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Abstract

The paper presents a method for refining real highly oscillatory signals.
The method is based upon interpolation by a finite set of trigonometric
basis functions. The set of trigonometric functions is chosen (identified)
by minimizing a natural error norm in the Fourier domain. Both the iden-
tification and the refining processes are computed by linear operations.
Unlike the Yule-Walker approach, and related algorithms, the identifica-
tion of the approximating trigonometric space is not repeated for every
new input signal. It is rather computed off-line for a family of signals
with the same support of their Fourier transform, while the refinement
calculations are done in real-time. Statistical estimates of the point-wise
errors are derived, and numerical examples are presented.

Introduction

Given a series of equidistant samples of a band limited real signal we would
like to evaluate samples of the signal at intermediate points. lL.e., we look for
an approximation to a series of samples with a double sampling rate. We ap-
proach this problem as an interpolation problem, and the basic issue is to find
an appropriate space of basis functions for interpolation. A naive local poly-
nomial interpolation is not appropriate here since the signals may be highly
oscillatory. It seems rather natural to try to interpolate by using trigonometric
basis functions, and the main issue is to identify the optimal set of trigono-
metric functions which are suitable for local interpolation of the given signal
at the given sampling rate. Based upon a previous work by the authors [3], we
look for an ’orthogonal scheme’, which is a scheme with the property of anni-
hilating any signal taken from a related space of exponentials. Finding such an
orthogonal scheme, following [3], is of course enough for identifying the space of
exponentials. Moreover, by solving a linear system, this scheme also provides
us with the rule for local interpolation by functions in the identified space.
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Identifying the optimal orthogonal scheme for a given signal at a certain sam-
pling rate is the same as identifying the optimal linear predictor. However,
unlike the Yule-Walker approach to finding a linear predictor, which involves
the solution of a linear system which varies with each portion of a signal, we
are looking for an orthogonal scheme which will suit a class of signals with the
same support  of their Fourier transforms. The computation of such a scheme
may thus be done off-line, once and for all the signals in the prescribed class.

Both the orthogonal scheme and the related interpolating scheme are repre-
sented by associated Laurent polynomials. Assuming that the signals share the
same support of their Fourier transforms, the actual algorithm for finding the
optimal orthogonal scheme involves minimizing a certain weighted Ls- norm
of the associated Laurent polynomial. It is shown that there exists always a
minimizing Laurent polynomial with a full set of simple roots. This implies
that the related space of exponentials is non-degenerate, and defines a space
of trigonometric functions with frequencies in 2.

In the rest of the paper we present estimates for the error resulting in refin-
ing signals by the new interpolating scheme, and we conclude with numerical
experiments.

1 Preliminaries

In this paper we are interested in approximating signals by functions in finite
dimensional spaces of exponential polynomials of the form

l
Ei={f:R—C, feC(R), Y ¢, D"f =0}, (1.1)
n=0
where ¢ = (co,...,c;) € R, and where D™ denotes differentiation of order

n.

We can write explicitly the space Ej in terms of the distinct roots of the
polynomial ¢(z) = Zfzzo cn2™ with their multiplicities {yn, pn }%—;, such that
EZ:I Hn, = ea as

Ej = span{z" exp(ypz), r=0,1,...,0p, — 1, n=1,...,v}. (1.2)

In the following we use the notation v, = o, +1i8,, n = 1,...v. For oscillatory
signals the relevant spaces are defined in terms of the parameters

t=2m, v=I{, 7]2216]7 7]+m:7y]:_216]7 j=L...,m. (13)
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Such spaces are termed here strictly oscillatory.

For a given space Ej, there exists a reproducing subdivision scheme of minimal
rank [3]. Such a scheme is an interpolatory subdivision scheme, which consists
of reproducing refinement rules of minimal rank {Rj}x>k,. The rule R; maps
samples of any signal f from the space Ej at refinement level k, fF={ f]”C =
f(27%§) : j € Z}, to its samples at the next refinement level, namely at the
points 2=*+1Z in the following way,

N-1
k .
fécjjkl = f]k’ fécjj}l = Z a[Zn},—l—lf]]?—na JE Z, (]_4)
n=—M

where M = [%], N = [”Tl] The operation in equation (??) is written for-
mally as f¥*t' = R,f*. The symbol of the rule Ry is defined as alfl(z) =
SN agﬁ 122"t 4+ 1. The following theorem characterizes the symbol of
the rule Ry [2]. It is used later for the derivation of a linear system defining

this rule.

Theorem 1.1. The symbol a[k}(z) is the symbol of a reproducing refinement
rule of minimal rank at level k for a space Ef of the form (?7), if and only if

Dra’[k}(z’yn,k+1) = 257",0a Dra[k](_z’)’n,k+1) = 03 r= 03 s aﬂn_la n = 13 s Uy
(1.5)
with z, p = exp(—2 " Fy,), n=1,...v.

There might be values of k for which a reproducing refinement rule of minimal
rank (of the form (??)) does not exist. Yet, such rules exist if k is large enough
[3]. There is a sufficient condition for the existence and uniqueness of the
reproducing refinement rule of minimal rank at level k.

Theorem 1.2. For a space Ej of the form (??), if for any pair m,n €

{1,...,v} such that m # n and o, = ay,, we have

Br — B # 28 s, selZ (1.6)
then a unique reproducing refinement rule of minimal rank at level k exists.
Remark
It

B < 2Mom, n=1,...,u, (1.7)

then by Theorem 1.2 there exists at each level k£ > ky a unique reproducing
refinement rule of minimal rank for the space Ef, and therefore there exists a
unique minimal rank reproducing scheme for k& > kj.
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In the case of a strictly oscillatory space E$,,, conditions (??) on {8, : n =
1...,2m} guarantee that the sampling rate of 2k samples per unit at level k
is above the Nyquist rate [5].

The minimal rank reproducing scheme of a space Ej, can refine exactly samples
of a signal from that space. Yet, for a given signal in a space Ej , the space
or its minimal rank reproducing scheme have first to be identified. The tool
for a suboptimal identification of an Ej space, given a signal from this space
with or without added small noise, is the notion of orthogonal schemes [3, 4].
A minimal rank orthogonal scheme for Ej consists of orthogonal refinement
rules of minimal rank {Of : k > 0} such that Oy, refines and maps to zero the
samples of any signal from Ej at level £, in the following way,

M

k k k
=0, gt ST Pk =, (1.8)
n=—N

where N = [%], M = [”Tl] as before. Thus, the symbol of an orthogonal
refinement rule of minimal rank at level k£ has the form

M
pHlz) = 3 plilen, (1.9)
n=—N

For an orthogonal refinement rule of minimal rank there exists a characteriza-
tion of its symbol [3].

Theorem 1.3. The symbol p[k](z) is the symbol of an orthogonal refinement
rule of minimal rank at level k for the space Ej of the form (?7), if and only if

Dl ( £z, k1) =0, 7=0,..., 00 —1, n=1,...,1, (1.10)
with 2, ) = exp(—27%y,), n=1,...v.

Note that in contrast to Theorem 1.1, from which the explicit form of the
symbol of the reproducing refinement rule of minimal rank cannot be deduced,
this theorem implies that up to a multiplicative constant (normalization), the
symbol of O has the form,

2N (1= emp(—2Fya)22). (L11)

When the multiplicative constant is real, we see from (??) that the coefficients
of the symbol of Oy are real.



Refining Oscillatory Signals )

Hereafter we term a refinement rule with real coefficients in its symbol as a
real refinement rule.

The existence of an orthogonal refinement rule of minimal rank at any level
k is a consequence of Theorem 1.3. The following Theorem establishes its
uniqueness and the existence, up to normalization, under conditions of the

type (?7) [3].

Theorem 1.4. An orthogonal refinement rule of minimal rank at level k (of
the form (?7)) exists and is unique up to normalization, if the conditions in
Theorem 1.2 hold for k — 1.

Remark

Note that by the last theorem, the conditions of Theorem 1.2 on the structure
of an Ej space, guarantee the existence and uniqueness of a reproducing refine-
ment rule of minimal rank at level &k, and of a unique orthogonal refinement
rule of minimal rank at level £ + 1, up to normalization factor. We assume
hereafter that the free coefficient of the symbol of the orthogonal refinement
rule is not zero, and thus it may be normalized so that p([)k} =1.

For a given space Ej, there is a simple relation between the symbols of the
reproducing refinement rule of minimal rank at level £ and the orthogonal
refinement rule of minimal rank at level k£ + 1 with free coefficient 1, as can be
deduced from Theorems 1.1, 1.3 [3, 4].

Theorem 1.5. Let al¥! be the symbol of a reproducing refinement rule of

minimal rank at level k for a space Ej, and let e with p[kﬂ} 1 be the
symbol of an orthogonal refinement rule of minimal rank at level k + 1 for the
same E; space. Then

alfl(2%) =2 = plFl(2)gH (2), (1.12)

where ¢kl(z) = EQ{} q% 2 The coefficients of ¢Fl are determined
uniquely as the solutwn of the linear system

M-1

Z pz[(kz;rl]n)q% =—dj0, j=—(N-1),....M —1. (1.13)
=—(N-1)

It follows from the last theorem that once the symbol of the orthogonal re-
finement rule of minimal rank with free coefficient 1 at level k + 1 is known for
an Fj space, then the reproducing refinement rule of minimal rank at level &
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can be obtained by solving a non-singular linear system, and that this scheme
is real, since the coefficients of the given symbol are real.

In the next section we discuss how to choose the orthogonal refinement rule of
minimal rank at level k&, based on some knowledge about the Fourier transform
of the signal.

2 Choosing the Approximating Exponential Space

We now turn to one of the main issues of this paper, namely the identification
of an approximating space Ej for a given band-limited signal.

To be able to make a valuable choice, we assume prior knowledge about the
Fourier transform of the signal f, namely, knowledge of |f|, or at least the
support of f Both cases may appear in real applications, and we shall start
with the first, namely, we assume that |f| is known.

We shall identify the space Ej through identifying the orthogonal scheme plkl,

annihilating k-level samples of functions in £j. With the special normalization

p([)k} = 1, the quantity

M
ej= S pafl., (2.1)
n=—N

may be viewed as the approximation error in predicting the value f]]-f by interpo-
lation based on a function in E7, interpolating the values { fJ’-“,n 1 0 < |n| < 1},
at the points {27%(5 —n) : 0 < |n| < £}. Thus, we search for the orthogonal
scheme pl*] that minimizes ||{e;}||so-

Using the equality

By 21T J_so

o (k] ok Lo [k] ¢ —i2= %= twy 7 w2~k
= 3 i, =5 [ e W a2
and denoting by € the support of f , we have

HeiHlo < 5= [ 19 ™) | F@)ldo (2.3

Note that €2 is symmetric since f is real.
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Let us identify the r.h.s. of (??) as a weighted L; norm of the polynomial pl*,
and denote it by ||p”“]||1 7 We also have

Q2 —k—1 -~ 1
Il 7 < 0010, ; = 2 e P, @)

where |(2| is the measure of Q.

The relation (??) implies that, in the case of prior knowledge about f, one
would like to define the orthogonal scheme p*/ by minimizing ||p”“]||1 7 Yet,
since it is much simpler to minimize ||p*! I, 7 we define pl*! to be the minimizer

of the |f(w)|? weighted Ly norm. Let us further assume that £ = 2N, that Q
contains at least ¢ distinct points and that Q C 281 (—x, 7).

The following results are central in the characterization of the zeros of pl¥!

which minimizes [|pl¥! I, B

[k]

Lemma 2.1. The polynomial p'*!, of the form (??) with Py = 1, minimizing
|pl* “2,]?7 is a symmetric polynomial. Namely, pgn] = pUZn, n=1,.,N.

Proof. Setting

en = pog + s dn=ph —p™, | (2.5)
we get
okl .
pMEe7) = n(w) - id(w) (2.6)
where
N N
nw) =1+ Z cncos(27Fwn) |, P(w) = Z dpsin(27%Fwn) . (2.7)
n=—N n=—N
Consequently we have
Ip™*! =5 / n(@)]” + () *)|f (@) dw . (2.8)

It thus follows that for the minimizing polynomial ¢(w) = 0, which is equivalent
to the claim of the Lemma. O

Remark

Under the conditions of Lemma 2.1, it is possible to show by its method of
proof that if £ =2N + 1 then p[216117+2 = 0.
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Thus the minimizer of Hp[l‘“}H2 7 has the form

N
om ¢
PM) =14+ 3 pon (=" +2") , N =[5].

n=1

With the substitution z = exp(—i27%~'w), the above polynomial becomes

N
plFllexp(—i27F'w) = pHl(w) =1+ Zpggcos@_knw) . (2.9)

n=1
Lemma 2.2. The system {cos(j-)}é\;l is a Haar system on [0, 3).

By the substitution x = cost, this lemma is equivalent to the result,

Lemma 2.3. The system of Chebyshev polynomials {T) };VZI 15 a Haar system
on (0,1].

Proof. 1t is sufficient to show that any linear combination of the elements of
the system {T]}j\f:1 can have at most N — 1 zeros in (0,1]. To prove this we
will show that any algebraic polynomial of degree at most N with N zeros in
(0,1], has the representation Z;V:o t;T;(x), with ty # 0.

Let p be a polynomial of degree N with N zeros in (0,1]. Then p(z) =
C7rj\7:1(ac — &), with & € (0,1], 5 = 1,...,N, and C a constant. It is easy
to conclude from this form of p that the sign of p(z), € (—1,0) is fixed
and that |p(z)| > |p(~z)|, = € (=1,0). Thus | [°, p(z)(1 — 22) 2dz| >
|f01p(ac)(1 - xZ)féde and

1 1
to = /_lp(ac)(l — x2)_§dac # 0.
O

With Lemma 2.2 proved, we can use ideas from the theory of orthogonal alge-
braic polynomials, in order to conclude that,

Theorem 2.4. There ezists a unique polynomial p!*! of the form (7?) with
(k]

Py’ = 1, minimizing ||p[k}||2 7 The roots of pl¥! are simple and are of the form
{£exp(+i275718) 1L, with {B,})_, C Q.

proof. First we observe that the minimizing polynomial should be symmet-
ric. Next, we define the following inner product on the space of symmetric
trigonometric polynomials.

<= o [ pele) fw)Pdo. (2:10)
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If pl*l with p([)k} = 1, minimizes ||p*!|| o then p¥! must satisfy the orthogonality

conditions

< ﬁ[k},008(2_kj') >}_\: 0 , j = 1’ ,N . (211)

Using Lemma, 2.2, it follows from (??) that p!*/(w) must have exactly n simple
roots in 2. Otherwise, since Q C 2¥[0, %), we can find a linear combination of
the functions {cos(?fkjw)}év:l which has the same sign structure as pl¥l(w) for
w € Q. This would imply a contradiction to the orthogonality conditions (?7).

Now, since p*! is a symmetric trigonometric polynomial its roots are of the
form
£8,, b€, qg=1,...,N .

Hence by (??) the roots of pl¥/(2)i, which is an even polynomial, are of the
form {£exp(£i2 F18,)} L, with {,})_, C Q.
O

A direct consequence of Theorems 2.4 and 1.3 is:

Corollary 2.5. The space Ej determined by the 2N roots of the polynomial
Pl minimizing ||p[k]]|2 7 is strictly oscillatory.

The space in the last Corollary is denoted hereafter by E§ with ¢* = c*(|f|, k).

In the case that only the support € of the spectrum is known, we are restating
the problem as follows:

Consider the set F( of all signals f having a Fourier transform with support
contained in 2, and such that |f| < 1. We would like to find ian optimal Ej
space, corresponding to a minimal rank orthogonal rule at level k, which is as
closely orthogonal as possible to the k-level samples of all signals in F. Using
(??) we observe that for any given polynomial p*! we can find a function in
Fq such that

1 io—k—1
el = 5= [ p¥(e™ ) du (2.12)
This implies that
1 k-1
: . Y (k] (,—i2 w — (k]
inf{ sup e Hluch = infl [ e )} = imflIp )
(2.13)

where x, is the characteristic function of 2. Therefore, the optimal solution to
the above stated problem is to find the polynomial pl*!
Here again, for practical reasons, we shall be content with a sub-optimal solu-
tion defined by minimizing ||p*!

minimizing ||p[k] I Lxg

|2aXQ .
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3 Refining Oscillatory Signals

The problem we solve with the tools presented in the previous sections is:

Given in real-time consecutive samples at level £ of a zero-mean real signal
feL*(R)

ff={y=r2") : sed, (3.14)
and a compact set 2 € IR, which is the support of f ,

compute in real-time values
fk+1 _ {f]’_€+1 . ] € I}
approximating
k . .
=@M s jer,

with I a finite set of consecutive indices in Z, which is almost the set 2J. This
problem is termed hereafter the spectral refinement problem.

In view of the results in the previous sections the procedure we suggest for
solving the spectral refinement problem is:

1. Choose £ = 2N (the dimension of the approximating exponentials space.
The bigger ¢ is the more accurate are the results).

k-+1] k-+1

[\)

. Compute p! by minimizing ||pl }||2,XQ.

. Compute the symbol of Ry, al¥!, from plk+1, by solving a linear system.

w

4. Compute in real-time f¥+! = R f.

The procedure above is termed spectral refinement or spectral interpolation.
Next, we analyze the error in our procedure, under a reasonable statistical
assumption, and bound the variance of the point-wise error.

4 Statistical error analysis

In this section we present an error analysis based upon a statistical assumption
on the signal, which is valid in many communication applications. The sta-
tistical assumption at level k£ on f € L?(IR) with zero mean and with Fourier
transform of compact support 2, is:
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Any set of consecutive samples of [ at level k, w.l.o.g.
ff=f@"*), j=-N, .. N+L,
for k such that 275Q C [—%, 5], and for large L, can be written as
fE=g@ ki) +0vF, j=-N, .. ,N+1L, (4.1)
with g € Eg*, ¢ =c*(xq, k,¢), £ = 2N, and where {I/]k :j=—N,....,N+L} are

samples of an ergodic random process which are independent Gaussian random

variables with zero mean and variance o2.

Under this statistical assumption we can bound o.

Lemma 4.1. Under the statistical assumptions at level k + 1,

o< ||p[k+1]

l2.xq [ fll2 +0(1) , as L — oo, (4.2)

where plk+1] (z) is the symbol of the orthogonal rule of minimal rank for El?*,
= c*(xqo, k+ 1,£), with a free coefficient 1.

Proof. Denote pkt1l(z) =1 + E,]y:_Np[QTI]zQ”. Then for j € {0,1,...,L}, by
(7?) and since g € Ef,

Z plEHtl phtt Z plErtl e (4.3)

Defining the random variables &; = ET]L Np[ZI:LH] Jk‘%, j € {0,1,...,L}, we
observe that each {; has zero mean, and

var(&;) = o? Z kH (4.4)

By the ergodic assumption, and since L is large,

var (&) = L 1 Zﬁj +o(1), (4.5)

while by (2?) and (2?)

_ L / e (27872 Fgy w2 i g, (4.6)

fj 27 Ja
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and therefore
&% < Ip* 3 IFIIS - (4.7)

Then, by (77?)
var(¢;) < %, 173 +o(1) (4.8)

and since Zﬁ:,N(pgﬁH)Z > 1, we conclude (??) from (??) and (?7). O

Without loss of generality we bound the error incurred by step 4 of our proce-
dure, namely the variance of the point-wise error

k+1 _ fk+1 k+1 : —
ehtl = Rt _ At e T={0,1,...,2L}.

The same bound applies everywhere. Observe that under the statistical as-
sumption at level k + 1

S =g )+t =N N L (49)

with g € ES, ¢* = ¢*(xq, 4, k), and with var(l/éc]':_l) = 02, where ¢ is bounded

by (??). Since the operation f¥+1 = Ry, f* is described by (??), step 4 generates
samples at level k£ + 1 of the form,

N-1
k . .
FErt= gk L= N G kL 2525 41€D,  (4.10)
n=—N

we have ekJrl =0, 25 € I, and by the statistical assumption at level k& + 1,
N~ W
E+1 k FlkL N k+1
€2j+1 = Z a2n+1fjfn 23+1 Z a2n+1 2(-n) ~ V2j+1 -

Recalling the statistical properties of {V]]?H'l} we get,

N-1

var(eg;jrll) > (a[Q’erl)? +1)0%, 25+1€el. (4.11)
n=—N

Finally, using Lemma ??, we obtain the bound

1 k 1 .
(war( ™)) < (3 (agly )2 = D2 oy 1 fllo + (1), j €. (412)
n=—N
with o(1) small relative to L. Thus, in order to bound the variance of the point-

wise error, we derive in the next section a bound on ||p[k+1]||2,x9 in terms of
0,0 k.
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5 Bounding Hp[k] ||2,><Q

In this section we derive a bound on ||p[k]]|2,xn, in terms of ©,¢, and k. This
bound is then used in bounding the refinement error analyzed in the previous
section.

Let us assume that Q = [~b, —a] U [a,b], and that £ = 2N. Since p¥! is a
symmetric trigonometric polynomial, we may write
o—k—1 N
pFl(e™ 2" 9y =142 Z pg;]cos(Q*knw) . (5.1)
n=1

Substiuting = = cos(27¥w) we obtain an algebraic polynomial representation
o k—1 N

p[k](e*22 “Y=1+2 Zp[ZkJTn(ac) , = cos(27%w) , (5.2)
n=1

where T, is the nth degree Chebyshev polynomial of the first kind. As w varies
in Q, z € [cg,di] = [cos(27%D), cos(27%a)], and for large enough k, this is an
interval of length O(272%) near = = 1.

In order to bound ||p[k]||2,xn, we recall its optimal property as the minimizer
of ||gll2,y,, - among all trigonometric polynomials g of the form (??), and bound
||p[k]||2,xn by ||h[k]||2,x9a where ¥l is of the form (??). To obtain a trigono-
metric polynomial for which we can estimate its || [|2,y,-norm, we consider the
Chebyshev polynomial of degree N transformed to the interval [cg, dj],

o — Stdi

il (5.3)

gla) = Tn (=2
2

and normalize it to be a polynomial of the form (??), namely with a free

coefficient 1 in its Chebyshev expansion,

1 L N
g@) =g@)/ [ 1= Rgdt =142 @ Tul@) . (54)

n=1
Analysing the integral in (??), we have

1 ) gN-1
/1(1 — %) 2g()dt > g(0)(1 + O(272")) = W(l +0(27%%) . (5.5)
_ dici
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Recalling that g is bounded by 1 in [cg, di], we obtain,
11l ey .00 = O((b = a®)N2m CEFIN) | (5.6)
as k and £ = 2N increase. Defining hl¥l(z) = 1+ "N gon (2" 4 27 "), we have

1P g, < 158, = O((6? = a?) N2~ (49N (5.7)

6 Numerical Examples

Here we present numerical experiments for a family of signals with an almost
compact Fourier transform

f(t) = cos(2nFt + Bsin(2wFst)) . (6.1)

This is a widely used family of frequency modulated signals [1]. A function of
the form (?7?) is essentially of a band limited support, centered at w = 27 F,
with a bandwidth Aw = 27 (8 + 1)Fs. We applied the spectral interpolation
algorithm to refine equidistant data values measured from such functions, and
we compared the results achieved with local £ — 1 degree polynomial inter-
polation. In the following figures we present in the upper part the spectral
density of the signal, in the middle part the percentage of the error in local
polynomial interpolation, and in the lower part the percentage of the error by
the spectral interpolation algorithm. In Figure 1 F' = 0.1, Fs = 0.0062 and
B = 5.75, in Fugure 2 F = 0.3, F; = 0.0062 and § = 5.75, and in Figure 3
F =0.3, F; =0.0062 and 8 = 2.375. In all cases the spectral interpolation give
superior results, and the advantage is larger when the bandwidth is smaller.
This is in accordance with the error estimates developed above and the bound
(?7).
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