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Abstract

This paper provides approximation orders for a class of nonlinear interpo-
lation procedures for uniformly sampled univariate data. The interpolation
is based on Essentially Non-Oscillatory (ENO) and Subcell Resolution (SR)
reconstruction techniques. These nonlinear techniques aim at reducing sig-
nificantly the approximation error for functions with isolated singularities,
and are therefore attractive for applications such as shock computations or
image compression. We prove that in the presence of isolated singularities,
the approximation order provided by the interpolation procedure is improved
by a factor of h relative to the linear methods, where A is the sampling rate.
Moreover for h below a critical value, we recover the optimal approximation
order as for uniformly smooth functions.

1. Introduction

This paper is concerned with the analysis of a class of univariate high order
interpolation and approximation techniques for piecewise smooth functions,
introduced by Ami Harten [?], namely Essentially Non-Oscillatory (ENO)
and Subcell Resolution (SR) reconstructions. These methods automatically
adapt near the singularities of the approximated function, and they are by
essence data dependent and nonlinear.

While their initial motivation was in the context of finite volume methods
for shock computations, ENO-SR methods have found natural applications
in data compression algorithms, in particular through the development of
multiscale decompositions, similar to wavelet expansions, which incorporate
nonlinear reconstructions [?, 7, ?]. In such decompositions, the wavelet coef-
ficients are interpreted as the errors between the sampled data and its recon-
struction from a sampling at a twice coarser scale. When dealing with data
sampled from a piecewise smooth function, the adaptive treatment of sin-
gularities results in more accurate reconstructions and therefore in sparser



decompositions than when using standard wavelet basis. In recent years,
ENO-SR techniques have been extended to 2D image data, either by tensor
product [?, ?] or by intrinsically 2D reconstructions [?, ?]. Other related
nonlinear multiscale representations have been introduced in [?, ?] in the
context of the lifting scheme.

From a theoretical point of view, the adaptive treatment of singulari-
ties allows us to expect strictly better approximation rates than with linear
methods in the case of piecewise smooth functions. A rigorous analysis of
this improvement in the 1D case is the main objective of this paper. Based on
this analysis, our future perspective is to study the approximation properties
of edge-adapted techniques for 2D data such as in [?, ?].

Consider at first the following situation : from a set of uniformly sampled
data (f(kh))kezm, we are interested in building an interpolant Z,f i.e. a
function such that Z,(kh) = f(kh) for all £ € 7ZZ. There are many ways
to build an interpolant Z, f of a prescribed order m > 0, i.e. such that if
f € C™ one has

|Z0f — f < Ch™sup | £™)]. (1)

Basically, one can do it with a linear operator Z;, which is (i) local, (ii) exact
for polynomials of degree m — 1 and (iii) stable. We are interested in the
interpolation of continuous functions f which are smooth everywhere except
at isolated points. For such functions, we can only expect an error bound of
order O(h) with a linear method, independently of its order.

In order to explain in a nutshell the principles of the ENO and SR tech-
niques, first consider a standard piecewise polynomial interpolation of the
data (f(kh))kez : to each interval

Iy :=[kh, (k+ 1)h], k€ Z, (2)
we attach the stencil Sj of size m around I} i.e.
Sk = {(k—ml)h,---,(k+m2)h}, (3)

where m; > 0 and my > 0 are fixed integers such that m; +my =m—1. We
define a unique polynomial p; € I1,,_; which agrees with f on Si. A linear
interpolation operator is then defined by

Ihf({L') = pk(x), x € Ij. (4)



This interpolant has accuracy of order m : if f is C"™ on [(k—my )h, (k+m2)h],
we have the estimate

1f = Znflloy < CR™|| £ || oo (((e—rma yh(h+ms)h))- (5)

Clearly, for a smooth function f with an isolated singularity of f’ situated in
the interval Iy, the order of accuracy is reduced to O(h) on all the intervals
I for [ = —my + 1,---,my, due to the systematic use of a fixed stencil.

The principle of ENO (Essentially Non-Oscillatory) interpolation is to
allow for data dependent stencils in order to reduce the influence of the
singularity on the approximation. For this purpose, one typically introduces
a measure of the oscillation of f on the stencil S;. Since we are interested in
detecting jump discontinuities in the first derivative, this measure is typically
based on the evaluation of the second order differences,

AZf(z) = f(z) — 2 (x + h) + f(x + 2h), (6)

for z = (k—my)h,---, (k+my—2)h. For each k, we select among all the sten-
cils {Sk_myt1,"* > Skrm, } Which contain I the stencil S, which minimizes a
chosen measure. The ENO interpolant is then given by

Ihf({L') = ]5]9(1'), x € I, (7)

where py, is the polynomial which agrees with f on the stencil Sy. In compar-
ison with the linear interpolation based on a fixed stencil, ENO interpolation
has the same order of accuracy m and it reduces the effect of an isolated
singularity, since the selected stencil will tend to avoid it. We therefore ex-
pect that the precision only deteriorates on the interval which contains the
singularity:.

The goal of the SR (Subcell Resolution) technique is to improve the ap-
proximation properties of the interpolant even on this interval. It is based
on a detection mechanism which labels as B (bad) an interval I, which is
suspected to contain a singularity, in the sense that the selected stencils for
its immediate neighbors tend to avoid it. Thus I is B if S’k_l = Sk—m, and
Skt1 = Skgmy+1. Other intervals are labeled as G (good). On a G interval
I, we use the above described ENO interpolation to define Z,f. On a B
interval I, we use the polynomials py 1 and pxy; to predict the location of



the singularity : if these polynomials intersect at a single point a of I, we
define for x € I} the interpolant by

Inf(z) =pra(z) if z <ag, pryr(z) if x> ay. (8)

In the case where these polynomials do not intersect at a single point of I,
the interval is relabeled as G and the ENO interpolation is used.

An intuitive statement is that ENO-SR interpolation has accuracy of or-
der O(h™) for piecewise smooth functions. Our goal here is to investigate
this statement in a rigorous way. For simplicity we consider functions which
are smooth except at one unknown point a, but are globally continuous. We
also assume that f € C™(IR \ {a}) in the sense that its derivatives up to
order m are uniformly bounded on R \ {a}. Thus the derivatives of f have
jumps ([f'], [f"],- - -) at the point a. Ideally we could hope for an estimate of
the form
If = Znflloe < CR™ sup |fU™)], (9)
R\ {a}
for all h > 0. Unfortunately, we shall see with a simple example that we
cannot hope for such a result for m > 2. In fact (??) holds for h smaller
than a fixed fraction of a critical scale h. depending itself on the function f
according to T
f
he == . 10
rETT—Ge] 1o
This critical scale h. corresponds to the minimal level of resolution which
ensures the detection of the singularity. Therefore we can only achieve

If = Znfllze < Ch™ sup |f™], h < Kh.(f), (11)
R\ {a}

Yet we shall yet prove that we have for all A > 0, an estimate of the form

|f = Znflle < Ch* sup |f"], (12)
IR\ {a}

i.e. at least a gain of one order of accuracy relative to any linear method.
Note that since the interpolation process is local, our analysis applies also
to the case of several isolated singularities which are sufficiently separated
relative to the sampling scale (typically by mh).
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When dealing with functions f which are piecewise smooth with an iso-
lated jump discontinuity in the function itself, there is no more hope that
a nonlinear reconstruction of f from its samples f(kh) brings any improve-
ment on the interval that contains the jump point, since the location of this
point cannot be resolved at a finer resolution from these samples. Moreover
these samples are a-priori not well defined if f is not a continuous function.
We should therefore replace the point value sampling by local averaging, in
the sense that we are now given the cell averages f}' := %fk(,’iﬂ)h f(t)dt for
k € 7Z. We can build ENO-SR reconstruction procedures from such data in a
similar way as for point value data. In fact, reconstruction from cell averages
can be derived by differentiating the point value interpolant obtained from
the discrete primitive values YF=' f/. In turn, the results that we establish
for piecewise smooth continuous functions in the point value setting can be
used to establish similar results for piecewise smooth discontinuous functions
in the cell average setting.

Note that most nonlinear approximation methods that deal with local
singularities are based on either adaptive mesh refinement or wavelet thresh-
olding (see e.g. [?, 7] for surveys on such nonlinear approximation). A specific
feature of the present approach is that it does not rely on any local refinement
of the sampled data : the function is accurately reconstructed from a given
uniform sampling, by a locally defined data dependent operator. A similar
approach, yet based on different tools (in particular Fourier analysis), has
been developed in [?].

Our paper is organized as follows. We first show by an example in §2 that
one cannot hope for more than second order accuracy when a singularity oc-
curs (still better than first order with linear methods). We introduce in §3 a
specific singularity detection mechanism together with an ENO-SR interpo-
lation process, which slightly differs from the original ENO-SR, yet with the
same basic principles, and we discuss the organization of the intervals which
are detected by this mechanism. We prove in §4 that detection always occurs
for h < h. and that the position of the singularity is accurately estimated.
We then use these results in §5 to prove that our version of the ENO-SR
interpolation technique has accuracy of order O(h™) for h smaller than Kh,
where 0 < K < 1 is a fixed constant, and that it is second order accurate for
all h > 0, which is the best that we can hope for according to the example of
§2. These findings are confirmed in §6 by numerical examples. Finally in §7,
we derive similar approximation results for piecewise smooth discontinuous



functions in the cell average setting, measuring the error in the L? norm.

2. An important example
Consider the functions f, and f_ which depend on hy > 0 :
fi(x)=0if <0, fi(z)=z(x—hy) if >0, (13)

and
f-(x) =0 if = < hy, f-(x)=ax(x—ho) if x> hy. (14)

We notice that both functions agree on hyZZ so that if 7, is any interpolation
operator on the grid ZZh, we have when h = hy:

Tnfs =Tnf-. (15)

Since || fy — f_||z = h?/4, by the triangle inequality we either have

h2
I = Tafillom = 02/8> 72 sup £ (16)
zelR\{0}
or
2 h2 "
Vf- = Taflli= = B2/8 > 7= sup |f”]. (a7)
zelR\{n}

Since we also have

sup |f™|= sup |f§rm)| =0, m> 2, (18)
velR\{n} zeR\{0}

this simple example shows us that (??7) cannot be achieved with m > 2.
Here hy plays the role of a critical scale above which singularities cannot be
precisely detected. For h << hg, our non-linear interpolation method gives
an exact reconstruction of f, and f . However, we certainly cannot ensure
more than second-order accuracy over all piecewise smooth functions and all
h > 0.



3. A modified ENO-SR detection and interpo-
lation mechanism

For a given approximation order m, our detection mechanism defines a set
of intervals labeled as B, which potentially contain the singularity, according
to the following rules :

1. If
[ARF((k = Dh)[ > [ARF (= 1£n)h)], n=1,-- m. (19)

both Iy ; and I are labeled as B. Notice that (??) indicates that
the point kh lies at the center of the largest second divided difference
(among those being compared). Hence either I;_; or I could poten-
tially contain the singularity.

2. If
[ARF(ER)| > |ARF((k+mn)h), m=1,-- m—1, (20)

and
AZF((k = DR)| > |AZF (k=1 =n)B)], n=1,---,m—1. (21)

then I is labeled as B. In this case the two largest divided differences
involved in the comparison process include I, which is then a candidate
to contain the singularity.

All other intervals are labeled as G.

This detection mechanism is designed in such a way that for h sufficiently
small, the interval I} containing the singularity a is labeled as B, while all
intervals labeled as G are in smooth regions of f. On the other hand it is
also possible that an interval I, might be labeled as B in a smooth region
at an arbitrarily small scale. In case of such false alarms, it is crucial that
the polynomials which are used to construct the interpolation are built from
stencils which only contain G intervals, i.e. from smooth regions. This is
ensured by the following lemma which describes the organization of the B
and G intervals.

Lemma 1. The groups of adjacent B intervals are at most of size 2. They
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are separated by groups of adjacent G intervals which are at least of size m—1.

Proof : Assume that I, and I, are B with 1 < kK < m. We have three
cases :

1. Iy and I, have been labeled B by the second rule. Then it follows that
both [AZf(0)| > |A7f((k—1)h)| and |AFf(0)] < [ARf((k—1)h)| which

is a contradiction.

2. Iy has been labeled B by the second rule and I, has been labeled B
by the first rule. Then either I}, | or I}, is also a B interval. Hence
we obtain that both |AZ f(0)| > |AZf(qh)| and [AZf(0)| < |AZf(qh)|
for some ¢ € {k — 1,k}, which is a contradiction. The case where I
has been labeled B by the first rule and I; has been labeled B by the
second rule is treated in a similar way.

3. Iy and I, have been labeled B by the first rule, hence each one is
a member of a B-pair (two adjacent B intervals). Hence we obtain
that both |A7f(ph)| > |A7 f(gh)| and |A7f(ph)| < |A7f(gh)| for some
p € {-1,0} and g € {k — 1, k}, which is a contradiction.

We therefore obtain that no two B intervals can have difference of indices
strictly between 1 and m which concludes the proof. O

Based on the above described detection mechanism, we propose the fol-
lowing interpolation procedure:

1. If I} is a GG interval, define Z, f on I as a polynomial p, of degree m —1
obtained by interpolation of f on a stencil {ph,---, (p+m —1)h} such
that p <k <k+1 < p+m—1 and such that this stencil only contains
G intervals. Such a stencil always exists according to Lemma 1, yet
is not unique. In practice, we may choose the stencil which is the
most centered around the interval I, or we may use the standard ENO
procedure.

2. If I, is an isolated B interval, we obtain polynomials p, and p;" of degree
m — 1 by interpolation of f on the stencils {(k —m +1)h,---,kh} and
{(k+1)h,---,(k+m)h} and use them to predict the location of the



singularity : if these polynomials intersect at a single point y of I, we
define for x € I} the interpolant by

Tnf(x) =p; (x) if <y, pi(z) if z>y. (22)

In the case where these polynomials do not intersect at a single point
of Iy, the interval is relabeled as G and we return to the previous case.

3. If (I, Ix11) is a B-pair, we treat I, U I} as I in the previous case, i.e.
we obtain polynomials p, and pzﬂ of degree m — 1 by interpolation of
f at stencils {(k—m+1)h,---,kh} and {(k+2)h,---, (k+m+1)h} and
use them to predict the location of the singularity : if these polynomials
intersect at a single point y of I U I, we define for x € I, U I}, the
interpolant by

Inf(x) =pg (@) if © <y, pla(z) if 2>y (23)

In the case where these polynomials do not intersect at a single point
of I, U1, both intervals are relabeled as G and we return to the first
case.

Note that the interpolation operator Z, f described above does not make
use of the data at mid-points of B-pairs. Hence Z; f does not interpolate f at
these points. This is a specific feature of our modified ENO-SR interpolation
which greatly facilitates the proof of our main approximation result in section
§5.

4. Properties of the detection mechanism

The goal of this section is to establish some properties of the detection mecha-
nism which shall be used in §5 for proving the improved approximation order
of Zj, f announced in the introduction.

The properties are expressed by two lemmas. The first one ensures that
the singularity is always detected under some critical scale.

Lemma 2. Let f be a globally continuous function with a bounded second



derivative on R\ {a} and a discontinuity in the first derivative at a point a.
Define the critical scale

1
c = y 24
Toub, Ry gy 1) (24

where [f'] is the jump of the first derivative f' at the point a. Then for
h < he, the interval I, which contains a is labeled as B. Moreover, if a is
close to one edge of the interval I, by at most quarter of its size, then the
interval adjacent to this edge is also labeled as B.

Proof : Without loss of generality, we can assume that a is located on
the first half of the interval Iy, i.e. 0 < a < h/2. For k > 0 and k < —1, we
find that

|ALF(kR)| < h? sup  |f"(z)]. (25)
zelR\{a}
For k = —1 and k£ = 0, the second order finite differences can be estimated

by decomposing f into
f(z) = filz) + fol2), (26)

with fi(x) = [f'](z — a); and fy(z) is a C' function with a bounded second
derivative on R\ {a}, such that

sup | fy(z)| = sup |f"(x)]. (27)
zelR\{a} zelR\{a}

We therefore have for all k € 7Z

AL fo(kh)| < h? sup  |f"(x)]. (28)
zelR\{a}

On the other hand, we have

AL fi(=h)| = [(h = a)[f]]. (29)
It follows that
AL F(=D)] = [(h = a)[f]| = h* sup |f"(z)], (30)
zeR\{a}
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and therefore
h
AL f(=h)| > §|[f']| —h* sup |f"(z)]. (31)
zelR\{a}
So if h < h,, we get by (?7)

|ALf(=R)] > h* sup |f"(z)] (32)
zelR\{a}

Combining this with (??), we find that if A < h,
[ALF(=h) > [ALf(kh), (33)

for k¥ < —1 and k& > 0. In the case where |A?f(—h)| > |A2£(0)|, we find
that I ; and [, are a B-pair according to the first detection rule. Otherwise,
if |[A2 f(—h)| < |AZf(0)], we find that I, must be labeled as B according to
the second detection rule.

We finally notice that

AL f1(0)] = [alf1], (34)
so that
[ALFO)] < la[f1+h* sup [f"(2)], (35)
zeR\{a}

Therefore combining (?7) and (??) we are always in the case of I_; and I
constituting a B-pair whenever

2h* sup |f"(x)] < (h = 24a)][f1]], (36)
zelR\{a}
which holds whenever h < h, and a < h/4. O

The next lemma expresses the fact that the location of the singularity is
accurately estimated when A is less than a fixed fraction of the critical scale.

Lemma 3. There exist constants C > 0 and 0 < K < 1 such that for

all continuous f with uniformly bounded m-th derivative on R\ {a} and for
h < Kh. with h. defined by (??), the following holds :
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1. The singularity a is contained in an isolated B interval Ij, (case 1) or
in a B-pair (I, Iy+1) (case 2).

2. The two polynomials (py,,py) (case 1) or (py,pis1) (case 2) which are
used in the definition of I, f have only one intersection point y inside
It (case 1) or inside Iy U Iy (case 2).

3. The distance between a and y is bounded by

h™ SuP]R\{a} |f(m)|

a— C
o=yl < 7]

(37)

Proof : Since K < 1, the first statement has already been proved in Lemma
2. Without loss of generality, we assume that 0 < a < h/2. In this case we
know by Lemma 2 that I, is B for h < h.. For the sake of notational sim-
plicity we denote by I = [b, ] the interval where we do the subcell resolution
process, which is either I (case 1) or I_; Uy (case 2) or Iy U I; (case 2). By
Lemma 2, we are ensured that I = I_; U Iy when a < h/4, and therefore

min{|a — b|, |a — ¢|} > h/4. (38)

We also denote by (p_,py) the polynomials which are used in the subcell
resolution of I. Finally we note that for any 2 < k < m we can write

f - ffX}—oo,a] + f+X[a,+oo[7 (39)
where f~ and f* are functions which are globally C* over IR and such that
sup | (@) < sup £ ¥ (@) (40)

zclR xe]R\{a.}

For example, we can define these functions by extension of f using its left
or right Taylor expansion of order k£ at the point a. In order to prove the
second statement of the theorem, we choose £ = 2. We note that p_ and p,
can also be viewed as Lagrange interpolation of f and f,. It then follows
from classical results on Lagrange interpolation that there exists a constant
D independent of f such that for all t € I,

|[f+(t) = p+(t)] < Dh* sup | fi(x)| = DR* sup |f"(x)],  (41)
R reR\(a)
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and

|[f2(t) = pl(t)| < Dhsup |fi(z)| = Db sup |f"(z)]. (42)
zelR zeR\{a}
Since |t — a] < 2h when ¢ € I, we also have
fi(t) = fila)| <2k sup  [f"()], (43)
zelR\{a}

therefore we get from (77)

|fi(a) =pL @) < (D+2)h sup |f'(z)], tel (44)
zclR\{a}

It follows that for all t € I,

P (8) = (O > |[f]l =2(D+2)h sup [f"(z)]. (45)
zelR\{a}

Thus, for h < D%rzh'c the function p, — p_ is strictly monotone on I and has
at most one root. Therefore, we are ensured that p, and p_ intersect at most
at a single point inside I. In order to prove that this point y exists, we need
to show that p, — p_ has a sign change inside I. Without loss of generality,
assume here that [f'] > 0. By second order Taylor expansion at the point a,

we find that

(f+ = f2)(b) < —=(a—=Db)[f]+ (a—b)* sup |f"(z)], (46)
zelR\{a}
and
(fr = f)©) > (c—a)lf]—(c—a)?® sup |f"(x)l. (47)
zelR\{a}

Combining with (?7?), we thus obtain

(s —p)(0) < —(a=0)[f]+ ((a =b)*+2Dr?) sup |f'(z)], (48)
zclR\{a}

and

(04 —p-)(c) > (c—a)[f'] = ((c—a)® +2Dh?) sup |f"(z)|.  (49)
zelR\{a}
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Using (?7), we therefore obtain,

h
(P =p-)(b) < =7 [fT+ (2D + 4> sup | f"(x)], (50)
zelR\{a}
and "
(p+ =p-)(e) 2 7 [f]— (2D + 4)h* sup [f"(x)]. (51)
zelR\{a}
It follows that for h < ﬁh, we have
h
(s —p)) < 5171 <0, (52)
and "
(s —p)(0) 2 57 > 0, (53)

so that there exists a single intersection point y € I. So defining K :=
we have proved the two first statements of the theorem.

In order to prove the third statement (??7), we now choose k = m in the
definition of the extensions f, and f_. It again follows from classical results
on Lagrange interpolation that there exists a constant D such that for all
tel,

.
4D+8°

f+(t) —p+()] < D™ sup  |f™(z)], (54)
zclR\{a}

and therefore, if we define ¢ = f, — f_ and ¢ = p. — p_, we obtain for all
tel,

l9(t) —q(t)] <2DA™ sup | (x)], (55)
zeR\{a}
so that for t = a,
lq(a)| < 2DH™ sup £ (x)]. (56)
zclR\{a}
Now note that for ¢t € I and h < Kh,, by (77?)
/
=0 (57)
and therefore
la(a)l = la(y) — q(a)| = |y — all[f"]]/2. (58)
Combining this with (??), we therefore obtain (??) with C' = 4D. O
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5. Approximation properties of 7

We are now ready to derive our main approximation result.

Theorem 1. For all continuous f with derivatives up to degree m uniformly
bounded on R\ {a}, the nonlinear interpolant I, f satisfies

| f = Znfllze < Ch* sup |f"|, (59)
IR\ {a}

for all h > 0, with C' > 0 independent of f. Moreover there exists 0 < K < 1
independent of f such that for h < Kh,. with h. defined by (??), we have

If = Tnfllpe < CH™ sup |f™)]. (60)
R\{a}

Proof : We choose for K the constant in Lemma 3. Note first that for
h < Kh., according to Lemma 1 and Lemma 2, all the polynomials which
are used in the construction of 7, are built from stencils over which the func-
tion is smooth. It follows from classical results on Lagrange interpolation
that the estimate

|f(x) — Tnf(x)| < Ch™ sup |f™)], (61)
IR\{a}

holds whenever x belongs to a G interval or to an isolated B interval or B-pair
which does not contain a (i.e. false alarms do not deteriorate the convergence
rate). Let us now assume that = belongs to the group of adjacent B intervals
which contains a. Here, we shall assume again without loss of generality
that 0 < a < h/2 and use the notations I = [b,¢c|, py, p—, f+, f- that were
introduced in the proof of Lemma 3. We also assume that a < y, the case
y < a being treated in a similar way. For = € [b, a], we have the estimate

f(2) = Tnf(2)] = |f-(x) — p_(x)| < Ch™ sup |f™)], (62)
IR\ {a}

and for x € [y, |, we have the estimate

f (@) = Tnf(2)] = [f+ () — pi(2)| < CH™ sup [f™)]. (63)
IR\{a}
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It remains to consider the case a < x < y. In this case, we have

[f(2) = Znf (@) = [f1(2) —p-(2)| < |f1(2) = [ (@) |+ |f-(2) —p-(2)]. (64)

The second term is again bounded by Ch™ supR, r,y | f™)]|. For the first term,
we use second order Taylor expansion to derive

@) = @) <P —a) + (7 — a)? supp, gy |
< (y— a)(ILF]] + b supp, 1oy 1F1)-

Since h < h,., this gives

() — £ @) < 20w — a). (65)

Combining this with the estimate (?7) of Lemma 3, we also obtain the bound
Ch™ supp, () | f™)] for | f1(x) — f_(z)| which concludes the proof in the case
h < Kh,.

In the case h > Kh,, we are ensured of the estimate

|f(x) = Tnf(x)| < Ch™ sup |f™)], (66)
R\ {a}

only when z is at distance at least (m + 1)h from a. We also have the lower
order estimate

() = Tuf(z)| < Ch* sup |f"]. (67)

R\{a}

Let us now prove that this estimate remains valid if |z — a| < (m + 1)h.
For this purpose we consider the decomposition f = f; + fo used in the
proof of Lemma 2. The errors of polynomial interpolation of f; and f, are
respectively bounded by Ch|[f'|| and Ch? SUD[R 1a) |f"|. Since h > Kh, the
second bound dominates the first one so that the above estimate is valid.
The proof of the theorem is now complete. O

6. Numerical examples

We consider the following functions

(x —7/6)(x —7/6 —¢) +sin(nrz/8)/8 = < 7/6

felz) = { sin(rz/8)/8 otherwise (68)
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