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Abstract 
 

Parametrization of 3D mesh data is important for many graphics applications, in particular for texture 
mapping, mesh processing and morphing. Closed, manifold genus-0 meshes are topologically equivalent to a 
3D sphere, hence this is the natural parameter domain for them. Parametrizing a triangular mesh onto the 
sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical 
triangles induced by the mesh connectivity do not overlap. We call this a spherical triangulation. In this paper 
we formulate a set of necessary and sufficient conditions on the spherical angles of the spherical triangles for 
them to form a spherical triangulation. We show how to solve an optimization procedure to produce spherical 
triangulations with various geometric properties. 

 
1.  Introduction 
 
Given a 3D mesh, many computer graphics applications map texture onto it in order to produce more 
realistic renderings. Since the texture map is typically a 2D image, this operation requires assigning 2D 
plane coordinates to each of the mesh vertices. If the mesh consists of triangles, the texture pixels are then 
mapped in a piecewise affine manner from the texture plane to the 3D triangle faces. Since a texture map is 
topologically equivalent to a disk, the most natural result is obtained when the 3D mesh also has the 
topology of a disk (i.e. manifold, genus-0 with a border). In this case, since many parametrizations exists, it 
is a major challenge to produce that which best fits the geometry of the 3D mesh, minimizing some 
measure of distortion. Most of the recent works on the subject of parametrization (e.g. [2,4,7]) have 
focused on defining the distortion, and showing how to minimize it. The different disk parametrization 
methods published may be partitioned into two categories: Those who require that the boundary parameter 
values are pre-defined and form a convex shape (e.g. [2]) and those who impose no special shape on the 
boundary (e.g. [4,7]). 
 
The parametrization problem is more complicated when the mesh does not have the topology of a disk. 
Many manifold 3D meshes are closed (i.e. have no boundary), so are topologically equivalent to a sphere, 
which is fundamentally different from the topology of the texture map. The most straightforward way to 
work around this is to somehow form a “boundary” and then use the methods designed for disks. A 
triangular boundary may be formed by removing an arbitrary triangle from a closed mesh. A more 
elaborate boundary may be formed by cutting along mesh edges [6]. This, however, usually introduces 
discontinuities where the edges are cut and may sometimes increase the parameterization distortion in 
comparison to spherical parameterization. 
 
While parametrizing to the plane is the most natural way to perform texture-mapping, this is less natural for 
other mesh processing operations which also require a parametrization. For applications such as morphing 
[1] and remeshing [3] it is best to parametrize the mesh over a domain which is topologically equivalent to 
it. So if the mesh has the topology of a sphere, it is best to use a spherical parameter domain. Parametrizing 
a 3D mesh over the sphere is equivalent to embedding its connectivity graph on the sphere, such that all the 
resulting spherical polygons do not overlap. A classical result of Steinitz is that a graph may be embedded 
on the sphere iff it is planar and 3-connected. So a closed genus zero triangulation can always be mapped to 
a spherical triangulation. 
 
The simplest way to map a closed triangulation to the sphere is to cut out one triangle to serve as a 
boundary, parametrize the open mesh over the unit triangle, and then use the stereographic projection to 
map the disk to the sphere. The boundary triangle will contain the north pole of the sphere. The main 
problem with this method is that most disk parametrization methods, when faced with a triangular 
boundary (containing only three vertices), tend to cluster all the interior vertices in the center of the 



triangle, leading to significant distortion in both the disk and spherical parametrizations. Another problem 
is that while the sterographic projection is one-to-one over the plane, it does not preserve straight lines. 
Hence, a valid spherical triangulation is not always guaranteed. This does not happen often, but it becomes 
an issue when robustness is required. 
 
Another popular method is to cut the mesh into two pieces, each topologically equivalent to a disk, 
parametrize each over a planar disk with a common boundary, and then map each disk to a hemisphere. 
The common boundary guarantees that the two hemispheres fit together at the equator. Each disk 
parametrization will be better than the one described in the previous paragraph, so the result will be less 
distorted. However, the result will depend strongly on the specific cut used to obtain the two disks, so it can 
be difficult to optimize. In addition the cut line will show up as a parameterization artifact. This method 
may be extended by cutting the given mesh into more than two pieces.  
 
Several methods for direct parametrization on the sphere have been developed. The only one that seems to 
guarantee a valid spherical triangulation is that of Shapiro and Tal [5]. This method works by simplifying 
the mesh by vertex removal until only a tetrahedron remains. The tetrahedron is embedded on the sphere, 
and then the vertices are inserted back one by one, so that the convexity of the shape is preserved 
throughout the process. While this is quite an efficient process, it is difficult to optimize the 
parametrization, due to its greedy nature. Another direct embedding method was suggested by Kobbelt et al 
[3] and Alexa [1]. It is an iterative procedure, attempting to converge to an embedding by applying local 
improvement (relaxation) rules. This method works well in many cases. However, there is no guarantee 
that it will terminate, and, even if it does, that the resulting embedding will be valid. 
 
The common denominator of all of these methods, as well as most of the disk parametrization methods, is 
that the algorithms run on the values of the parameters. In this paper we present an algorithm for spherical 
embedding that extends the approach of Sheffer and de Sturler [7] for disk embeddings. Their algorithm 
works by operating on the angles of the planar triangles rather than the positions of the triangle vertices in 
the plane. A set of necessary and sufficient conditions for the angles to form a valid planar triangulation is 
formulated. These turn out to be mostly linear equalities and inequalities and just one non-linear equality 
relation involving the sines of the angles. Once the angles have been determined, the triangles are formed 
by an “unfolding” operation. Thanks to the approach of working with angles, the resulting triangulation is 
not forced to have a convex boundary. 
 
In this paper, we extend the method of Sheffer and de Sturler to parametrization on the sphere. Here too, 
we work with angles, except these angles are spherical angles, rather than planar angles. We formulate a set 
of necessary and sufficient conditions for the angles to form a valid spherical triangulation. Once the angles 
are determined, the spherical triangulation may be generated. 
 
2.  Some Spherical Geometry 
 
In this section we review some of the basics of spherical geometry and trigonometry on the unit sphere that 
we will need in the sequel. See Fig. 1 for an illustration. A spherical triangle is the region enclosed by three 
great circles on the sphere (a great circle is a circle on the sphere whose center coincides with the center of 
the sphere). Denote the length of the arcs who are the sides of the spherical triangle by a, b and c. These are 
actually just the planar angles of the wedges defined by the origin and pairs of vertices of the triangle. 
Certainly each of these is less than π. The spherical defect of the triangle is D = 2π-(a+b+c). A spherical 
angle is the angle between the two planes defined by the two great circles, and we denote these by A, B and 
C. The sum of the spherical angles of a spherical triangle is always more than π and less than 3π. The 
spherical excess of that triangle is E = A+B+C-π. The solid angle defined by a spherical triangle is the area 
of the region on the sphere defined by that triangle, and is equal to the excess of the triangle. Hence the sum 
of all solid angles and the sum of all excesses in a spherical triangulation is 4π.  



 
Figure 1: Spherical Geometry. 
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3.  Conditions for Spherical Triangulation 
 
Given a closed manifold genus-0 connectivity of n vertices, (by Euler’s theorem) t=2n-4 triangles, and 
m=3n-6 edges, this connectivity forms a valid triangulation on the sphere iff a set of conditions on the 
spherical angles that they form, their excesses, and the relationship between them, hold.  
 
Following Sheffer and de Sturler [7] we denote the spherical angles of the triangles as 
ëj
i, i = 1. . .t, j = 0, 1, 2  in counter-clockwise order around the face normal. We denote  the 

spherical excess of each triangle as ei, i = 1. . .t . Furthermore, denote by Vj(k) (j = 0,1,2) the lists of 
indices of the triangles whose αj angles are incident on the k’th vertex, by I1(l) and I2(l) the indices of the 
two triangles incident on the l’th edge, and by J1(l) and J2(l) the indices of the angles opposite the edge in 
those two triangles. Now the following 5t+2n+m conditions ((3)-(8)) on 4t variables for a valid spherical 
triangulation are: 
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In  (7) the superscripts are modulu 3. These conditions are identical to those of the planar case [7] with the 
addition of the angular excess for each triangle. The last condition follows from the spherical sine rule (1). 
On the sphere an additional set of conditions is required to satisfy the cosine rule (2). In the plane this rule 
follows from the fact that the sum of the angles in a triangle is π. On the sphere this is not the case, so in 
order that the rule hold, we must relate the angles within each pair of triangles incident on a common edge. 
The condition for each edge is 
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These conditions guarantee a spherical triangulation. 
 
Clearly many different spherical triangulations exist for a given connectivity, hence we can “mould” the 
triangulation by specifying target values for the spherical triangle angles and areas. Given these target 
values, the problem becomes a constrained minimization problem, where we minimize the least-squares 
distance of the solution values from their target values (ìji and e0i):  
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This cost function allows to control the shape of the parameterization. For example, if the input 
connectivity originates in a 3D model, using the (normalized) 3D areas of the model triangles as targets 
will aim at area preserving parameterization. Similarly, using the original 3D angles as targets will aim at 
conformal mapping. None of the methods reviewed in the introduction permits such control of 
parameterization properties. By solving the constrained minimization problem defined above we provide a 
parameterization method which is both robust and provides user control of the mapping properties. 
 
4. Solving the Constraints 
 
To minimize (9) under constraints (1)-(8), an optimizer for non-linear constrained systems is required. We 
used the fmincon function of MATLAB, which converts the constrained minimization problem into un-
constrained minimization using Lagrange multipliers. The unconstrained problem is then solved using a 
quasi-Newton method combined with line-search. This method requires the gradients of both the cost 
function and the constraints. Both were computed analytically and supplied to the solver. To speed up the 
solution we supply an initial guess close to the target, by solving the minimization subject to linear 
constraints only. This is a standard linear least squares problem. To further accelerate the solution, we 
avoid introducing the inequality constraints unless necessary, since they significantly slow down the solver. 
Since the solution space is not empty and the initial guess is all positive, those constraints are unlikely to be 
actually needed. Hence we solve the system with only equality constraints. If the result contains negative 
angles or excesses, we add the inequality constraints and repeat the solution. 
 
5.  Embedding on the Sphere 
 
Once the spherical angles have been determined, it is possible to embed the triangle vertices on the sphere 
by a recursive preorder traversal of the triangulation connectivity structure as follows. 
The spherical cosine rule (2) defines the lengths of the edges of each spherical triangle as a function of the 
angles. Starting from an arbitrary triangle, we compute the length a of its first edge from the angles 
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We then embed  its first vertex at an arbitrary location v1 and embed the second vertex at a location v2 at 
spherical distance a on the sphere (at an arbitrary orientation) to form its first edge.  
 
We now use the cosine rule (2) again to similarly obtain the other two spherical edge lengths: 
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Using the planar sine rule, the Euclidean distances between the new vertex v3 and the two already 
positioned are: 
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The third vertex coordinates are found by solving for the intersection of three spheres, one of which is the 
unit sphere, the other two are centered at v1 and v2 with radii lb and lc respectively. This is a system of three 
quadratic equations, which may be solved analytically giving two solutions. The correct of the two is 
chosen to be that closest to the fourth vertex of a parallelogram whose other three vertices form the base 
triangle.  
 
This forms the second and third edges of the first triangle. Once the triangle is embedded on the sphere, 
proceed recursively to embed the two new triangles incident on the second and third edges (starting by 
applying (11) on the spherical angles of the new triangle). The embedding is complete once all triangles 
have been traversed. 
 
6.  Some Examples 
 
Figure 2 shows some spherical embeddings of a cylindric mesh (Fig. 2(a)), as obtained from our algorithm, 
using a variety of target spherical angles and areas. Fig. 2(b) is the output from Alexa’s algorithm [1], 
which aims to equal angles. When our algorithm is told to generate this too, we get something very similar 
(Fig. 2(c)). When equal areas are required, skinny triangles start to appear. When the embedding is required 
to mimic the properties of the original cylindrical mesh, the similarities are evident. In Fig. 2(e), where the 
original angles are targeted, the black triangle stays right-angled. In Fig 2(f), where the original areas are 
targeted, the areas of the triangles corresponding to those on the two bases are much larger than the others. 
 

 
  

(a) (b) (c) 
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Figure 2: Spherical embeddings. (a) Cylinder mesh. (b) Embedding of Alexa [1]. (c) Our embedding 
attempting equal angles. (d) Our embedding attempting equal areas. (e) Our embedding attempting original 
angles. (f) Our embedding attempting original areas. The black triangles correspond in each of the meshes. 
 



7.  Discussion and Conclusion 
 
We have formulated a set of necessary and sufficient conditions for the spherical angles of a triangulation 
to form a valid spherical triangulation. We use this to generate spherical embeddings with desirable 
properties thru the use of an appropriate cost function.  
 
The conditions we formulated are not minimal, in the sense that there exists some redundancy in them. 
Some of them may be eliminated without changing the set of solutions. We are not yet sure how to do this. 
 
The numerical procedure we use today to solve the system is quite slow and not practical for meshes 
containing more than a few hundred vertices. In the future we will investigate a numerical procedure which 
performs local improvements, while maintaining the validity of the spherical triangulation, until it 
converges to the desired embedding. 
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