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Abstract

Nonstationary subdivision schemes consist of recursive refinements of an
initial sparse sequence with the use of masks that may vary from one scale
to the next finer one. This paper is concerned both with the convergence
of nonstationary subdivision schemes and with the properties of their limit
functions. We first establish a general result on the convergence of such
schemes to C* compactly supported functions. We show that these limit
functions allow to define a multiresolution analysis that has the property of
spectral approximation. Finally, we use these general results to construct C'*°
compactly supported cardinal interpolants and also C* compactly supported
orthonormal wavelet bases that constitute Riesz bases for Sobolev spaces of
any order.

Key-words : Subdivision schemes, multiresolution analysis, spectral
approximation, dyadic interpolation, wavelets.



I.Introduction

Subdivision schemes constitute a useful tool for the fast generation of smooth
curves and surfaces from a set of control points by means of iterative refine-
ments. In the most often considered binary univariate case, one starts from
a sequence so(k) and obtains at step j a sequence s;(277k), generated from
the previous one by linear rules :

5i(27k) =2 D cip(n)sj—1 (277 (k —n)). (1.1)

nek+2%Z

The masks ¢;r = {¢;jr(n)}nez are in general finite sequences, a property that
is clearly useful for the practical implementation of (1.1).

A natural problem is then to study the convergence of such an algo-
rithm to a limit function. In particular, the scheme is said to be strongly
convergent if and only if there exists a continuous function f(z) such that
lim; 4 oo (supy, |5;(277k) — f(277k)|) = 0. One can study more general types
of convergence with the use of a smooth function g that is well localized
in space (for example compactly supported) and satisfies the interpolation
property g(k) = 8;. One can then define f;(z) = 3 5;(277k)g(2z — k) and
study the convergence in a functional sense of f; to f.

A subdivision scheme is said to be stationary and uniform when the masks
¢;e(n) = ¢, are independant of the parameters j and k. In that case, one
can rewrite (1.1) as

3;(277k) =2 croansi—1 (277 0). (1.2)

Note that (1.2) is equivalent in filling the sequence s;_; with zeros at the
intermediate points 277(2k + 1) and applying a discrete convolution with the
sequence (cg). Detailed reviews of stationary subdivision have been done by
Cavaretta, Dahmen and Micchelli (1991) and Dyn (1992).

These algorithms apply in a natural way to computer aided geometric
design. Moreover, the interest in stationary subdivision schemes has grown
in the digital image processing and numerical analysis communities since
they have been connected to multiresolution analysis and wavelet bases.



A multiresolution analysis consists of a nested sequence of approximation
subspaces

{0} .. VacVaCcVCViCVe... = L*(R), (1.3)

that are generated by a “scaling function” ¢ € Vp in the sense that the
set {¢(29z — k)}rem constitutes a Riesz basis for V;. By V; — L*(RR), we
mean here that for any f in L2(IR), lim;_, 1 | P;f — f|lo = 0 where P;f is the
L?-projection of f onto V; and ||-||o is the L? norm (we shall use the notation
|| - ||s for the Sobolev H* = W, norm). Here again, many generalizations are
possible (see Meyer (1990) or Daubechies (1992) for a detailed review of this
concept).

Since the spaces V; are embedded, the scaling function satisfies an equa-
tion of the type

e(z) =2 cnp(2z — n). (1.4)

We shall assume here that ¢ is compactly supported so that the ¢,’s are
finite in number. In that case, ¢ is also an L' function and by taking the
Fourier transform of (1.4), we have

b(w) = m(w/2p(w/2) (15)
where m(w) = ¥,cz cne™ ™. Assuming that ¢ is normalized in the sense
that [ ¢ = ¢(0) = 1, one obtains by iterating (1.5),

+ o0

P(w) = [ m(27*w). (1.6)

k=1

This last formula indicates that ¢ is the limit, in the weak (or distribution)
sense, of a stationary subdivision scheme since it represents, in the Fourier
domain, the refinement of an initial Dirac sequence by iterative convolutions
with ¢,. Note also that the support of ¢ is contained in the convex hull of
the support of the mask (cx). Conversly, any refinable function, i.e. weak
limit of such a scheme, satisfies a “refinement equation” of the type described
above and is a potential candidate to generate a multiresolution analysis (see

also Derfel, Dyn and Levin (1992)).



Given a stationary subdivision scheme, we see here that two questions
are relevant :

o Is the scheme convergent and in what sense ?
e What are the properties of the limit functions 7

By the last question, we mean in particular the approximation properties
of the spaces V; (can we approximate in other norms than L?, in particu-
lar in Sobolev spaces H*, with specific rates...), the exact regularity of the
scaling function and other properties of ¢ such as cardinal interpolation or
orthonormality of its integer shifts.

Numerous contributions have been made on these two problems. The
convergence of the subdivision and the approximation properties of the mul-
tiresolution spaces are strongly linked : in particular, one can prove (see Dyn
and Levin (1990), Cavaretta, Dahmen and Micchelli (1992), Daubechies and
Lagarias (1991)) that both the convergence of the subdivision scheme to a
C™ function for some r > 0 and the property that lim;_,, o 29[| P;f — f|lo = 0
for all f € H® (s < r) imply that the scaling function satisfies the Strang-Fix
conditions of order N, where N is an integer such that N < r < N + 1.
These conditions can be expressed by three equivalent statements :

e Any polynomial of degree not exceedding N can be expressed as a
combination of the integer shifts of .

e For all p < N and m € 7ZZ — {0}, (%)pgé@mw) =0, ¢(0) = 1.
o Forall p< N, (%)pm(ﬂ) = 0 or equivalently Y, (—1)™mPc,, = 0.
Note that this last statement reveals that m(w) can be written as

m(w) = (~ )V (), (17)
where g(w) is a trigonometric polynomial. (1.7) implies that there are at
least N + 2 nonzero c,, and thus the support length of ¢ is at least N + 1.
This leads to the observation that very good approximation rates for regular
functions, as well as convergence of the subdivision in a smooth norm, can
only be achieved if one accepts to loose some space localization (in particular,



one cannot build a refinable function that is both compactly supported and
in C%).

More recently, attention has been given to subdivision schemes that are
nonstationary in scale, i.e. for which the masks may vary from one step of
the refinement process to the next one. A model case is the scheme that
uses at step k the mask ¢ = (F)27%+1 (0 < n < k), that gives rise in the
stationary subdivision case to B-splines of degree kK — 1. It was proved by
Dyn, Levin and Derfel (1992) that such a scheme converges strongly to the
“up-function” introduced by Rvachev (1971) (see also Rvachev (1990)). The

limit function can thus be written in the Fourier domain as

+ o0 1_|_e—i2_’°w

. k
o) = [Ty (1.
k=1

The length of its support is given by L = Y,50k27" = 2 < +o0o. Such a
function cannot satisfy a refinement equation of the type (1.4). However,
note that the product (1.8) can also be written as
+oo(1+e—"2_'“‘")k =L I, Lte e
k=1 2 - n=0 llk=mn+1 2

— H—I—oo 1—|—<—3_"2_n“'J

n=0 42—y

= H:i% )2[0,1](2_”“’)-

It follows that

@ = X[o,1] * 2X[o,1/2) * ** * 27 X[0,3-3] * - -

i1s a O™ function that satisfies a “continuous refinement equation” of the type

p(z) = 2xp0,1 * 9(2-) = /02 p(2z —y)dy. (1.9)

By letting the masks grow linearly, it is thus possible to obtain a C'*°
function while preserving the compact support property. It was also shown
by Dyn and Ron (1993) that a “half-multiresolution analysis” can be derived
by defining, for all 5 > 0, V; = Span{p;(27z — k) }rez with

. +o0 1 _I_e—iZ_kw .
bilw) = TI ), (1.10)

k=1



and that these spaces have the property of spectral approximation in L? :
for any r > 0 and for all f € H", lim;_, o, 27"||P;f — fllo = 0.

Our goal in this paper is to generalize these results to a large class of
nonstationary subdivision schemes.

Assuming that such a scheme converges at least in the sense of tempered
distributions, the general form of its limit function will be given in the Fourier
domain by

p(w) = ﬁomk(2_kw), (1.11)

where my, 1s the sequence of trigonometric polynomials associated with the
masks of the subdivision. Note that, since we do not assume any particular
form for my, the function ¢ will not in general satisfy any type of refinement
equation, discrete or continuous, making thus more difficult the analysis of
its smoothness and approximation properties.

What is the interest of such a generalization ? An important remark
is that the approximation properties of the up-function and its associated
multiresolution analysis, very attractive from the theoretical point of view,
suffer from a major numerical disadvantage : the computation of the L?
projection onto Vj is difficult to manage at high scales since the Gram matrix
of the basis {p?(2/z — k)}rez becomes ill-conditionned. More precisely, its
condition number C(j) grows exponentially with j :

(V2)t < C(j) < const(g)j. (1.12)

The upper bound is taken from Dyn and Ron (1993) and the lower bound is
obtained here :

C(j)* = (sup, Ly ¢’ (w + 2km)|” )(infw Sk @7 (w + 2km)[2)

inf, 3 |67+ 2kr) )
P ((2k + 1)m)[2)

+ cos " (r/A)51 (2K + 1)m/2)2)
cos(7r/4)] 252 — it1,
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The same problem occurs when one wants to interpolate data on the grid
27777 by a function in V; for j odd : one checks from a similar computation
that the condition number D(j) of the system grows exponentially.



In a more general setting, it is possible to keep these condition numbers
bounded as j grows. One can even fix one of them to 1 by imposing con-
straints on the trigonometric polynomials my so that the limit functions have
orthonormality or cardinal interpolation properties (see §4).

Finally, an important property of multiresolution analysis is the equiva-
lence

IFII? ~ | Pofllo + > 2 [| Pisa f — P;£Il5, (1.12)
>0
that is the key to multilevel preconditionning techniques (see Dahmen and
Kunoth (1992)) and that can also be expressed in terms of wavelet coefli-
cients. So far, we could only prove this equivalence in the orthonormal case,
for all » > 0 (see §4).

Our paper is organized as follows : in §2, we give a general result on
the convergence of a nonstationary subdivision scheme in C'* under very
mild conditions on the masks. We study the approximation properties of the
associated multiresolution spaces in §3 and prove that spectral approximation
can be achieved for all Sobolev norms. Finally we apply these results in §4
to dyadic interpolation and to orthonormal wavelets that constitute Riesz
bases for all Sobolev spaces. This particular wavelet basis has been recently
introduced in a paper by Berkolaiko and Novikov (1992) which was concerned
with the existence of a multiscale orthonomal basis of compactly supported
C* functions.

For the sake of simplicity, we limit ourselves to the one dimensional setting
and our results are stated in the case where the length of the masks grows
at least linearly. We show in an appendix how this can be extended to more
general growth rates of the mask length.



II.Nonstationary subdivision schemes

Let {mg}r>0 be a sequence of finite masks, i.e. mg(n) = 0 if |n| > d(k).
We denote by my(w) = ¥, mi(n)e™™™ their representation in the Fourier
domain, i.e. a sequence of trigonometric polynomials of degree d(k). Let us
consider the nonstationary subdivision scheme that is associated with this
sequence of masks, i.e. s;(277k) =23, m;(k—2n)s;_1(277+n). If the input
is a Dirac sequence d,, o, one obtains after n steps a sequence of samples on
the grid 2 "7Z, that can be interpolated in a unique way by a function @™
that is band-limited on [—2"m,2"x]. This function is defined by

o) = H (2 H )X (270, (2.1)

Note that the functions ¢ are analytic and thus not compactly supported.
We shall use these particular interpolants in order to study the convergence
of the subdivision scheme to the limit function defined (if this is possible) by

o(w) = kli)[omk(2_kw). (2.2)

After n steps, the result of the subdivision in the space domain is sup-
ported in [—L(n), L(n)], with L(n) = ¥7_; 27*d(k). A natural condition for

compactly supported limit function is thus
+ o0
L=Y 27"%d(k) < +oo. (2.3)
k=1

Our first result shows that this condition is also instrumental in the deriva-
tion of the convergence, in the sense of tempered distributions, of the subdi-
vision scheme.

Theorem 2.1 Assume that v, = 27%d(k) and s = |m(0) — 1| are both
summable sequences, and that the functions |mg(w)| are uniformly bounded
by some constant M > 0. Then ¢!™ converges uniformly on any compact
set to ¢ and o™ converges to ¢ in the sense of tempered distributions. The
tempered distribution ¢ is compactly supported in [—L, L] with L = Y ;o0 k.



Proof We first study the convergence of the infinite product
(2.2). For a fixed w, we have to check the summability in &k of
tr(w) = |ma(27%w) — 1]. If in addition, Y45 tx(w) is uniformly
bounded on every compact set, then (2.2) will also converge uni-
formly on every compact set.

We can write

te(w) < |me(27Fw) — mp(0)] + sk
< 27 |w[sup,, |g5mal + si-

Using Bernstein’s unequality, we obtain the estimate
d
sup | —my| < Md(k), (2.4)
w dw

and thus
tr(w) < M|w|rg + sk, (2.5)

which proves the uniform convergence of (2.2) on every compact
set.

The same argument shows that for any n > p > 0, the products

n

Prw)= ] mi(27%w), (2.6)

k=p+1

are uniformly bounded on [—2P*! 2P™!] by the same B > 0. We
can define these products to be equal to 1 whenever n < p so
that this statement makes sense for all n,p > 0. This applies in
particular to @™ = PP? and ¢ = P° which are thus uniformly
bounded on [—2,2]. For 27 < |w| < 2P with p > 0, we can write

P (w)|

= |Pp(w) [Th=y ma(27*w)]
< BM? < BM"& ¥l < Blw|,

with b = log,(M) (we have assumed here, without loss of gener-
ality, that M > 1). For all w € IR, we thus have the estimate

PM(w)] < B(L+ |w])® (2.7)




where the constant B does not depend on n. Consequently, it
also holds for the pointwise limit ¢.

Take now any test function g(w) in the Schwartz class S(IR). For
any € > 0 there exists A > 0 such that

B g(W)(1 + |w|)dw < €/2. (2.8)

|w|>A

By the uniform convergence of $/™ to ¢ on every compact, there
exists N such that for all n > N,

[, 8@ —pedsl < e (29)

Combining (2.7), (2.8) and (2.9), we immediately obtain the con-
vergence of (¢ |g) to (¢|g). O

We are now interested in finding additional hypotheses for stronger con-
vergence of the subdivision scheme to a C'* compactly supported function
¢. Note that, in contrast to its approximants @[, the function ¢ cannot be
analytic. Our next result states general conditions for the uniform conver-
gence of o™ and all its derivatives.

Theorem 2.2 Assume that the hypotheses of Theorem 2.1 are satisfied
and that we have the estimate

()] < (1+ o) |m(w)[%, (2.10)

with 3 |oax] < +oo and m(w) = cos?(w/2)m(w), for some B > 0 (not
necessarily integer), where the function m(w) is bounded, Holder continuous
at the origin and satisfies m(0) = 1 and o; = sup,, | [[_, m(2*w)| < 27 for
some fized integer i > 0.

Then ¢ is a C*™ compactly supported function and, for all s € 74,
(;—X)’go[”] converges uniformly to (;—x)’go.

Proof It is sufficient to show that for all s € 7, the functions
|w|*|¢!M(w)| are majorized by an L* function f,(w) that does not
depend on n : by dominated convergence this implies

lim [ [w]*p(w) - " (w)ldw = 0, (2.11)

n—-+oo

10



and thus the uniform convergence of all the derivatives of o[
in the space domain. We shall construct these majorizing func-
tions, using the additional hypotheses that we have made on the
functions my(w).

First, we need a technical estimate that will be useful : for any
g > 0, there exists C; > 0 such that, for any sequence {ag}r>o0
with 0 < ax <1 and any n > p > 0,

I1 Imgse(27"w)|™ < Co(1 + [w])", (2.12)

k=p

with b = log,(M) (as in the previous theorem, we assume, with-
out loss of generality, that M > 1). Indeed, using the same argu-
ment (Bernstein’s inequality) as in the proof of Theorem 2.1, we
observe that [[j_, [mq1x(27*w)|** is uniformly bounded in [—1,1]
by a constant C, that does not depend on a, p and =, since we
have

1 — [mgr(27%w)[*] < Imgsr(27*w) — 1
< mg 1 (2740) — mgsa(0)] + Imgss(0) — 1
< 2IM|wlrgsk + Sqrk < 29 Mrgir + Sqik-

For 2! < |w| < 2% with p < [ < n, we now derive

[Ty Imga(2750) % = Tk, Imgen(2740) [ [Ty mgen(2)|
< M T}y, mgen(20)
< Oy(M)=s ! = C,lu.

In the cases where [ > n, this estimate still holds since M™ < M?,
while for | < p the bound is C,. This proves (2.12) for all w € IR.

We are now ready to build the majorizing functions f,(w). For
fixed s > 0, choose p € IN such that p(logz—?”" —-B)+s+b< -1
(this is always possible since we have assumed logz—?g" < B). For
n > p, we can estimate $/™(w) on [-2"7, 2"x| by

eM(w)] =TTy [me(27*w)]
< MP T, [mi(275w)|
P on _ k—p
= MP Tp, [ma(27%w)[* [Th, [me(27%w)| .

11



Using the estimate (2.12) and the hypothesis (2.10), we thus ob-
tain

pM(w)| < MPTIC(1 + |w)° Ty, [m (2 *w)[P
= M7 (14 o)) Ty [ cos(27* 1) (2 )
— sinc(2Pw)|PP n ~ _
= MP7LC,(1 + |w|)P e B2 T, (2 7Fw) P

< Ap(1+ w])P PP I, (2~ w) P,

where A, only depends on p, since |sinc(27""'w)|PP is bounded
below away from 0 on [—2"m,2"x| by a constant that does not
depend on n but only on p. To estimate the remaining product,
we remark that, since Mm(w) is bounded, Hdlder continuous at
the origin and m(0) = 1, then for all » > p > 0, the products
[Tr-, [M(27*w)|? are uniformly bounded on [—1,1] by a constant
B, that is independant of n. For 2! < |w| < 2! with p <1 < m,
using the hypothesis on m, we obtain

HZ:IJ |ﬁ1(2_kw)|p = Héc:p |’fh/(2_kW)|p HZ:ll_I_l |7’7’L(2_kW)|p
= i=p (27 w) P IR (27 w) P
< BTIL_, (2 *o)f
< B [52lp = (i-1)p
< Bpo; * (sup,, |m(w)|)
= Dpo'z{p/z
< Dpo.zgp/i)logz | _ Ap|w|(p/1:)10g20-i7

where D, depends only on p (again, in the cases where [ > n or
[ < p, this still holds by replacing the product which does not
make sense by 1). Combining, with the previous estimate, we
obtain

P ()| < Kp(1 + [w])PHPE 8, (2.13)

where K, depends only on p, and thus

logg o; —,5)

w||p" (W) < Kp(1 + Jwl)PHeHrTRT 0, (2.14)
This also holds trivially for |w| > 2"n. Since we have assumed

b+ s+ p(log%" — B) < —1, this gives us the desired uniform L'
estimate. This concludes the proof of the theorem. O

12



Remarks

The hypotheses of Theorem 2.2 imply in particular that the degree d(k)
of my, grows at least linearly (my has a zero of order Sk at w = 7). This is
not strictly necessary : we show in the appendix that it is possible to obtain
strongly converging subdivision schemes with a C'"* limit function as soon as
d(k) tends to 400 without any assumption on its asymptotic behaviour (but
with the assumption |m(w)| < 1 that removes a lot of technicalities).

These hypotheses can also be weakened by assuming that the estimate
(2.10) is satisfied only for k sufficiently large : the limit behaviour of the
subdivision does not depend on the first iterations.

ITII. Multiresolution approximation

Let {mg}r>0 be a sequence of finite masks that satisfy the hypotheses of
Theorem 2.2. We define a sequence of C'*® compactly supported functions by

+oo
¢i(w) = [I mes5(27*w), 5 > 0. (3.1)
k=1
We see that @9 = ¢ and that ¢; is obtained as the limit of the same sub-
division algorithm by cancelling the first j iterations. It follows that ¢; is
also in C§°. Since ¢j(w) = mji1(w/2)@j+1(w/2), we see that this sequence
of functions satisfies a serie of recursive refinement equations :

ole)= B mi)pin(2e -n) (3.2)

It is thus natural to define a “half multiresolution analysis” {V;};>0 by
V; = Span{p;(2?z — k) }xez. The inclusion V; C V;;; comes from (3.2).

We shall now study the approximation properties of theses spaces in
Sobolev spaces. Given a function f € H", we can define for s < r

d(f,Vi)s = inf [|f — g, (33)
gev;
where || - ||s is the H® norm. We are concerned here with the behaviour of

d(f,V;) as j goes to +o0o. By definition, the spaces V; have approximation
order (resp. density order) = in H*® if 2"=*)3d(f,V;), is bounded (resp. goes
to 0) as j — +oo.

13



We shall first establish a general result, using a technique introduced in
a paper of de Boor, DeVore and Ron (1992). In this paper, the authors are
concerned with approximation in the L? norm, from shift-invariant spaces.
Here, we adapt their technique to the derivation of density orders in Sobolev
norms. Approximation orders in Sobolev norms by shift invariant spaces are

studied in Zao (1993) and Ron (1993).

Theorem 3.1 Let {¢?} ;>0 be a sequence of compactly supported functions
in H® for some s > 0 and define V; = Span{p;(2'z — k)}rem. Forr > s,
assume that there exists t €|0, 7| such that, for all 0 < v < s,

o Tinga o 20"l + 20m)

n ) =0, as j — +oo. (3.4)
pi(w)?

sup
|w|<t

Then the spaces V; have density order r in H°. More precisely, let P; be the
L? projection P; and S; the operator defined by FS; f(w) = f(w)X[_t,t](2_jw),
where F represents the Fourier transform operator (F f(w) = f(w)) Then,
for all f € H, one has d(f, V) < | P;Ssf — fll, < C2C| fl,e(,3), with
0<e(f,7) <1andlim;,ie(f,j)=0.

Proof First, observe that one can always associate with ¢; a
function ¢’ defined by

] Z1C))
¢j(w) = . , (3.5)
’ (Cnez [25(w + 20m)[2)"/?
such that {29/2¢;(2z — k) }xez is an orthonormal basis of V; : in

the case where Y.z |@¢i(w + 2n7) |2 = S (@? ()|@? (- — k))e
vanishes at some isolated point, one easily checks that ¢; is still

the L? limit when € — 0 of ¢;. defined by

] Z1C))
e(w) = - 3.6
Pel) (6 + Tz |§5(w + 2nm) )" &

and that ¢;. is an £ combination of ¢;(z — k).

Consequently, we can write, for any f € L?,

Pif(z) =27 Y (fl¢;(2’ - —k))$;(2z — k). (3.7)

keZ

14



For all 5 > 0, we define ; = I — P; and T; = I — S;. We can

thus estimate the approximation error in the following way :

| PiSif — Fflls < NT5flls + |1 P5S;f — Siflls
<|T;flls + 1S; PS5 f — Siflls + || T3P;S; f|s
< NT5flls + 1155Q555 flls + | T5P5.S5f |-

Let f bein H™, ie. ||f||2 = (27)' J|f(w)]2(1 + |w|?")dw < +o0.
We shall examine separately these three quantities and prove that
they all satisfy the estimate that we want for d(V}, ).

The “truncation error” ||T;f||s is independant of the approximat-
ing subspaces Vj. It is clear that we have

) f|w|>21t |f( )| (1+ |w|A2’)dw
) 192j(s—r)42(s—r f|w|>2it|f(w)|2(1‘|‘ |w|2r)dw

IT5f1ls = (2
(2 )
C2%e0| f|12e (£, 3),

<
<

with 0 <e(f,j) <1and e(f,j) — 0asj— +oo.

For the second term, we have

15:Q3SifIli = (2m) 7" Jlujcaie | FQiSif (w) P (1 + |w|**)dw
< (27")'—1(1 + 221%28) f|w|<21't |FQijf(w)|2dw
< 02%°)15;Q;5; £ |I5-

To estimate ||5;@Q;5;f||3, we note that

FP;iSif(w) = $;(277w) Lpem(S; fls(27 - —k))e~* 7k
= (2%17) 1 4(20) Saem FS; () 5(23-) e etk
(3.8)
Since the above sum defines a 2/*!7-periodic function, which co-
incides on [—27m, 27| with f(w)X[_t,t](2_jw)<,{5(2—jw), it follows
that, on the interval [—2/m, 277],

FP;Sif(w) = |¢J(2 JW)| f( ) tt(2 Jw)

15



