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Abstract

The theory of matrix subdivision schemes provides tools for the analysis of general
uniform stationary matrix schemes. The special case of Hermite-interpolatory subdivision
schemes deals with refinement algorithms for the function and the derivatives’ values, with
matrix masks depending upon the refinement level, i.e., non-stationary matrix masks. Here
we first show that a Hermite-interpolatory subdivision scheme can be transformed into a
stationary process. Then, using special schemes for generating some Hermite-type divided
differences, we give the theory and the tools for analyzing the convergence and smoothness
of Hermite-interpolatory schemes.

1. Stationary Hermite-interpolatory schemes

Hermite-type subdivision schemes of order 2 were already considered in [14] and in
[12]. In the present paper we are discussing the basic properties and the proper analysis
tools for higher order Hermite-type subdivision schemes. The analysis presented here is an
adaptation of the methods in [2], [4], [10], [15] and especially [12], exploiting the structure
and the special significance of Hermite-type data. Examples and numerical implementation
of the analysis tools are presented in [3].

The Hermite-interpolatory scheme of order m is of the form

=N AP,k onez, (1.1)

n—2j7j
JEZ
where {f*} are vectors in IR™, fF is the vector attached to the diadic point t = 27%n at

level k of the subdivision. The m x m matrices {Aﬁl’“) , n € Z} , which form the 'mask’
of the scheme at level k, are non-zero only for the finite set of indices I. In particular

Ag];) - m><m5n,0 )

due to the interpolatory nature of the scheme. The scheme converges to a C'® limit function
with s > m — 1 if there exists f € C'® such that

fk = (f(o)(2_kn),f(1)(2—kn)’ f(z)(2_kn) f(m—l)(2_kn)

n ot R g Y, ncZ, ke Z, .




The normalization with the factorials is for later convenience.

In the following we consider schemes which reproduce the space II; of polynomials of
degree £ or less, for £ > m — 1 , namely schemes with the property that if the vectors at
level k& are of the form

P(m_l)(2_ki) t

(m —1)! )

fF=@27%),p'27%),..., ieZ

for p € I;, then application of (1.1) results in

p(m—l)(2—k—1i)

(m —1)!

Later we show that this property is necessary for such a scheme to converge to C* limit
functions. In fact we consider a subset of such schemes which we term stationary. Let us

L = (p(27%7 1), p' (27 % 1), .. ., ), i€EZ.

assume that the degree £ of the polynomial space is chosen so that a mask {AS)) , nel}
exists with the property of reproduction of polynomials in II;, namely

P@7'n) =Y A, P(j), neZ, (1.2)
JEZ

where P(z) is a matrix of order m x £ with polynomial elements of the form

1 d
(P(m))i,j:i—'dmim], i=0,....m—1, j=0,...,0—1. (1.3)

We would like to establish the connection between the mask at level k to the mask at level
zero. The system of equations that the mask at level £ > 0 must satisfy can be written as

P2 n) =Y AP, P27*)) , nez . (1.4)
JEZ

By the form (1.3) of P it follows that
P(hz) = M, (h) ' P(z)My(h) , (1.5)

where M;(h) = diag{1,h,...,h~7T1}. Multiplying (1.2) by M,,(27%)~! from the left and
by M;(27*) from the right we get,

Mo (275)1 P27 n) My(27F) =

ZM B LAY M (27F) Mo (27) TLP () M (27F)

Now, using relation (1.5) with h = 27% it follows that (1.4) is satisfied for k > 0 with
AP = pr (27971 A0 M, (27F), nel. (1.6)
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Thus given the mask at level £ = 0 we can choose the mask at level £ > 0 according
to (1.6). We define such schemes as ”stationary Hermite schemes”. Although the scheme
as given is not stationary since the mask depends on the level &, yet by a simple scaling
the scheme becomes stationary. Defining the scaled vectors by M,,(27%)f* these vectors
are generated by a stationary scheme with the level independent mask

Ap=M,(279A0) | neTl. (1.7)

2. Divided-difference operators for Hermite-interpolatory schemes

Our analysis of the convergence of stationary Hermite-interpolatory schemes which
reproduce II; , £ > m —1 to C? limit functions with s > m — 1, is based on the existence of
stationary subdivision schemes for the divided differences of the data vectors f* , nc Z ,
of order 7 for m —1 < 3 < £+ 1. These divided differences are defined regarding every
diadic point ¢t = n2~* as having multiplicity m and interpreting the data there as

21

kE_ (4(0) (1) t
=20, 0 o ""’(m—l)!) , nCZ, ke Z, ,

for some function f € C™~!. Related to the data vectors f* , n € Z , we consider the
(m — 1)th order divided differences defined as

[m—1

Ug ](mn—I_J) - [Tj+1a7—j+2a' : 'aTj-l-m]f ) .7 = Oa' ce,m — 1 ) (21)
where
To=T1 = =Tm_1=(n—1)27%
and
Tm = Tmt1 =+ = Tam_1 =n27F .

Thus, if a scalar stationary subdivision of the form

um_;l] = SBchm_l] ke Z,

exists and converges uniformly to C° limit functions in the sense of convergence of scalar
subdivision schemes, then the original Hermite-interpolatory scheme converges to C™ !
limit functions.

_1]

The vector ugcm can be obtained recursively from the original data vectors in the

following way. Let

) =fk, neZ, ke, (2:2)

and let
(v (n))o = 25 ((voy M (n))o — (o) (n —1))r1) , (2.3)
(v (n)); = 25((wy " (n)); — (v N (m))jo1), G=1,..,r 1, (2.4)



(0 ()i = (@) s G=rem—1,, (2.5)
forr =1,2,...,m — 1. We note that

v (m) = ([10,-+ s Tr—1, Tm| 5 [T0s - o s Tr2y Ty Tt | f5 - - -

(70 Tms - « « s Tmpr—1)fs 7 (1), oy F7 D (n))E
and ugcm_l] as defined in (2.1) is related to 'ugcm_l] by

w"mn+5) = @) G =0, m—1, neZ.

[7]

The vectors v, '(n) , n € Z , can be obtained recursively by using the formalism of vector
generating functions and of matrix Laurent polynomials. Let us introduce the vector
generating functions

F,ET](Z):ZvE:](n)z", r=0,....m—-1, ke Z, ,
neEZ

and the matrix Laurent polynomials

I\Zlﬂ‘(z) = (2krr(z)) D I(m—r—l)x(m—r—l) ’

where I'"(2) is a matrix of order (r + 1) x (r + 1) , which for r = 1,---,m — 1 is given by
its non-zero elements:

T T T T
I‘1,1 =1, Fl,'r‘—I—l = =z, Fi,i =1,1I;

i,i—1

1, i=2,-r 41,

while for » = 0 its only element is 1 — z. For this formalism we also define the symbol of

a mask {Aﬁl’“) n € I} as the matrix Laurent polynomial

DY(2) = Ag(2) = Y AP
nel

With these notations we can rewrite relations (2.2)-(2.5) as relations between the
generating functions,

F() =T ()R (z) , r=0,..,m—2. (2.6)
[7]

Formally, let us assume that the symbol of the subdivision scheme for the vectors v} " is
DE:](Z). That is we have

Fi (2) = D (2) FI(22)

Then, using (2.6), the symbol of the subdivision scheme for vgcr—i_l] should be given by
r+1 m,r T m,r —
D) = TR ()01 ()T () 7 - (2.7)

We are now ready to state and prove the existence of subdivision schemes for the

[7]

vectors v, , r=0,...,m—1.



Theorem 1. Consider a Hermite-interpolatory subdivision scheme of order m, of the form
(1.1). If the scheme reproduces Ily, £ < m — 2, then there exist subdivision schemes, with

finitely supported masks, defined by their symbol DE:] (z) for the refinement of the vectors

’UE:] yforr=1,...,£+1.

Proof: The proof is by recursion on r. First we observe that since the original scheme
reproduces the constant polynomials, the data of constant vector f* = (1,0,...,0)! , n €
Z ,is an eigenvector of the subdivision scheme, namely if f° = (1,0,...,0)* , n € Z ,
then f¥ = (1,0,...,0)* , n € Z , for all k € Z, . This is equivalent to the following
property of the symbols of the scheme,

Ak(1)(1,0,...,0)" = (2,0,...,0)* , Ax(-1)(1,0,...,0)* = (0,0,...,0)". (2.8)
As shown below, property (2.8) guarantees that

D(2) = TP (2) An(2) (TP (%)), (2.9)

is a finite matrix Laurent polynomial. Hence, by (2.6), there is a finite mask consisting of

[1] [1] [1]

the matrix coefficients of D" (2) which maps v~ on vy, .

To see that indeed Dgcl](z) in (2.9) is indeed a finite matrix Laurent polynomial, we
recall that I‘;cn’l(z) = diag{2*(1 — 2),1,...,1}. By condition (2.8) it follows that all the
elements in the first column of Ax(—1) vanish and that all but the first element of A(1)

vanish. Therefore, all the elements of the first column of I‘;cn_l’_ll(z)Ak(z) are divisible by

1 — 22, and hence DE:] (z) is a Laurent polynomial.
To do the recursive step we assume that for a given r, 0 < r < m — 1, there exists a

[7]

matrix Laurent polynomial D} - (z) defining the subdivision scheme generating the vectors

’UE:]. We observe that the first » + 1 components of ’UE:] (n) are the divided difference of
order r of the original data f*. Hence if f° is taken from f(z) = z" then by the polynomial

reproduction property of the original scheme the corresponding vectors ’UE:] are all of the
same form, namely

v;:](n):e(r) yMEZ , keZ,
where (™) = (1,1,...,1,0,0,...,0)*, with 1 repeated r + 1 times and 0 repeated m —r — 1
times. This is equivalent to

DE:](I)e(T) — 9¢(7) , DE:](_l)e(r) =0. (2.10)

We further observe that

1
1—2

77 (2) 7! = ( 27 FEM(2)) @ Iim—r—1)x(m-r—1) »

where E(T)(z) is a matrix of order (r + 1) x (r + 1) with E(T)(z)i,j = 1forz > j and
E(T)(z)i,j = z for 1 < j. It is enough to show that the first » + 1 columns of

PR (D (ET () € L r1yxm—r-1)
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vanish at z = £+1. This follows by observing that the first »+1 columns of E(H'l)(zz) equal
e("). Hence, by (2.10), the first » + 1 columns of DE:] (2)(ECTD(22)) @ I —r—1)x(m—r—1)
are zero at z = —1 and equal (") at z = 1. The result now follows by noting that left
operation with I‘k_l_q(l) gives differences of pairs of the first r 4+ 1 rows.

3. Conditions for smoothness of Hermite-interpolatory schemes

In this section we first show that a C? continuous stationary Hermite-interpolatory
subdivision scheme must reproduce II;. Then we give necessary and sufficient conditions
for C'* continuity, which can be put in as an algorithm for checking smoothness of Hermite-
interpolatory schemes.

To analyze the smoothness of the scheme we have to introduce higher order divided
differences of the vector ugcm_l], denoted by ugcr], representing the divided differences of f of
order[1]n < r < s+1, taking into account that each point 27%n , n € Z , has multiplicity

™

m. uy~ are defined recursively by
W Hm) = 22 T @ n) —ull(n - 1), nez, (3.1)
where A™7 is a diagonal matrix of order m x m with elements

mpe o m+r—73+1
e

|, §=1,2-m. (3.2)

m

Theorem 2. Consider a stationary Hermite-interpolatory subdivision scheme of order m,
of the form (1.1), with Agk) satisfying (1.6). If the scheme is C'* then it reproduces polyno-
mials of degree s, i.e., is satisfies (1.4) with £ = s+ 1. Furthermore, there exist subdivision
schemes, with finitely supported masks, for the refinement of the divided differences of
orders < s+ 1.

Proof: The proof is iterative. First we observe that the original scheme must reproduce
the constant polynomial, i.e., (1,0,...,0)* is an eigenvector of the subdivision scheme. To
see this we transform the process (1.1), using (1.6), into the stationary process

MR =) M2 MAB M2 T M2 ) = ZA(O)

i—2j 7 i—2j
JEZ JEZ

M@ Mff,ieZ.

(3.3)
Since M(27%) = diag{1,27%,272% ... 27 (m=1)*} and the vectors {f]k} are values on the
continuous limit function (f, f',..., f(m™ 1) the values g;-“ = M(2_k)f]’c are on the con-
tinuous function (f,0,...,0)*. Therefore, as in the scalar case, it follows that the con-
stant vector data (1,0,...,0)" is a fixed point of the process. It thus follows that the
scheme reproduces constant polynomials. The original scheme generates the vector val-

ues fr = ( ,go)(n), ,gl)(n),..., ,gm 1)( )/(m — 1)1)* forming the limit vector function
f(t) = (FO@), FO@),-.., F D (8)/(m — 1)) The vectors vy (n) = (2*(£,” (n) —
,go)(n — 1)), ,gl)(n),..., ,gm_l)(n)/(m — 1)1)* form the limit vector function »l!l(¢) =
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(FA (@), fA(1),..., fF»=V(t)/(m — 1)1)t. By Theorem 1, since ITy is reproduced, the
vectors {vgcl](n)} are generated by a subdivision process defined by the finite Laurent poly-
nomial matrix

D(2) = T4 (2) Ak (2)(TP (%)) 7

Using this form and the form of I‘;cn’l (z) it can be shown here that the scheme DE:] is also
stationary, but here the normalization matrix is

M®(27%) = diag{1,1,27F 272k  9-(m-2)k1

ie., DE:] = M(l)(2_k)_1D([)1]M(1)(2_k). Normalizing the process generating {vgcl](n)}, and
using the assumption that the limit vector function v!" (t) is continuous, we now obtain that

the constant vector data (1,1,0,...,0)* is reproduced by the subdivision defined by DE:].

Since this vector data is the data {vgcl](n)} corresponding to the linear data {f* = n27F},
itt thus follows that the original scheme reproduces II;. We have thus completed the first
step of the iterative proof and we are ready to prove the general step:

For 1 < r < m we assume that we have a finite polynomial D[T]( ) deﬁning the
subdivision scheme generating the data {’UEC (n)}. Normalizing the process {D } with

M (27%) = diag{1,...,1,27% 272k o-(m-r-1ky
with the 1 repeated r + 1, and using the continuity of f("), it follows that
W =(1,1,...,1,0,0,...,0),

with the 1 repeated r + 1 times, is a fixed point of the process. Therefore, it can be
concluded that the original process reproduces II,., and Theorem 1 can be used again to

establish the existence of D[T—H]( )
7]

The symbols of the subdivision schemes generating divided differences ;" of order
m <r < s+ 1, are independent of the level k, and are recursively given by

DI(z) = 2(A™ 1)) 710™ (2) DU (2) (D™ (22)) LA™ . (3.4)

These schemes exist and are of finite support by the same arguments used in Theorem
1, and the above inductive process can thus be continued. Finally, the continuity of f(*)

[s+1] |

implies the existence of D

Theorem 3. Consider a stationary Hermite-interpolatory subdivision scheme of order

m, of the form (1.1), with Agk) satisfying (1.7). The scheme is C° if and only if the
subdivision scheme for the refinement of the divided differences of orders s is converging,
or equivalently, the scheme for the differences of the divided differences of orders s is
contractive.

To prove the above Theorem we need the following lemma on divided differences:
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Lemma 4. Consider the set of distinct points X = {z;};>0 C IR, and another set of
points T = {t;} such that
ti=a;, m;<j<mii,

where mg < m; < ... < m; < m;41 < .... Then the divided difference operators of order k
on the set X can be expressed as a finite combination of the divided difference operators
of order k on the set T. In particular,

20,21, 2kl f =D wj [tistivs, oo tirklf Y wi=1. (3.5)
J J

We note that in the case of equidistant points X and uniform multiplicity the combi-
nation is even convex, w; > 0.

Proof: The proof is by induction on k. For k = 1 the result is obvious. Let us assume

that (3.5) holds, together with

[ml,mz,...,mk+1]f = Z’U] [tj,tj+1,...,tj+k]f ) Z’U] =1. (36)
j j

Hence, it follows that
[mlamZa"'amk-l-l]f - [moamla"' amk]f =

Y cilltivnrtiva, - tirrralf = [Eistivn,- -5 tinklf) (3.7)
J
with ¢; = g:io (v; —wj;). Since both {w;} and {v;} sum up to 1 and are of finite support,
then {c;} are also of finite support. The terms in the right hand side of (2.22) with
tjyr+1 = t; are zero and can be removed from the sum. Now each term in the right
hand side can be divided by ;4541 — t; and the left hand side by z411 — o to give a

representation relating the finite differences of order (k + 1)

[mo,ml,. .. ,mk+1]f == Zd] [tj,tj_|_1,. .o ,tj_|_k_|_1]f . (38)
j

That Zj d; = 1 follows from the application of (3.8) to f(z) = z**1. [ |

Proof of Theorem 3:

The proof here follows the same lines of the proof of a similar result for the scalar
case in [1], [8] and [11]. The only difference is in the step of proving that f is C* if the
differences of the divided differences of orders s tend uniformly to zero. Here the divided
differences involve also derivatives’ values, being based on a set of points of multiplicity m.
Lemma 4 provides us the missing link since it says that any simple divided difference can
be expressed as a finite linear combination of divided differences of the same order, based
on points with multiplicity. The same holds for differences of divided differences, and thus
we can conclude that if the scheme for the differences of the divided differences of orders



s is contractive then the original scheme is C'*. The existence of that scheme follows by
Theorem 2, and its matrix Laurent polynomial is given by

DlI(2) = ™ (2) Dl (2)(7™ (%) . (3.9)

n
Theorem 3, together with the recursive relations (2.7) and (3.4) and the definition

(3.9) of ﬁ[s], form the basis for a smoothness checking algorithm for stationary Hermite-
interpolator schemes.
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