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Abstract

Nonstationary subdivision schemes consist of recursive re�nements of an
initial sparse sequence with the use of masks that may vary from one scale
to the next �ner one� This paper is concerned both with the convergence
of nonstationary subdivision schemes and with the properties of their limit
functions� We �rst establish a general result on the convergence of such
schemes to C� compactly supported functions� We show that these limit
functions allow to de�ne a multiresolution analysis that has the property of
spectral approximation� Finally� we use these general results to construct C�

compactly supported cardinal interpolants and also C� compactly supported
orthonormal wavelet bases that constitute Riesz bases for Sobolev spaces of
any order�
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I�Introduction

Subdivision schemes constitute a useful tool for the fast generation of smooth
curves and surfaces from a set of control points by means of iterative re�ne�
ments� In the most often considered binary univariate case� one starts from
a sequence s��k� and obtains at step j a sequence sj��

�jk�� generated from
the previous one by linear rules �

sj��
�jk� 	 �

X
n�k��ZZ

cj�k�n�sj����
�j�k � n��� �����

The masks cj�k 	 fcj�k�n�gn�ZZ are in general �nite sequences� a property that
is clearly useful for the practical implementation of ������

A natural problem is then to study the convergence of such an algo�
rithm to a limit function� In particular� the scheme is said to be strongly
convergent if and only if there exists a continuous function f�x� such that
limj����supk jsj���jk� � f���jk�j� 	 
� One can study more general types
of convergence with the use of a smooth function g that is well localized
in space �for example compactly supported� and satis�es the interpolation
property g�k� 	 �k� One can then de�ne fj�x� 	

P
k sj��

�jk�g��jx� k� and
study the convergence in a functional sense of fj to f �

A subdivision scheme is said to be stationary and uniform when the masks
cj�k�n� 	 cn are independant of the parameters j and k� In that case� one
can rewrite ����� as

sj��
�jk� 	 �

X
n

ck��nsj����
�j��n�� �����

Note that ����� is equivalent in �lling the sequence sj�� with zeros at the
intermediate points ��j��k��� and applying a discrete convolution with the
sequence �ck�� Detailed reviews of stationary subdivision have been done by
Cavaretta� Dahmen and Micchelli ������ and Dyn �������

These algorithms apply in a natural way to computer aided geometric
design� Moreover� the interest in stationary subdivision schemes has grown
in the digital image processing and numerical analysis communities since
they have been connected to multiresolution analysis and wavelet bases�
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A multiresolution analysis consists of a nested sequence of approximation
subspaces

f
g � � � � V�� � V�� � V� � V� � V� � � �� L��IR�� ���
�

that are generated by a �scaling function� � � V� in the sense that the
set f���jx � k�gk�ZZ constitutes a Riesz basis for Vj � By Vj � L��IR�� we
mean here that for any f in L��IR�� limj��� kPjf�fk� 	 
 where Pjf is the
L��projection of f onto Vj and k�k� is the L� norm �we shall use the notation
k � ks for the Sobolev Hs 	 W s

� norm�� Here again� many generalizations are
possible �see Meyer ����
� or Daubechies ������ for a detailed review of this
concept��

Since the spaces Vj are embedded� the scaling function satis�es an equa�
tion of the type

��x� 	 �
X
n

cn���x� n�� �����

We shall assume here that � is compactly supported so that the cn�s are
�nite in number� In that case� � is also an L� function and by taking the
Fourier transform of ������ we have

����� 	 m����� ������� �����

where m��� 	
P

n�ZZ cne
�in�� Assuming that � is normalized in the sense

that
R
� 	 ���
� 	 �� one obtains by iterating ������

����� 	
��Y
k��

m���k��� �����

This last formula indicates that � is the limit� in the weak �or distribution�
sense� of a stationary subdivision scheme since it represents� in the Fourier
domain� the re�nement of an initial Dirac sequence by iterative convolutions
with cn� Note also that the support of � is contained in the convex hull of
the support of the mask �ck�� Conversly� any re�nable function� i�e� weak
limit of such a scheme� satis�es a �re�nement equation� of the type described
above and is a potential candidate to generate a multiresolution analysis �see
also Derfel� Dyn and Levin ��������






Given a stationary subdivision scheme� we see here that two questions
are relevant �

� Is the scheme convergent and in what sense �

� What are the properties of the limit functions �

By the last question� we mean in particular the approximation properties
of the spaces Vj �can we approximate in other norms than L�� in particu�
lar in Sobolev spaces Hs� with speci�c rates����� the exact regularity of the
scaling function and other properties of � such as cardinal interpolation or
orthonormality of its integer shifts�

Numerous contributions have been made on these two problems� The
convergence of the subdivision and the approximation properties of the mul�
tiresolution spaces are strongly linked � in particular� one can prove �see Dyn
and Levin ����
�� Cavaretta� Dahmen and Micchelli ������� Daubechies and
Lagarias ������� that both the convergence of the subdivision scheme to a
Cr function for some r � 
 and the property that limj��� �jskPjf�fk� 	 

for all f � Hs �s � r� imply that the scaling function satis�es the Strang�Fix
conditions of order N � where N is an integer such that N � r � N � ��
These conditions can be expressed by three equivalent statements �

� Any polynomial of degree not exceedding N can be expressed as a
combination of the integer shifts of ��

� For all p � N and m � ZZ� f
g� � d
d�
�p ����m�� 	 
� ���
� 	 ��

� For all p � N � � d
d�
�pm��� 	 
 or equivalently

P
m����mmpcm 	 
�

Note that this last statement reveals that m��� can be written as

m��� 	 �
� � e�i�

�
�N��q���� �����

where q��� is a trigonometric polynomial� ����� implies that there are at
least N � � nonzero cn� and thus the support length of � is at least N � ��
This leads to the observation that very good approximation rates for regular
functions� as well as convergence of the subdivision in a smooth norm� can
only be achieved if one accepts to loose some space localization �in particular�
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one cannot build a re�nable function that is both compactly supported and
in C���

More recently� attention has been given to subdivision schemes that are
nonstationary in scale� i�e� for which the masks may vary from one step of
the re�nement process to the next one� A model case is the scheme that
uses at step k the mask ckn 	 �kn��

�k�� �
 � n � k�� that gives rise in the
stationary subdivision case to B�splines of degree k � �� It was proved by
Dyn� Levin and Derfel ������ that such a scheme converges strongly to the
�up�function� introduced by Rvachev ������ �see also Rvachev ����
��� The
limit function can thus be written in the Fourier domain as

����� 	
��Y
k��

�
� � e�i�

�k�

�
�k� �����

The length of its support is given by L 	
P

k�� k�
�k 	 � � ��� Such a

function cannot satisfy a re�nement equation of the type ������ However�
note that the product ����� can also be written as

Q��
k���

��e�i�
�k�

�
�k 	

Q��
n��

Q��
k�n��

��e�i�
�k�

�

	
Q��

n��
��e�i�

�n�

�i��n�

	
Q��

n�� ���������
�n���

It follows that

� 	 ������ 	 ��������� 	 � � � 	 �j������j� 	 � � �

is a C� function that satis�es a �continuous re�nement equation� of the type

��x� 	 ������� 	 ����� 	
Z �

�
���x� y�dy� �����

By letting the masks grow linearly� it is thus possible to obtain a C�

function while preserving the compact support property� It was also shown
by Dyn and Ron ����
� that a �half�multiresolution analysis� can be derived
by de�ning� for all j � 
� Vj 	 Spanf�j��jx� k�gk�ZZ with

��j��� 	
��Y
k��

�
� � e�i�

�k�

�
�k�j � ����
�
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and that these spaces have the property of spectral approximation in L� �
for any r � 
 and for all f � Hr� limj��� �jrkPjf � fk� 	 
�

Our goal in this paper is to generalize these results to a large class of
nonstationary subdivision schemes�

Assuming that such a scheme converges at least in the sense of tempered
distributions� the general form of its limit function will be given in the Fourier
domain by

����� 	
��Y
k��

mk��
�k��� ������

where mk is the sequence of trigonometric polynomials associated with the
masks of the subdivision� Note that� since we do not assume any particular
form for mk� the function � will not in general satisfy any type of re�nement
equation� discrete or continuous� making thus more di�cult the analysis of
its smoothness and approximation properties�

What is the interest of such a generalization � An important remark
is that the approximation properties of the up�function and its associated
multiresolution analysis� very attractive from the theoretical point of view�
su�er from a major numerical disadvantage � the computation of the L�

projection onto Vj is di�cult to manage at high scales since the Gram matrix
of the basis f�j��jx � k�gk�ZZ becomes ill�conditionned� More precisely� its
condition number C�j� grows exponentially with j �

�
p
��j�� � C�j� � const�

�

�
�j� ������

The upper bound is taken from Dyn and Ron ����
� and the lower bound is
obtained here �

C�j�� 	 �sup�
P

k j ��j�� � �k��j���inf�Pk j ��j�� � �k��j����
� �inf�

P
k j ��j�� � �k��j����

� �
P

k j ��j���k � ����j����
	 �
P

k j cosj������� ��j�����k � ������j����
� �cos��������j�� 	 �j���

The same problem occurs when one wants to interpolate data on the grid
��jZZ by a function in Vj for j odd � one checks from a similar computation
that the condition number D�j� of the system grows exponentially�
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In a more general setting� it is possible to keep these condition numbers
bounded as j grows� One can even �x one of them to � by imposing con�
straints on the trigonometric polynomials mk so that the limit functions have
orthonormality or cardinal interpolation properties �see x���

Finally� an important property of multiresolution analysis is the equiva�
lence

kfk�r 
 kP�fk�� �
X
j��

��jrkPj��f � Pjfk��� ������

that is the key to multilevel preconditionning techniques �see Dahmen and
Kunoth ������� and that can also be expressed in terms of wavelet coe��
cients� So far� we could only prove this equivalence in the orthonormal case�
for all r 	 
 �see x���

Our paper is organized as follows � in x�� we give a general result on
the convergence of a nonstationary subdivision scheme in C� under very
mild conditions on the masks� We study the approximation properties of the
associated multiresolution spaces in x
 and prove that spectral approximation
can be achieved for all Sobolev norms� Finally we apply these results in x�
to dyadic interpolation and to orthonormal wavelets that constitute Riesz
bases for all Sobolev spaces� This particular wavelet basis has been recently
introduced in a paper by Berkolaiko and Novikov ������ which was concerned
with the existence of a multiscale orthonomal basis of compactly supported
C� functions�

For the sake of simplicity� we limit ourselves to the one dimensional setting
and our results are stated in the case where the length of the masks grows
at least linearly� We show in an appendix how this can be extended to more
general growth rates of the mask length�
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II�Nonstationary subdivision schemes

Let fmkgk�� be a sequence of �nite masks� i�e� mk�n� 	 
 if jnj 	 d�k��
We denote by mk��� 	

P
nmk�n�e�in� their representation in the Fourier

domain� i�e� a sequence of trigonometric polynomials of degree d�k�� Let us
consider the nonstationary subdivision scheme that is associated with this
sequence of masks� i�e� sj���jk� 	 �

P
nmj�k��n�sj�����j��n�� If the input

is a Dirac sequence �m��� one obtains after n steps a sequence of samples on
the grid ��nZZ� that can be interpolated in a unique way by a function ��n�

that is band�limited on ���n�� �n��� This function is de�ned by

���n���� 	
nY

k��

mk��
�k�����������

�n��� �����

Note that the functions ��n� are analytic and thus not compactly supported�
We shall use these particular interpolants in order to study the convergence
of the subdivision scheme to the limit function de�ned �if this is possible� by

����� 	
��Y
k��

mk��
�k��� �����

After n steps� the result of the subdivision in the space domain is sup�
ported in ��L�n�� L�n��� with L�n� 	

Pn
k�� �

�kd�k�� A natural condition for
compactly supported limit function is thus

L 	
��X
k��

��kd�k� � ��� ���
�

Our �rst result shows that this condition is also instrumental in the deriva�
tion of the convergence� in the sense of tempered distributions� of the subdi�
vision scheme�

Theorem ��� Assume that rk 	 ��kd�k� and sk 	 jmk�
� � �j are both
summable sequences� and that the functions jmk���j are uniformly bounded
by some constant M 	 
� Then ���n� converges uniformly on any compact
set to �� and ��n� converges to � in the sense of tempered distributions� The
tempered distribution � is compactly supported in ��L�L� with L 	

P
k�� rk�

�



Proof We �rst study the convergence of the in�nite product
������ For a �xed �� we have to check the summability in k of
tk��� 	 jmk���k�� � �j� If in addition�

P
k�� tk��� is uniformly

bounded on every compact set� then ����� will also converge uni�
formly on every compact set�

We can write

tk��� � jmk���k���mk�
�j� sk
� ��kj�j sup� j d

d�
mkj� sk�

Using Bernstein�s unequality� we obtain the estimate

sup
�
j d
d�

mkj �Md�k�� �����

and thus
tk��� �M j�jrk � sk� �����

which proves the uniform convergence of ����� on every compact
set�

The same argument shows that for any n 	 p � 
� the products

P n
p ��� 	

nY
k�p��

mk��
�k��� �����

are uniformly bounded on ���p��� �p��� by the same B 	 
� We
can de�ne these products to be equal to � whenever n � p so
that this statement makes sense for all n� p 	 
� This applies in
particular to ���n� 	 P n

� and �� 	 P�
� which are thus uniformly

bounded on ���� ��� For �p � j�j � �p�� with p � 
� we can write

j ���n����j 	 jP n
p ���

Qp
k��mk���k��j

� BMp � BM log� j�j � Bj�jb�

with b 	 log��M� �we have assumed here� without loss of gener�
ality� that M � ��� For all � � IR� we thus have the estimate

j ���n����j � B�� � j�j�b �����

�



where the constant B does not depend on n� Consequently� it
also holds for the pointwise limit ���

Take now any test function g��� in the Schwartz class S�IR�� For
any 
 	 
 there exists A 	 
 such that

B
Z
j�j�A

g����� � j�j�bd� � 
��� �����

By the uniform convergence of ���n� to �� on every compact� there
exists N such that for all n 	 N �

j
Z
j�j�A

g���� ������ ���n�����d�j � 
��� �����

Combining ������ ����� and ������ we immediately obtain the con�
vergence of h ���n�jgi to h ��jgi� �

We are now interested in �nding additional hypotheses for stronger con�
vergence of the subdivision scheme to a C� compactly supported function
�� Note that� in contrast to its approximants ��n�� the function � cannot be
analytic� Our next result states general conditions for the uniform conver�
gence of ��n� and all its derivatives�

Theorem ��� Assume that the hypotheses of Theorem ��� are satis�ed
and that we have the estimate

jmk���j � �� � �k�jm���jk� ����
�

with
P

k j�kj � �� and m��� 	 cos������ �m���� for some � � 
 �not
necessarily integer�� where the function �m��� is bounded� H�older continuous
at the origin and satis�es �m�
� 	 � and 
i 	 sup� j

Qi
k�� �m��k��j � ��i for

some �xed integer i 	 
�
Then � is a C� compactly supported function and� for all s � ZZ��

� d
dx�

s��n� converges uniformly to � d
dx�

s��

Proof It is su�cient to show that for all s � ZZ�� the functions
j�jsj ���n����j are majorized by an L� function fs��� that does not
depend on n � by dominated convergence this implies

lim
n���

Z
j�jsj ������ ���n����jd� 	 
� ������

�




and thus the uniform convergence of all the derivatives of ��n�

in the space domain� We shall construct these majorizing func�
tions� using the additional hypotheses that we have made on the
functions mk����

First� we need a technical estimate that will be useful � for any
q � 
� there exists Cq 	 
 such that� for any sequence fakgk��

with 
 � ak � � and any n � p � 
�

nY
k�p

jmq�k��
�k��jak � Cq�� � j�j�b� ������

with b 	 log��M� �as in the previous theorem� we assume� with�
out loss of generality� that M � ��� Indeed� using the same argu�
ment �Bernstein�s inequality� as in the proof of Theorem ���� we
observe that

Qn
k�p jmq�k���k��jak is uniformly bounded in ���� ��

by a constant Cq that does not depend on ak� p and n� since we
have

j�� jmq�k���k��jak j � jmq�k���k��� �j
� jmq�k���k���mq�k�
�j� jmq�k�
�� �j
� �qM j�jrq�k � sq�k � �qMrq�k � sq�k�

For �l � j�j � �l�� with p � l � n� we now derive

Qn
k�p jmq�k��

�k��jak 	
Ql

k�p jmq�k��
�k��jak Qn

k�l�� jmq�k��
�k��jak

�M lQn
k�l�� jmq�k���k��jak

� Cq�M�log� j�j 	 Cqj�jb�
In the cases where l � n� this estimate still holds since Mn �M l�
while for l � p the bound is Cq� This proves ������ for all � � IR�

We are now ready to build the majorizing functions fs���� For
�xed s � 
� choose p � IN such that p� log� �i

i
� �� � s � b � ��

�this is always possible since we have assumed log� �i
i

� ��� For
n � p� we can estimate ���n���� on ���n�� �n�� by

j ���n����j 	
Qn

k�� jmk���k��j
�Mp��Qn

k�p jmk���k��j
	 Mp��Qn

k�p jmk���k��j pk Qn
k�p jmk���k��j k�pk �

��



Using the estimate ������ and the hypothesis ����
�� we thus ob�
tain

j ���n����j �Mp��Cp�� � j�j�bQn
k�p jm���k��jp

	Mp��Cp�� � j�j�bQn
k�p j cos���k����j�pj �m���k��jp

	Mp��Cp�� � j�j�b jsinc���p��j�p

jsinc���n����j�p
Qn

k�p j �m���k��jp
� Ap�� � j�j�b��pQn

k�p j �m���k��jp�

where Ap only depends on p� since jsinc���n����j�p is bounded
below away from 
 on ���n�� �n�� by a constant that does not
depend on n but only on p� To estimate the remaining product�
we remark that� since �m��� is bounded� H�older continuous at
the origin and �m�
� 	 �� then for all n � p � 
� the productsQn

k�p j �m���k��jp are uniformly bounded on ���� �� by a constant
Bp that is independant of n� For �l � j�j � �l�� with p � l � n�
using the hypothesis on �m� we obtain

Qn
k�p j �m���k��jp 	

Ql
k�p j �m���k��jpQn

k�l�� j �m���k��jp
	
Ql

k�p j �m���k��jpQn�l
k�� j �m���k�l��jp

� Bp
Ql

k�p j �m���k��jp
� Bp


� l�p
i

�p
i �sup� j �m���j��i���p

	 Dp

lp�i
i

� Dp

�p�i� log� j�j
i 	 Apj�j�p�i� log� �i �

where Dp depends only on p �again� in the cases where l � n or
l � p� this still holds by replacing the product which does not
make sense by ��� Combining� with the previous estimate� we
obtain

j ���n����j � Kp�� � j�j�b�p� log� �ii
���� ����
�

where Kp depends only on p� and thus

j�jsj ���n����j � Kp�� � j�j�b�s�p� log� �ii
���� ������

This also holds trivially for j�j 	 �n�� Since we have assumed
b � s � p� log� �i

i
� �� � ��� this gives us the desired uniform L�

estimate� This concludes the proof of the theorem� �
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Remarks

The hypotheses of Theorem ��� imply in particular that the degree d�k�
of mk grows at least linearly �mk has a zero of order �k at � 	 ��� This is
not strictly necessary � we show in the appendix that it is possible to obtain
strongly converging subdivision schemes with a C� limit function as soon as
d�k� tends to �� without any assumption on its asymptotic behaviour �but
with the assumption jm���j � � that removes a lot of technicalities��

These hypotheses can also be weakened by assuming that the estimate
����
� is satis�ed only for k su�ciently large � the limit behaviour of the
subdivision does not depend on the �rst iterations�

III� Multiresolution approximation

Let fmkgk�� be a sequence of �nite masks that satisfy the hypotheses of
Theorem ���� We de�ne a sequence of C� compactly supported functions by

��j��� 	
��Y
k��

mk�j��
�k��� j � 
� �
���

We see that �� 	 � and that �j is obtained as the limit of the same sub�
division algorithm by cancelling the �rst j iterations� It follows that �j is
also in C�

� � Since ��j��� 	 mj������� ��j�������� we see that this sequence
of functions satis�es a serie of recursive re�nement equations �

�j�x� 	
X

jnj�d�j���

mj���n��j����x � n�� �
���

It is thus natural to de�ne a �half multiresolution analysis� fVjgj�� by
Vj 	 Spanf�j��jx� k�gk�ZZ� The inclusion Vj � Vj�� comes from �
����

We shall now study the approximation properties of theses spaces in
Sobolev spaces� Given a function f � Hr� we can de�ne for s � r

d�f� Vj�s 	 inf
g�Vj

kf � gks� �
�
�

where k � ks is the Hs norm� We are concerned here with the behaviour of
d�f� Vj� as j goes to ��� By de�nition� the spaces Vj have approximation
order �resp� density order� r in Hs if ��r�s�jd�f� Vj�s is bounded �resp� goes
to 
� as j � ���

�




We shall �rst establish a general result� using a technique introduced in
a paper of de Boor� DeVore and Ron ������� In this paper� the authors are
concerned with approximation in the L� norm� from shift�invariant spaces�
Here� we adapt their technique to the derivation of density orders in Sobolev
norms� Approximation orders in Sobolev norms by shift invariant spaces are
studied in Zao ����
� and Ron ����
��

Theorem ��� Let f�jgj�� be a sequence of compactly supported functions
in Hs for some s � 
 and de�ne Vj 	 Spanf�j��jx � k�gk�ZZ� For r � s�
assume that there exists t ��
� �� such that� for all 
 � v � s�

sup
j�j�t

�j�j��r
P

n��� j� � �n�j�vj ��j�� � �n��j�
j ��j���j� �� 
� as j � ��� �
���

Then the spaces Vj have density order r in Hs� More precisely� let Pj be the

L� projection Pj and Sj the operator de�ned by FSjf��� 	 �f ������t�t����j���

where F represents the Fourier transform operator �Ff��� 	 �f ����� Then�
for all f � Hr� one has d�f� Vj� � kPjSjf � fks � C�j�s�r�kfkr
�f� j�� with

 � 
�f� j� � � and limj��� 
�f� j� 	 
�

Proof First� observe that one can always associate with �j a
function �j de�ned by

��j��� 	
��j���

�
P

n�ZZ j ��j�� � �n��j����� � �
���

such that f�j���j��jx� k�gk�ZZ is an orthonormal basis of Vj � in
the case where

P
n�ZZ j ��j�� � �n��j� 	

P
kh�j���j�j�� � k�ie�ik�

vanishes at some isolated point� one easily checks that �j is still
the L� limit when 
� 
 of �j�� de�ned by

��j����� 	
��j���

�
�
P

n�ZZ j ��j�� � �n��j�����
� �
���

and that �j�� is an �� combination of �j�x� k��

Consequently� we can write� for any f � L��

Pjf�x� 	 �j
X
k�ZZ

hf j�j��j � �k�i�j��jx� k�� �
���

��



For all j � 
� we de�ne Qj 	 I � Pj and Tj 	 I � Sj � We can
thus estimate the approximation error in the following way �

kPjSjf � fks � kTjfks � kPjSjf � Sjfks
� kTjfks � kSjPjSjf � Sjfks � kTjPjSjfks
� kTjfks � kSjQjSjfks � kTjPjSjfks�

Let f be in Hr� i�e� kfk�r 	 ������
R j �f���j��� � j�j�r�d� � ���

We shall examine separately these three quantities and prove that
they all satisfy the estimate that we want for d�Vj � f�s�

The �truncation error� kTjfks is independant of the approximat�
ing subspaces Vj � It is clear that we have

kTjfk�s 	 ������
R
j�j��jt j �f���j��� � j�j�s�d�

� ��������j�s�r�t��s�r�
R
j�j��j t j �f���j��� � j�j�r�d�

� C��j�s�r�kfk�r
�f� j��

with 
 � 
�f� j� � � and 
�f� j�� 
 as j � ���

For the second term� we have

kSjQjSjfk�s 	 ������
R
j�j��jt jFQjSjf���j��� � j�j�s�d�

� �������� � ��jst�s�
R
j�j��jt jFQjSjf���j�d�

� C��jskSjQjSjfk���

To estimate kSjQjSjfk��� we note that

FPjSjf��� 	 ��j���j��
P

k�ZZhSjf j�j��j � �k�ie�i��jk�
	 ��j������ ��j���j��

P
k�ZZhFSjf���j��j���j ��ei��jk�ie�i��jk��

�
���
Since the above sum de�nes a �j����periodic function� which co�

incides on ���j�� �j�� with �f������t�t���
�j�������j��� it follows

that� on the interval ���j�� �j���

FPjSjf��� 	 j��j���j��j� �f������t�t���
�j���

��


