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Abstract. 1In this paper we approximate large sets of univariate data
by piecewise linear functions which interpolate subsets of the data, using
adaptive thinning strategies. Rather than minimize the global error at
each removal (AT0), we propose a much cheaper thinning strategy (AT1)
which only minimizes errors locally. Interestingly, the two strategies are
equivalent in all our numerical tests and we prove this to be true for convex
data. We also compare with non-adaptive thinning strategies.

§1. Introduction

In applications such as visualization, it is often desirable to generate a hierar-
chy of coarser and coarser representations of a given discrete data set. Though
we are primarily interested in hierarchies of scattered data sets, and in par-
ticular piecewise linear approximations over triangulations in the plane [1],
we focus in this paper on univariate data sets and propose several adaptive
thinning strategies. Thinning algorithms generate hierarchies of subsets by
removing points from the given data set one by one, in such a way that the
‘least’” significant point is removed at each step, according to some desirable
criterion. Our criterion here will primarily be the minimization of approxi-
mation error, so our thinning algorithms are adaptive. This is in contrast, for
example, to the thinning strategies of [2,3], where the criterion was to generate
subsets of well distributed points, independent of the height values.

Thinning algorithms for piecewise linear approximation to univariate data
have appeared before in the literature as decimation algorithms, as in Heckbert
and Garland [4], and as knot removal for linear splines, as in Lyche [6].

In this paper, we design, test, and compare four methods for anticipating
the error incurred by the removal of a point from the current subset. Our
algorithms choose the point to be removed as the one of minimal anticipated
error. Our main conclusion is that the algorithm AT1, which is based on
making a local error estimate, but taking account of all previously removed
points, is the best algorithm from the point of view of our numerical results
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and theoretical analysis. In fact our theoretical analysis shows that its com-
putational complexity is O(Nlog N), with N the number of points in the
data set, provided one uses a heap to store the anticipated errors. Moreover,
we prove that for data sampled from a convex function, AT1 minimizes the
global approximation error at every step. These latter two results extend to
piecewise linear functions over triangulations for scattered data in the plane;
see [1].

§2. Adaptive Thinning

Suppose [a, b] is a real interval and that X = (z1,...,2x) is a given sequence
of points in [a, b] such that

a=x1 <9< - <xny=h

Suppose further that some unknown function f : [a,b] — R is sampled at
these points, giving the values f(x1),..., f(zn).

For each n, 1 < n < N, we are interested in finding a subset ¥ =
(Y1,...,yn) of X, such that

a=x1 =y <Yz < <Y, =axny = b, (1)
and such that the piecewise linear interpolant L(f,Y") to the data

{(y, fly)) :yeY}

is close to the given data {(x, f(x)) : @ € X}, in the sense that the error
E(Y; X; f) = max |L(f,Y)(2) - f(2)] (2)

is small relative to the errors corresponding to other subsets of X of cardinality
n. To guarantee that E(Y; X; f) is well defined, we refrain from removing the
points @1, 2, so that L(f,Y) is defined on [a, b].

Ideally, for any given n, 1 < n < N, we would like to find a subset YV
of X of cardinality n for which the error in (2) is minimal. However, it is
clearly impractical to search amongst all possible subsets, and this motivates
the more pragmatic approach of thinning.

The idea of thinning is to remove points from X one by one in order to
reach a subset Y of a certain size. In general we want to remove a point of
‘least’ significance. Our criterion for removing a point from the current subset
is to minimize its anticipated error, which is an estimate of the error incurred
by the removal of the point with respect to some error measure. Thus the
thinning algorithm is a greedy algorithm, choosing the current step to do the
optimal step in the current situation.

We define our thinning algorithm by saying that a point y; in Y, 1 < <
n, is removable if

)= _min ely,), (3)

j=2,3,...,n—1
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where e(-) is our chosen anticipated error.

Thinning Algorithm

1) Set Xy = X.
2) Fori =N,N—1,...,3:

locate a removable point z in X; and set X;_; = X; \ z.

The result of the thinning algorithm is a hierarchical sequence of subsets of

X

Y

{a,b} =Xy C X3 C---C Xy =X,
with | X;| = i.

Now we consider various anticipated error measures €(-), each of which defines
a removable point in (3), and results in a different algorithm. The algorithm
is termed Adaptive Thinning whenever the anticipated error depends on some
of the function values {f(z): 2 € X}.

Algorithm ATO

In this algorithm the anticipated error of a point y; is the maximum of the
errors incurred by the removal of y; at all the points of X,

eo(yi;Y)=E(Y \yi;; X5 f) = max |L(f, Y \yi)(x) — f(=)]. (4)

Indeed, eg(y;) is the actual error incurred by the removal of y;, measured in
the sup-norm over X.

Algorithm AT1

A less expensive to compute measure of anticipated error is

el(yi; Y) = Clyic1,yit1]> (5)

where for any interval I whose endpoints Ip belong to X, e is defined as
er = max |L(f,Ip)(x) — f(2)].

Note that here we consider only the error incurred by the removal of a point at
those points of X which belong to the current interval of the removed point.

Algorithm AT2

In this algorithm the anticipated error is similar to the one in AT1, but does
not depend on the points that are already removed. This anticipated error is
simpler to compute than the anticipated error of AT1,

e2(yi; Y') = |L(f, {yi—1, vira D(wi) — f(wi)l. (6)
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Algorithm NAT

Here the removal of a point depends only on the density of the points Y, and
is independent of f. Thus it is a Non-Adaptive Thinning algorithm. In fact
e(+) is such that the removal of points results in approximately equidistributed
sets of points X, for intermediate values of ¢,

63(yi; Y) = (yi - yi—l)(yi—i—l - yi)- (7)

When the set Y is fixed we use also the notation e;(y) = ¢;(y;Y) for
j=0,1,2,3.

§3. Theoretical Aspects

In order to better understand univariate thinning, and in particular why AT1
is almost as good as ATO0, we study the antipicated error used in AT1.

Notice that for any i € {2,3,...,n — 1}, and @ € [y;—1,yi41] N X, the
error in the linear interpolation at y;_1,y;+1 1s given by

LfAyi—1, yirr1 (@) — f(2) = (2 — yim1 yit1 — ) flyi-1, T, Yig1],

where fla, b, ¢] denotes the usual second order divided difference of the func-
tion f at the abscissae a, b, c¢. It follows that

e1(yi) = max (2 —yi1) (i1 — ©)| Flyi1, @, yiga] |
r€[yi—1,yi+1]NX
For f a quadratic polynomial, this identity leads us to a relationship between
adaptive and non-adaptive thinning.

Proposition 3.1. If f is a quadratic polynomial, then the adaptive univari-
ate thinning algorithms AT1 and AT2 are non-adaptive. A point y; in Y is
removable if and only if

max T —Yi_ i41 — )= min max T —yi_ 11—
xe[yi_l,y“,l]mx( Yi—1 )(Yit1 ) 1<j<w€[yj_1’yj+1]mx( Yi—1)(Yj+1 )
(8)
in AT1, and
(¥i = Yi—1)(Yi41 — yi) = min (y; —yj—1)(Yj+1 — ;) (9)
1<j<n
in AT2.

Proof: Since for any a,b, ¢ € IR, the divided difference fla, b, ¢] is a constant,
the anticipated errors (5) and (6) reduce, after a scaling, to

max T — L
fe[yi—1,yi+1]mx( Yi 1)(yz—|—1 ),

and (y; — ¥i—1)(Yix1 — yi) respectively. O
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Note that AT2 reduces to NAT, in case f is a quadratic polynomial. The
criteria (8) and (9) clearly favour well distributed subsets of data: a data point
y; 1s likely to be removed if it is close to its neighbours. To see this in the
case of (8), we replace the discrete set X by the whole interval [a, ], and the
dicrete antipicated error ey (y;) becomes

calys) = max LU Ayio1s v D) = f(@)]

TE€[Yi—1,Yit1
Thus, if f is a quadratic polynomial, then

1

ea(yi) = g(yi—l—l - yi—1)2|f”|v

and y; is removable if and only if

11— Yi—1 = min (y;41 —Yi—1 ).
Yi+1 — Yi—1 1<j<n(y]+1 Yy 1)

This is the removal criterion of the non-adaptive Thinning Algorithm 3 of [3].

Next we give an explanation of why minimizing the anticipated error
e1(+) instead of the actual error eg(-) in the thinning algorithm AT1 results
in a good algorithm. We do it by considering convex functions f. First we
establish a lemma.

Lemma 3.2. Suppose f is convex, and let Y be any subset of X of the form
(1). Then for any ¢ € {2,...,n — 1},

co(yi) = max{ei(y:), E(Y; X5 f)}- (10)
Proof: Due to the convexity of f, we have

el(yi) = Clyi—1,yi41] > maX{e[?h’—la?Ji]’ e[yi,yi+1]}7

and since

eO(yi) = E(Y \ ylaX7 f) - max{el(yi)v k:ma}s_l e[yk,yk+1]}7 (11)

ey

we find

eo(yi) = max{el(yi)v max e[yk,yk+1]} = max{el(yi)v E(Y7 X; f)} O

k=1,...,n—1

Proposition 3.3. Suppose f is convex and let Y be any subset of X of the
form (1). Then for any 1,5 € {2,...,n — 1},

e1(yi) < e1(y;) — eo(yi) < eolyj)- (12)
Proof: From (10), we have
eo(yi) = max{ei(y;), E(Y; X; f)} <max{ei(y;), E(Y;X; )} =eo(y;). O

Thus for convex data, the thinning algorithm AT1 performs as AT0. We
show in the next example that there are arbitrary subsets of non-convex data

for which (12) does not hold.
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Example 3.4. ((12) does not hold for non-convex data.) Let
X =(21,...,27)=1(1,2,3,4,5,6,7),

and let the non-convex function f be the piecewise linear interpolant over X
satistving f(x;) = fi, where

(fla---7f7) - (0707_171707070)'

Consider the subset Y = X \ xy. Then ej(xs) = 0 and ey(x3) = 1, while
eo(wg) = 3/2 and eg(x3) = 1.

Note however, that if the thinning algorithm AT1 were applied to this
example, Y would not be the subset generated by the first removal as the
first point to be removed would be x4. We have not been able to construct
an example of a data set X and a non-convex function f where AT0 acts
differently from AT1 at any stage of the thinning algorithm. In the absence
of such an example, and since typical data sets are locally convex or concave
in large regions, i.e. there are relatively few inflection points, we arrive at
the conclusion, supported by our numerical experiments, that AT1 is a good,
computationally inexpensive thinning algorithm.

§4. Algorithmic Aspects

In this section, we discuss details concerning our implementation of the four
thinning algorithms AT0, AT1, AT2, and NAT. Moreover, we shall compute
their asymptotic complexity.

We first discuss AT2 and NAT. The interior points of the current set
Y are stored in a heap, according to the sizes of their anticipated errors;
ez(.) for AT2 and e3(.) for NAT. A heap is a binary tree which can be used
for the implementation of a priority queue. Each point y in the heap bears
its anticipated error as its significance value. Due to the heap condition,
the significance of a node is smaller than the significances of its two children.
Therefore, the root of the heap contains a removable point. It is well-known [7]
that each insertion, removal, or update of one node in the heap costs O(logn)
operations, where n is the number of nodes in the heap. In consequence,
building the initial heap costs O(N log N') operations.

Now suppose Y is of the form (1), of size n. The number of points already
removed is N —n. We perform Step 2) of the thinning algorithm of Section 2
as follows.

1) Pop the root y; from the heap.
2) Compute e(yi—1;Y \ vi) and e(y;41;Y \ yi) and update the heap.
3) Let Y =Y\ ys.

As regards the number of operations, Steps 1) and 2) both require O(logn)
operations, while Step 3) requires O(1) operations. Therefore, summing the
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costs of Steps 1) to 3) for all n, we find that the total cost of the thinning
algorithms AT2 and NAT is O(N log N).

Next we describe Step 2) of the thinning algorithm in Section 2 for AT1,
which is somewhat more complicated than the previous ones. For this al-
gorithm, we store {e1(y) : ¥y € Y} in a heap where the root contains the
removable point for AT1.

1) Pop the root y; from the heap.

2) Attach y; and the previously removed points attached to the intervals
[yi—1,yi] and [yi,yi41] to the new interval [y;—1,yi41] (generated after
the removal of y;).

3) Compute e1(yi—1;Y \ v;) and e1(yit1;Y \ y;) and update the e;-heap.
4) Let Y =Y \ y;.

Thus, during the adaptive thinning algorithm AT1, each of the points already
removed is attached to an interval corresponding to the current subset. These
attachments facilitate the computation of the anticipated error of the neigh-
bouring points of y; in Y, whose anticipated errors in Y\ y; differ from their
anticipated errors in Y.

Asregards the number of operations, Steps 1) and 4) are as in the previous
algorithm. Step 2) requires O((N — n)/n) operations under the additional
assumption that the number of points attached to an interval is of the order
of (N —n)/n. The computation of the anticipated error in step (3) is also
O((N —n)/n). So altogether the total cost is O(N log N), just as for AT2 and
NAT, though with a higher constant.

The algorithm for ATO 1s a variant of the algorithm for AT1, but is
more complicated. Yet it can be organized so that the total cost remains
O(N log N). We now employ two heaps, the first of which is the e;-heap we
used for AT1. The second heap, which we call the I-heap, consists of the
values {ey, y,,,)3¢ = 1,2,...,n— 1} so that the root of the heap points to the
mazimal element. Using the identity (11), it can easily be shown that there is
always a removable point amongst the three points y;, the root of the e;-heap,
and y; and y;41, where [y;,y;41] is the root of the I-heap. Thus, it is only
necessary to compute eg(.) at these three points and take the minimum, and
using the two heaps, this can be achieved in just O(logn) operations. The
update of the e;-heap after the removal requires O(log n) operations as in the
algorithm for AT1, and the update of the I-heap also requires just O(logn)
operations. Thus the thinning algorithm ATO0 requires O(N log N) operations,
but with a larger constant than for AT1.

§5. Numerical Examples

We have implemented the four thinning algorithms AT0, AT1, AT2, and NAT
corresponding to the error measures (4), (5), (6), (7) in Section 2. In this
section we compare the performance of these algorithms in terms of their
approximation error and computational costs. For the purpose of illustration,
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Fig. 1. Data sets sampled from f; (left) and fo (right).

we use the two test functions fi(z) = 22 and fao(x) = 2% sin(252?), which we
sampled at a set X of 1000 randomly chosen points in the unit interval (0, 1),
together with the two boundary points 0,1, cf. Figure 1.

We have computed all subsets X,, C X forn = NN —1,...,2, where
N = 1002, output by the four thinning algorithms. For each test case, we
have recorded both the resulting max error Foo(X,) = E(X,; X; f) and (,
error

E3(X,) = B5(Xo; X f) = Y |L(f, Xo)(x) — f(a)]*.

reEX

For the test cases involving the quadratic function f;, we observe that the
four subsets X,, obtained by the four thinning algorithms have nearly equal
approximation errors, Eo(X,) and E3(X,,). For n = 22, the resulting values
are displayed in Table 1 which also shows the required computational costs in
CPU time. Not surprisingly, the thinning method NAT is the fastest, followed
by AT2 and AT1, whereas ATO is the slowest. Table 1 also shows the mesh

ratio,

p({y1, - yn}) = Ogng 941 —yyl/olgla<X lyi+1 — v,

for each subset. From the values p(Xaq2) for the four subsets, we conclude
that these subsets are well distributed in [0, 1]. Figure 2 shows the subset X3
selected by the methods AT0, AT1 (left) and AT2, NAT (right).

Method EOO(XQQ) E2(X22) p(XQQ) CPU
ATO 0.0013880 0.0166962 0.4029 0.70
AT1 0.0013880 0.0166962 0.4029 0.49
AT2 0.0010135 0.0164082 0.4081 0.27
NAT 0.0010135 0.0164082 0.4081 0.26

Tab. 1. Thinning to 22 points with f;.
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Fig. 2. The subsets X22 output by AT0, AT1 (left) and AT2, NAT (right).
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Fig. 3. Error of AT0,AT1 (solid), AT2 (dashed) and NAT (dash-dotted).

As expected from the theoretical results of Section 3, we see in Table 1
that ATO is identical with AT1 since f; is convex. Also, AT2 and NAT are
identical since f; is a quadratic polynomial. Thus all four algorithms are
non-adaptive, and generate well distributed subsets.

Now let us turn to the test case involving the oscillating function f;.
In contrast to the results for f;, we find that the three adaptive thinning
methods ATO, AT1, and AT2 are, especially for the selection of small subsets,
clearly superior to NAT in terms of approximation error. This is confirmed
by Figure 3 showing the four graphs of Eoo(X,; X; f2) and E2(X,; X f2), for
n = 500,499,...,22.

Observe from Figure 3 that the approximation behaviour of the three
methods ATO0, AT1, and AT2 is quite similar. In fact, we found that for any
n the two subsets X, output by AT0 and AT1 coincide. Taking a closer look
at the approximation errors of AT1 and AT2, we see from Figure 4 that for
very large numbers of removed points, AT1 is superior to AT2, in terms of
the error Eoo(Xy; X; f2). The trade-off is that AT1 typically required about
60% more CPU time than AT2.
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Fig. 4. Error of AT1 (solid), and AT2 (dashed) for n = 35,34, ...,22.

Finally, we wish to demonstrate the utility of adaptive thinning for a
class of approximation methods other than piecewise linear interpolation. For
subsets Y generated by the thinning algorithms, we computed the least squares
approximation sy - € Sy y satisfying

g oY) =Y Isiy(2) = f@)f = min > [s(z) = f(x)’,

€S
reX 259 Y reX

where Sy = span {¢(]- —y|) : y € Y} denotes the linear space of all linear
combinations of Y -translates of the multiquadrics ¢(r) = v¢? + 12, ¢ > 0 (see
[5] for more details). This gives two additional criteria 14 2(Y") and

N,00(Y) = max|sg y () = fz)],
for judging the quality of a subset ¥ of X. In order to show one concrete
example, we let ¢ = 0.2, n = 22. Table 2 reflects the numerical results, and
Figure 5 show the two subsets ¥ = Xy selected by the method AT1 (left)
and NAT (right) along with the graphs of their corresponding least squares
approximations sy .

Method Eoo(X22) Ea(X22) Ng,00(X22) 16,2(X22)
AT1 0.07088 0.76592 0.0196591 0.091160
NAT 0.84983 5.76083 0.0497937 0.567353

Tab. 2. Thinning to 22 points with fs.

Table 2 indicates that small subsets of X output by an adaptive thin-
ning algorithm can serve as good sets of centres for approximating the data
(z, f(x)) : @ € X, by a sum of translates of ¢ to the chosen centres, and that
these approximations are superior to the piecewise linear interpolants on these
subsets.
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Fig. 5. Least squares approximation, AT1 (left), NAT (right).
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