonal wavelet bases.

However, they are much more uncertain on unstructured or triangular meshes,
which are certainly the most commonly used, although some ad-hoc constructions
are available (see [1, 2, 15]) which are not proved to be stable in the above sense.
Note that similar difficulties arise for proving stability in the setting of curvilinear
grid obtained from tensor product grids by parametric maps which is addressed in
[8] through the concept of stable completion.

Therefore, a second important trend is the derivation of stable multilevel finite
volume schemes in the context of triangular discretizations.

The present paper is concerned with this second trend. We shall develop Harten’s
approach on triangular discretizations, using a specific algorithm for which we prove
stability (in the setting of uniform triangulations). In § 2, we present the multiscale
transform algorithm. This transform is used in § 3 to build a numerical scheme for
scalar equations of the type

opu + div(f(u)) =0, (1)

for t € [0,7] and x = (2,y) € Q C R?. Let us mention that the scheme can be
extended in a straightforward way to the treatment of systems. Some numerical
tests that show the efficiency of our scheme are presented in § 4. The proof of the
stability property of our multiscale reconstruction is done in Appendix 1. It relies
on techniques used in Computer Aided Geometric Design to study the asymptotic
behaviour of iterative surface refinement algorithms. Some details on the underlying
finite volume scheme are given in Appendix 2.

Our next perspective will be to combine the two trends, i.e. to use the multires-
olution tools developed in the present paper within a fully adaptive scheme.

2. MULTISCALE TRANSFORM

We shall describe in this section multiscale transform adapted to cell-averages
on triangles, for which we shall prove stability.



In the context of Harten’s framework we build a hierarchy of nested grids Q¢ for
¢ =0,...,L. The grids Q¢ are generated from the coarse grid triangulation Q° by
iterative subdivisions of its triangles. One triangle is divided into four triangles by
connecting the midpoints of its three edges. The number of triangles on the grid Q¢
is denoted by N* (N = 4/N?) and a generic triangle of Q¢ by T{ for 1 < k < N*.
We denote by BT,f and Fﬁ,j the boundary of T,f and the common edge to T,f and Tf,
so that OT} = U Fﬁd. The area of Tf and the length of I'y, ; are denoted by |T}| and

J
Il'x,;|. We denote by n; and ny ; the outward normal of 0T}, and its restriction to

1
the edge ['k,;. The centroid of the triangle T,f has coordinates xﬁ = W / , xdxdy,
Tk'

£

Yy = | / ydxdy. We also refer to the mean operator A on triangles

7]

A(T)w = 1 /Tw(:v,y)dxdy.

T

Finally, @} = A(T})u stands for the mean value of the function u on the triangle T},
and u! stands for the array of all aﬁ fork=1,...,N¢

The knowledge of the function on the grid Q*! through its cell-averages @
enables its representation on the next coarser grid Q¢ in the following way

l+1

3
1
P4 l 1) ~4+1
il = e YT )
| i | j=0
where Tf;'l denote the four triangles of Q¢! composing the triangle Tf, the central

subdivision being conventionally denoted by Tff{l and the three non central subdivi-

sions by the index of the vertex that they share with Tf (see Fig. 1 for the division of
triangle T(f) Equation (2) can be viewed as the application of a projection operator
PZH from the resolution level £ + 1 to ¢, that maps u‘*! to u’.

The multiscale decomposition is based on this projection operator and on a
predzctwn operator Qz from the resolution level £ to £ + 1, that maps the values
@ to predicted values u”l which differ from @‘*!. This prediction operator should
satisfy

PO, = Id. (3)

E—I—l

In practice, for each triangle TZ the predicted values u;; for 7 = 1,2,3 are

defined as linear combinations of some values @', assoc1ated to triangles on the
coarse grid Q¢ that are in some neighborhood of T}f. Note that (3) means that the
value on the central subdivision ng'l is computed by imposing conservation of the

total sum on Tf:
3
74 ~0 l ~0
|T +1| +1 |TZ| Z|T +1| +1. (4)
j=1

We also define the details

0 E-I-l E-I-l
di; = U

u; for j=0,...,3, (5)



Combining (2), (4) and (5) we get

Z |TZ+1 _ ,

therefore dfyo, which corresponds to the central triangle subdivision TfE)H does not
need to be stored. We denote by d’ the detail vector consisting of the coefficients
di;fori=1,...,Ntand j =1,2,3.

Consequently, the encoding algorithm can be summarized as follows.

Algorithm 1 Encoding
Assuming that w is known by its cell average values on the finest grid QF,

e For /=L—-1,0

— Coarsening: compute i using (2).

£ compute Gt on QUL using the prediction opera-

— Prediction: from u
tor Qﬁﬂ.

— Details: compute the details d* using (5).

This algorithm defines a one-to-one transformation between the fine grid cell-averages
@” and the multiscale representation given by @° and d°,...,d"~'. Note that the
same amount of storage is used in the two representations. The multiscale represen-
tation produced by the above algorithm can both be used to compress the function
u as detailed in [14] and to measure its local smoothness. This last feature is the
one that we develop here.

2.1 POLYNOMIAL EXACTNESS

One of the important feature expected from a multiscale representation is that
the decay in scale of detail coefficients reflects the local smoothness of the function
u. It is well known that this is related to the polynomial exactness of the prediction
operator: we say that Qﬁ 41 has polynomial exactness of order M if and only if for
all u € I, (polynomials of total degree M), we have aT! = a*!, ie. d* = 0.

Since the predicted value ui"} is a linear combination

~l+1 Z )\muma
meN (k)

where N (k) corresponds to a neighborhood of T}, the details are given by

1
e g ITCD DS ey
»J 0+1 mmy
T s meN (k) T,
In the wavelet framework, we define the scaling functions and wavelets

1
(Pﬁ = |Te|XT‘] a‘nd 1/)16 l+1 Z )\m(,Df;l,
meN (k)



where k; is such that T,fjf"l = T,f"']TI. With such notation we have

) Vi 14 L ¢ :
iy =/2us0k = (u, k) and dy :/2“1/”%1 = (W)
R R

Clearly, polynomial exactness of order M is equivalent to the orthogonality of z/)ﬁ, ;
with II;;. Therefore, if 4 has smoothness C* for some s > 0 within the support
Af; of zpﬁ,j, we can invoke classical local polynomial approximation to obtain the
estimate

= |/UT/)£,J'

In order to justify the use of the details as smoothness indicators, we need a converse
property: small details df;’j should indicate that the encoded function is locally
smooth. We also need some stability in the sense that we can control in some
prescribed norm the perturbation of u resulting from thresholding the small details.

This requires some additional analysis on the behaviour of the prediction oper-
ator, when iterated from coarse to fine scale. This type of problem is well known
in the context of subdivision schemes for computer-aided geometric design (see [10]
for a general survey). It amounts in analyzing the smoothness properties of the
limit functions 952 that are obtained by iterating the prediction operator on the
fundamental data @) = 0k, In the biorthogonal wavelet terminology, @2 is the
dual scaling function which is used for synthesis, in contrast to the primal scaling
function @2 which is used in the analysis.

More generally, we can define dual scaling functions @ﬁ and wavelets z/;ﬁ j» as limit
functions obtained by iterating the prediction operator on the fundamental data
uf = dk,; or by iterating the reconstruction from a single non-zero detail dﬁ,j =1.

7
|d}. ;

l : o —{min(s,M+1)
< Nkl inf lu—pleoag) < C2 |ulgs(aty- (6)

If they exist, these functions are locally supported in a neighborhood of T,f. In
the setting of uniform triangulations, the L,Z)ﬁ are simply obtained from the ¢ by a

change of scale, while the dual wavelets are directly given by zﬁﬁ,j = @f;jl — @f;;“l,

where again k; is such that T,fjf"l = T,f;l. The smoothness of these functions is thus

entirely determined by the smoothness of the coarse scale functions @2. 5
In particular, if the limit functions are in L°°, we have by rescaling ’ll/)ﬁy illor ~

’l@i“[m ~ 272t/P, This will be exploited to evaluate the LP error resulting from a
thresholding procedure. Wavelet theory also indicates that if these limit functions
are in C! for some ¢ > 0, then if 0 < s < t, the property |d%| < €27 for all
triangles T,f in the neighborhood of some region implies that u has C'* smoothness
in this region (see [13]).

We now discuss a choice of the prediction operator that ensures some smoothness
up to C! for the limit functions.

2.2 A STABLE RECONSTRUCTION ALGORITHM

In Harten’s framework, the prediction operator typically relies on a polynomial
reconstruction at the continuous level: the neighborhood N (k) is chosen in such a
way that there exists a unique polynomial p € II; such that pf; = aﬁ; L for all
m in N (k). The predicted value ﬂﬁ is then simply defined as the average of p on

T,f. This choice clearly ensures polynomial exactness at order M. In the 1D case



(and thus in the 2D tensor product case) it is known that the corresponding limit
functions have some positive smoothness.

A similar procedure can be proposed in the case of triangular discretization. Let
(Sﬁj)?zl be the vertices of the triangle T} € Qf. For each vertices S’f,j, we can
associate a polynomial pf,j(x, y) of degree lower or equal to N defined by imposing
the so-called “recovery condition”: the mean values of pf,j and the mean values of

the function u should coincide on a set Vﬁ ; of neighbor triangles of Sﬁj:
{ : y4

The reconstructed solution is defined as the mean value of this polynomial on the
subdivision Tfjl containing the given vertices S’f,j (as shown on Fig 1).

st = AT pf;  forj=1,...,3. (8)
The mean value on the central subdivision is computed by imposing conservation
of the total sum on T}, see (4). The case M = 1 (i.e. second order accurate
reconstruction) was numerically experimented in [14], together with other strategies
to select p € 1I;.

We shall see below that a straightforward selection of p that mimics the 1D
construction fails to provide a stable reconstruction in the sense that the limit
function is not even in L', and we shall propose a modified prediction operator
which overcomes this drawback.

We denote by T[f the current triangle and Tf, 1 =1,2,3, the three triangles that
share an edge with T¢. Their numbering is such that the vertex S’gyj of T§ does not
belong to Tf. Then the most natural choice for pg3 seems to be by imposing (7)
on T¢ and the two neighbors 7 and T%4. A similar construction is done for pg; and
Po2-

Writing

pg,?) (]77 y) = a€’3:1: + b(l;,?)y + 06,37 (9)

and using the fact that for a polynomial of degree 1 one has A(T; ,f)pf;’:), = p€73(xf;, yﬁ),
we obtain the three equations

Y I A _p
ao 3Ty + by syr + o3 = Uy, (10)

for k € {0,1,2}. The coeflicients ag3 and by 3 solve a 2 x 2 linear system whose
l l

_ 0 _ .0

matrix (x% x% y% y%) is non singular if the two centroids of T{ and Ty are
Ty — Xy Y2 — Yo

not aligned with the current centroid Gﬁ, which is the case for uniform triangula-

tions. The last coefficient ¢ 3 is computed by (10). A particular feature of this

subdivision is that, for uniform triangulations, the centroid of the triangle T(ffgl

is
also the middle of the segment between the centroids of the triangles T{ and T%.
Therefore any plane containing both points (z{,y{, %) and (25,5, 4s) also contains
the point (xﬁ:'gl, ygjél, L(uf 4 uh)) whatever be the value of p(z§, y§). In other words
the interpolated value on non central subdivisions of T(f does not depend on the

value of the function on Tj:

_ Lo, _
dhh = 5(af +ah). (11)



This remark enables to show on a simple example that this scheme is not stable.
We consider the case of a piecewise constant function equal to one on a triangle
TY and to zero everywhere else. After n iterations of the subdivision scheme the
reconstructed function takes the value 4" on the center triangle of the n'" level which
clearly means that the limit function is not bounded (and not even in L! since it
features a Dirac at the origin).

We have not yet analyzed the higher degree reconstructions from this point of
view, but they present anyway the other drawback of requiring much larger stencils
to compute the local reconstruction polynomials. We adopt therefore an alternate
solution consisting (again in the case of uniform subdivision) in the following recon-
struction scheme on four triangles:

—/
’LLO,
= af + (ab+af—2ab)/6,
= af§ + (af+af—2ab)/6,
= a + (af+ab—2uh)/6.

~0+1

ug,ol
~ 0+

u
0,1
~ 041 (12)

u2,2

~ 01

Uy 3

’

Although not based on a polynomial selection process, this reconstruction is still
exact for polynomials of degree one and thus second order accurate.

Moreover, it is stable, in the sense that the limit function has C* smoothness for
all £ < 1. We postpone the proof of this fact to the Appendix 1, as well as some
remarks concerning non-uniform triangulations.

3. NUMERICAL SCHEME

As already explained, our starting point is a classical finite volume scheme for
solving Eq. (1) on the finest grid Q. Such a scheme computes at time ¢, = nAt
approximate averages ﬂﬁ’n ~ A(TE)u(., t,) of the solution u by the following steps.

Algorithm 2 Finite Volume Scheme

e Initialization: ﬂﬁ’o = A(T¥)up.
e [terations: at each time step n,

Step 1 Reconstruction: Use a reconstruction operator R = R(.; a™") to
obtain point values.

Step 2 Fluz evaluation: compute Z_),f’n, an approximation of
! / div £(R)dd
— iv rdy.
T Jrp !
Step 3 Advance in time:

_Ln+l _ _Lmn ~L.,n
uy, =u, — AtD,"".

We summarize by F, the discrete non-linear evolution operator that maps @%"+1

to @™ 1. The reconstruction and flux approximation steps are detailed in Appendix

10



2. In particular, the flux evaluation is based on the remark that (by the divergence
theorem)

1 1
DER) = =3 [ ERO) g do = = STEIE, (13)
T} | T I T} | j
with )
L
= — f 7—\), . d .
fk,] |F£’J| L ( (U)) ng ; ao

Therefore, DF ~ DE(R) can be computed by applying (13) to approximations f,f f
of f,f’ i (we have used ENO reconstruction on each side of the small edges T'L | see
Appendix 2).

We will now explain how the multiscale decomposition of the solution is used to
speed up the flux evaluation, through a modification in step 2 of the finite volume
scheme. To this effect we first define for 0 < ¢ < L the corresponding fluxes

Di(R) = L / div f(R)dxzdy. (14)
| J7¢

7

By the divergence theorem, this mean value can again be computed by

|T£ Z/Fl nk’] do = |T€ Z |FZ,J

fk,]a (15)

with
1

f_lg,j |F Th f(R(0)).ny ; do.

k,J

Each integral over Fi,j is the sum of integrals over some edges of the finest grid

|Fi,j|flf,j: > ITEIfE. (16)

rLcry;

We now define D}, ~ Di(R) by

_ 1 _
Dﬁ = Tl Z |F£,j|fl$,ja (17)
Tf] =
where B
ICijlfeg = > Ihlfm, (18)
rLcry

with fJ the approximate fluxes computed on the finest grid. Therefore, the compu-
tation of Z_)ﬁ only requires the fine grid fluxes that are supported on the coarse mesh
QF. Note that this is in general more accurate than directly defining @ﬁ and f,fd.
by the same procedure as on the finest mesh. Indeed such a procedure generates an
error which is governed by the coarse mesh QF, and leads in practice to numerical
unstabilities. On the other hand this is very costly, and the multiresolution repre-
sentation of the solution can be used to avoid the evaluation of Z_),f on the finest
grid wherever it is possible.

11



At this point, we cannot extend directly what is done in one dimension, where
the fluxes can be viewed as primitive functions and are approximated in the smooth
regions from the coarse grid values through a point value multiresolution interpola-
tion scheme. Following Abgrall in [1], we take instead as quantities of interest, T)ﬁ,
the mean values of the flux divergences over the cells. We then use the prediction
algorithm described in the previous section in order to approximate these values at
fine scales in the smooth regions.

Let @™™ be the solution computed on the fine grid at time nAt¢. We denote by
M the encoding operation described by algorithm 1

M’H,L’n — (ao,n’ dO,n’ L ,del,n)

and by M~ its inverse: M~ Mal" = gl
For any set G C U, we denote by T¢ the following thresholding operation:

di; =0, j=1,23 if Tf{¢G.

and we define

@ = M~ T Maom, (19)
where the grid G™ is defined by

G" = {T}, s.t. |di7j| > ey = 25 Le for some j € {1,2,3}.

The parameter € controls the discrete L' truncation error resulting from the thresh-
olding

||aL,n o ,L—LL,n

L "'La *La —2L ~L, —L,
|::Z|Tk||ukn_ukn ~27? Z|Ukn_“kn-
k k

Indeed, one has

Ln

lahr —atm | < Spegan Y1 Idf, o
<eXpegan Y 2£7L||d;£,j”L1
< C27ke ZT,fgéG" 22:1 27¢
<Cale L, #(Qh2!
< Ce2 Ly 2 = Ce,

up to a change in the constant C. Here we have used the existence of L' dual
functions associated to our prediction scheme.

Applying the standard finite volume scheme would produce at the next time step
Fraln = gbm — AtDL". The modified scheme relies on the construction of a set
G™*! which contains G" and such that

M T MELaR" — Fra®"|| < Ce. (20)

The set G"t! will be further detailed and justified. We use it now to define our
Finite Volume multiresolution scheme, to be used instead of the standard one

=Ln+l _ =Ln _ NL.,n
{u U AtD~", (21)

bL,n = MflTén+l M@L’n.

12



The error due to replacing D™ by DL can be estimated by

< _ |
DB =DM = M7 T MELER" — FLah™ + 65" — M7 T Mt |
< 1 (M T ML — Fral | + " — M T M)
C+C
< .
~ At 3

In the case where the initial finite volume scheme is L' contractive, we can easily
estimate the error between @" and the solution " which would be obtained by
the standard finite volume scheme with the same initial condition, since we have

laln —oln| < |[Fpaln=t — Fpoln=t| + labn — Frabe-l|
< [labn=t — gt 4 Ag|Bhn-1 — DLn-1]
< flabrt —ahn | 4 (O + C)e
<n(C+ CO)e.

A natural choice for the parameter € is a value which makes this last estimate of
the same order as the intrinsic error estimate of the finite volume scheme (typically
in 2-L/2),

In practice the computation of the D" is done in the following way, which
replaces the Step 2 of the standard algorithm.

Algorithm 3 The flux evaluation algorithm

Step 1 Compute the set G"' (see Algorithm 4).
Step 2 Compute the D°’s on the coarsest grid Q° using (17)-(18).
Step 3 For each level £ =1 /L, compute the approrimate Dls by

o If T} € G™', D} is accurately computed using (17)-(18) as on the coarsest
grid.

e else @ﬁ is approzimately computed by interpolation of the values D1 using
(12)

The critical point in this algorithm is the construction of G"*! from G™ in such a
way that (20) is satisfied. Here, we have simply extended the construction proposed
in 1D by Harten in [12], which is based on the following heuristics:

e Due to the hyperbolicity of the problem and the CFL condition, the local
smoothness - or irregularity - of the solution does not propagate further than
one cell away in one time step. Therefore if T,f is in G™, it should be in G"*!
along with all its neighbors on the same level /.

e We must also foresee the apparition of discontinuities in the case of non linear
equations. Fine levels which are not used at a given time in a given region,
may subsequently become necessary. The rate of decrease for details from one
level to the next is an indication of the order of smoothness of the function.
By (6) we have d} = O(27%) if the solution is C2. In such smooth regions, we
thus roughly have the relation df ~ 4df:91 between details at two consecutive

13



levels. If a triangle T} € G™ is such that |df| > 8¢, we heuristically derive the
minoration on the finer level

41 _
dk,j > 2= E0+1-

Even if this is not actually the case at the current time step, we foresee the
possible formation of high gradients or discontinuities at the next time step
by including all subdivisions T,f‘;l in G"tL,

We summarize the definition of G"*1 in the following algorithm.

Algorithm 4 The grid G"!

o Initialize G = QO

e For /=L—-1\,0

— For k=1,N*
+ If |d}| > ¢, then add Tf to G™1 for all Tf that share a vertices with
Y.

 If |df| > 8¢, then add T,f;;l to Gt

It should be well understood that this heuristic construction - which gives excel-
lent practical results - is not rigorously proved to yield the desired (20). A deeper
analysis of more sophisticated constructions of G™*! that would fulfill this property
is currently under investigation. In particular, it appears that an important require-
ment is that this set has a certain tree structure in the sense that is T,f € G"*1 then
T,f,, e G"*! whenever T,f C T,f:. This structure is also crucial toward fully adaptive
computations, since it allows a one to one correspondence between the truncated
multiscale decomposition of @™ and its cell averages on an adaptive triangulation
associated to the set G,

4. TESTS

In this section we show results that validate the multiresolution scheme coupled
with the ENO scheme (see Appendix 2). The time advance step is done using the
second order Heun scheme instead of the explicit Fuler scheme.

We also illustrate the numerical efficiency by studying simultaneously the error
and the computing time for different compression rates.

The first example is the periodic function used as a benchmark in [9]. The
equation is assumed to be linear with constant velocity a. Two different direc-
tions are tested a = (1,0) and a = (0.7,0.7). The initial condition is wuo(z,y) =
sin(27z) sin(2my) and the domain € is the unit square [0,1] x [0,1]. The rate of
convergence of the method is determined from the error, defined by the L'-norm of
the difference between the numerical and the exact solution. This numerical error
is represented as a function of the space discretization step h. The evaluation after
one quarter of a period (respectively one period) is displayed on Fig. 2 (resp. Fig
3). Om each graph the two curves correspond to the first order flux and the ENO
one, see Appendix 2. The straight lines show the best fitting numerical orders. The

14



four points correspond to different space discretizations h = v/2A with A the area
of any triangle of the regular finest grid. The finest discretization h = 0.0125 is
obtained with five levels in the multiresolution, (with 12800 triangles on the finest
level). The CFL number At/h is fixed to 0.1. For each discretization two compu-
tations are done, one directly on the finest grid without multiresolution analysis,
the other with the multiresolution analysis and the tree algorithm (3) for the flux
computations. The goal here is to test the flux computation accuracy, therefore the
thresholding in the multiresolution analysis is not activated. Both computations
give exactly the same results which are summarized in table I. Orders of accuracy
comparable to those in the cited reference are obtained.

We turn now to our real purpose, which is to use multiresolution in order to
solve PDE’s with discontinuous solutions. As a typical example we choose the case
of a translating disk. The initial condition is ug(z,y) = 1 if (z — 0.5)2 + (y —
0.5)2 < 7?2 and ug(z,y) = 0 elsewhere with r = 0.25. The velocity is a = (1,1) and
periodic boundary conditions are set on the unit square. Three different types of
computations are performed using four, five or six levels of resolutions. The coarsest
mesh is composed of 50 triangles - 51200 on the sixth level - The CFL condition
is unchanged At/h = 0.1 and we translated the disk over one period (t = 1). For
each discretization a computation without multiresolution is performed on the finest
level using the compressive ENO flux evaluation. To illustrate the multiresolution
representation we plot the superposition of the meshes with a different shade of
grey for each level. Only triangles where the fluxes are computed by integration are
represented. Fig. 4 and Fig. 5 correspond to computations done using five and six
levels with a tolerance £ = 25.107° on the coarse grid. We see that the fine grid is
used only in the immediate neighborhood of the discontinuity and actually allows
to detect its location quite precisely. This feature accentuates itself as the number
of grid levels increases. The computations are then compared in terms of accuracy
and speed.

On Fig. 6, the L'-error between the exact and computed solutions is displayed
as a function of h for tolerance levels ¢ = 25.107° and ¢ = 5.107%. In the case
¢ = 0 the multiresolution is not used and all the fluxes are computed by integral
evaluations on the finest grid. The three discretizations h = 0.025, 0.0125 and
0.00625 correspond to computations done using four, five and six levels starting from
the same coarse grid of fifty triangles. This figure indicates that the multiresolution
does not deteriorate the rate of convergence - even though at a given discretization
the error increases with the tolerance €.

On Fig. 7, we compare simultaneously the CPU time and the precision as a
function of the tolerance level €. The computations are done using six levels of
multiresolution. As expected, the accuracy is roughly an affine function of e, since
it includes the basic error for ¢ = 0 and the truncation error which depends linearly
of €. For ¢ small enough the error thus remains close to the error of the initial finite
volume scheme. Note that the CPU gain in increasing ¢ is limited and that for a
value such as £ = 0.0002, we already have reached the maximal reduction (roughly
a factor of two) for an increase of the error only by seven percent.

An important factor in the CPU time reduction is the alternative of a centered
(less expensive) scheme for some flux evaluations. Namely, the ka’s located in the
regularity zone of the solution. Many of such ka’s are encountered in the step 1
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of the tree algorithm (3). For these f{’s we use a centered scheme (Lax-Wendroff)
instead of the more costly ENO reconstruction: Eq. (29) is replaced by

() { (i + ) = A + ) )}, 22)

- 1
fig =5
(ds, dy) are the coordinates of the vector joining the centroids of the triangles T} and
TjL. For a computation on five levels for instance, the CPU time required for a full
computation on the finest grid with the compressive ENO scheme is 2149 seconds.
If the multiresolution reconstruction is performed with a tolerance ¢ = 25.107° it
falls down to 1437 seconds. Eventually, if the centered Lax-Wendroff scheme is used
on the fine grid wherever the solution is smooth enough, the CPU time is again

reduced to 1007 seconds without affecting the accuracy.
CONCLUSIONS

This work describes the coupling of multiresolution on triangles with finite vol-
ume schemes. The multiresolution analysis is used in order to apply ENO recon-
struction only when this costly procedure is really needed. The numerical simula-
tions show a significant CPU reduction. They are also - to our knowledge - the first
experiments with several nested triangular grids. We have in mind several possible
extensions of this work. First of all to apply this method to nonlinear equations
with possibly non convex fluxes. In that case not only the reconstruction but the
numerical flux function itself becomes costly. Quadratic reconstructions are also
desirable in order to improve the accuracy of the scheme. The main goal remains
however to solve the equations, not on the finest grid, but on an adaptive grid com-
posed of triangles from various grids ©¢, which should allow much more significant
CPU reductions. An intermediate study is currently performed in order to handle
properly the difficulties already encountered in one dimension, in particular the ac-
curate computation of the flux on a coarse level without knowing the solution on
the fine grid but on the other hand using the fact that the details are negligible.
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APPENDIX 1. Prediction operator

In this section we describe how the scheme (7), (8), (9). can be improved and in
particular how the selected reconstruction (12) is obtained. We replace the definition
of G 3 as given by (11) by the following more general formula

gyt = a(uf +uh) + bug + cuf. (23)

We now show that the constants a, b and ¢ can be chosen to ensure the stability
and provide the same accuracy as the initial scheme (9). To this effect the formula
(23) should be exact for polynomials of degree one. For such a polynomial p(z,y)
we have

ags = plags ubsh) = a(pal, ul) + p(a8, 48)) + bp(af, u§) + ep(af, v).

which is verified for all p € II; if and only if b = ¢ — 1/2 and ¢ = 3/2 — 3a. The
scheme then becomes

1 1
, 0t ¢ _y
uojgl = a(u] + uy) + (a — §)u3 + 3(5 — a)uyg, (24)
and similarly
1 1

a(%l = a(uf + uf) + (a — 5)@75 + 3(5 — a)ug,
and ) )

g = a(ay + us) + (a — 5)a‘{ +3(5 - a)ay.
The central subdivision ﬂﬁ:'[)l is determined in order to satisfy (4)

o1 Ly Lo o, 0, 4

ugy = (9a — 5)“0 — (3a — 5)(“1 + Uy + ug). (25)

For a = 1/2, one obtain the original non stable scheme (7), (8), (9).

Convergence. As it is now well known (see e.g.[10]), one way to analyze the
convergence of subdivision algorithms, as well as the Holder smoothness of the limit
function, is to associate an auxiliary subdivision algorithm to the finite differences
and study its contraction properties.

We first study the central differences, that is the differences between the mean
value of u on a central triangle and its mean values on the three neighbors of this
triangle. Straightforward computations show that

—{+1 —0+1

Ugp — Up, 4a—1 4a—1/2 4da—1/2\ [uf—uf
aoh —ahh' | =(4a-1/2 4a—1 da—1/2 | | @f—us |. (26)
asht —abt! 4a—1/2 4a—1/2 4a—1 af — uf

The eigenvalues of the transfer matrix for the central differences are

1
)\1:)\2:—5 et )\3:120,—2.

()

17



Furthermore, since
[Alloc = |4a — 1] + [8a — 1],

this matrix is strictly contractive for a €]1/12,1/4[, and in this case the differences
go to zero.

Let us now study all the differences, that is the previous ones along with the
differences between the mean values on two non central triangles as represented on
Fig 8. We compute for instance @ 2 — g 2. Since

1 1
1,2 = a(uh + uf) + (a — 5)@?5; + 3(5 — a)uf,

we have

_ _  _ o 1., _ 1., _ 1  _
202 = (i —4)+a (@ —)+(a—3) (a—)+(a— ) (@5 —15) +2(5 —a) (@ 7).

One can summarize the same computation for all the differences in the following
matrix form

¢ ¢
UOjBI - “0jr11 0 =0
altl _ gttl Up — Uy
R g —
Upjp — T 3 ab — ab
aia | |
arh' —agh' | =A| af - aé’ , (27)
Uy — gl iy — Uy
A R A% | Ug — U
Uz —Ug 7 1
—0+1 —0+1 Uy — Ug
U3 —Up, @ — @
041 01 9 3
3,2 — Ugz2
with b = 2a. The 9 x 9 matrix A is
4b—2 4b—-1 4b-—-1 0 0 0 0 0 0
4—1 4b—-2 4b-—-1 0 0 0 0 0 0
4b—1 4b—-1 4b—-2 0 0 0 0 0 0
1 26—2 b-—1 b b b—1 0 0 0 0
A:§ 2b—2 b b—1 b-—-1 b 0 0 0 0
b 26—2 b-—1 0 0 b b—1 0 0
b—1 2b—-2 b 0 0 b—1 b 0 0
b—1 b 2b—2 0 0 0 0 b—1 b
b b—1 2b—-2 0 0 0 0 b b—1

The eigenvalues of A are
1 1 1
)\1:)\2:>\3:—§,>\4:>\5:5,)\6:)\7:)\8:20,—5, et )\9:1261—2.

and accordingly o(A) < 1 for a €]1/12,1/4[. The differences go to 0 when the
number of subdivisions goes to infinity, which ensures the convergence of the scheme.
This implies that, even if the matrix A is not contractive ||A||o > 1 for a certain
range of the parameter a, there is a power n such that A™ is contractive. For example,
if a €]0.18,0.25[, then ||Al|oc > 1, however its square is contractive: [|A?|s < 1.
Therefore after two iterations only the differences are contracted.
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Optimal parameter. We now practically test the approximation properties of
our subdivision scheme for different functions v and different values of the parameter
a. In all cases we start from the mean values of the function on the coarse grid
(256 triangles) and apply three iterations the subdivision scheme (23). In order
to compare the different values of a, we compute the error between the result of
these iterations and the exact mean values of w on this finer grid. The results are
presented in the L' norm, the behavior with respect to a being similar in the L?
and L norm.

e For a smooth function u(z,y) = sin(27z)sin(27y), the results are shown on
Fig 9.

e For a discontinuous function, u(z,y) = 1 on a disc centered at (0.5,0.5), with
radius 0.2 and u(z,y) = 0 elsewhere, the results are shown on Fig 10.

These two figures justify our choice for the value of the parameter ¢ = 1/6 which
leads to a particularly simple scheme:

an = @

apy' = ah + (uh+ub—2af)/6 (28)
upy = ahy + (uf+ab—2ah)/6

apy = af + (af +ab—2uf)/6

We have in this case |||l = 5/3, [|A%[|oc = 19/18, ||A%||s = 35/54 and o(A) = §.
By classical arguments of subdivision analysis (see e.g. [10]), this implies that the
limit function is Holder continuous of class C? for all t < —log(o(A))/log(2) = 1.
The above analysis is tied to the use of fully uniform triangulations. In practice,
the triangulation can be thought as uniform after a certain number of subdivision
step, except near the exceptional points and edges corresponding to the coarsest
mesh. A more elaborate (yet feasible) analysis can be performed in order to ana-
lyze the smoothness of the dual functions in these regions (in the uniform regions,
smoothness is determined by the previous analysis). Note that the prediction scheme
needs anyway to be modified near the exceptional points and edges in order to en-
sure polynomial exactness. A natural generalization of the optimal scheme (with
parameter ¢ = 1/6) seems to be by imposing ﬂﬁ:'[)l = @} for the central triangle
and computing the coefficients of the three remaining prediction rules from the
constraints of polynomial exactness up to order 1 and conservation of the average.

APPENDIX 2. Finite Volume scheme

We now detail two steps in the Finite Volume scheme, namely the design of the
reconstruction operator R and the computations of the flux across the edges of QF
1
Computation of the flux on QF. Let ka,j = W /L f(¢(0)).ng do be the
kgl Uk

flux to be computed and F(u,v,n) a numerical flux, i.e. F' is a Lipschitz continu-
ous function, satisfying the consistency condition F'(w,w,n) = f(w).n. We used a
two-point monotone flux, F'(ug,uj,ng ;) = F(uy,u;), where the function F(u,v) is
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nondecreasing in v and non increasing in v, (consult [9]). An approximation of the
exact flux is then given by

f]f,j = ka,] = F(akaﬂj)

where %, and @; are two values of u chosen from each side of the edge Fﬁ,j.
We suppose Eq. (1) to be linear

Oyu + adzu + boyu = 0
with convection term a = (a, b). For such linear equations, we apply an upwind flux
F(U,U) = F+(u) + F*(U)a

where

to get the approximation
Ty = Fiy o= Felin) + F- (). (29)

Design of the reconstruction R. In the previous numerical flux iy and u;
denote approximations of the solution on the edges Fﬁy e Since this solution is known
by its mean values on the triangles on both side of Fﬁ, i@ reconstruction algorithm is
required to recover accurate point values approximations. This reconstruction must
satisfy the following conditions [4]

e Piecewise polynomial. Restricted to each triangle T', Ry = R, is a polynomial
of degree r — 1,

e Approximation. Wherever w is smooth, R(.;w) is an r—order approximation
of w: R(z;w) = w(x) + h", where h is the size of the triangles.

e Conservation of the averages. A(Tk)R(.; w) = wy.

To design R, one selects a set of triangles in the neighborhood of the current
triangle T'. The number of triangles in this stencil must be large enough in order to
determine the coefficients of the polynomial Ry by imposing A(Ty)R(.; w) = wy
for each triangle T} in the stencil. These conditions can also be imposed in a least
square sense. This adaptive-stencil strategy seems to ensure the stability and the
convergence of the scheme. We refer to [4] for such reconstruction on triangular
meshes. We test here the reconstructions proposed in [9]:

Flux 1. The simplest choice is 4 = ﬂﬁ yUj = ﬂJL . This reconstruction, by a

constant function leads to a first order accurate scheme as shown in section 4.

Flux 2. A more accurate flux consists in taking @ to be the value at the
mid edge of a N—degree polynomial p; associated to the triangle T,f . For
N =1, pi is one of the three polynomials having the same average than u
on T} and two neighbor triangles. A limiting procedure is applied: from the
three possible candidates py, we select the pj for which ||[Vp||2 is maximal
with the restriction that neither overshoot nor undershoot occurs at any of
the three triangle sides, see [9] for details.
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TABLE I
Numerical orders of convergence
initial condition sin(27z) sin(27y)

Fig Time | Flux direction | 1°¢ order (num) | 2"¢ order (num)
1 (left) | 0.25 (1,0) 0.95 1.55
1 (right) | 0.25 (0.7,0.7) 0.9 1.95
2 (left) | 1 (1,0) 0.9 1.45
2 (right) | 1 (0.7,0.7) 0.7 1.9
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FIG. 1. Division of the triangle T(f into T(i}'l for  =0,...,3 and
neighbors T{, T, T4 used for the reconstruction
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FIG. 2. L1 error for the first (+) and the second (x) order schemes at time
t = 0.25. Initial condition ug(z,y) = sin(27z) sin(27y).
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FIG. 3. L1 error for the first (4+) and second (x) order schemes at
time t=1. Initial condition ug(x,y) = sin(27z) sin(27y).
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Hybrid grid — 5 levels

seuil = 0.00025
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FIG. 4. Mesh for 5 levels after one period. Modified ENO scheme
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seuil = 0.00025

Hybrid grid - 6 levels
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FIG. 5. Mesh for 6 levels after one period. Modified ENO scheme
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FIG. 6. Ly error as a function of the discretization h for different tolerances:
e=0(+),e=251075 (x) and ¢ = 5.10~% (). Discontinuous initial condition.
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FIG. 7. CPU time (left graph) and L1 error (right graph) as a function of the
tolerance e. Discretization h = 0.00625. Discontinuous initial condition.
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FIG. 8. Two levels of divisions of a triangulation
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