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Summary. Adaptive thinning algorithms are greedy point removal schemes for
bivariate scattered data sets with corresponding function values, where the points
are recursively removed according to some data-dependent criterion. Each subset of
points, together with its function values, defines a linear spline over its Delaunay
triangulation. The basic criterion for the removal of the next point is to minimize
the error between the resulting linear spline at the bivariate data points and the
original function values. This leads to a hierarchy of linear splines of coarser and
coarser resolutions.

This paper surveys the various removal strategies developed in our earlier papers,
and the application of adaptive thinning to terrain modelling and to image compres-
sion. In our image test examples, we found that our thinning scheme, adapted to
diminish the least squares error, combined with a postprocessing least squares opti-
mization and a customized coding scheme, often gives better or comparable results
to the wavelet-based scheme SPIHT.

1 Introduction

This paper concerns the construction of multiresolution approximations to
bivariate functions from irregular point samples. These approximations are
linear splines over decremental Delaunay triangulations, generated by adap-
tive thinning algorithms.

A thinning algorithm is a scheme which recursively removes points from
a set of scattered data, according to some specific criterion. By recursively
removing points, one at a time, a thinning algorithm yields an ordering of the
points, which in turn yields a data hierarchy of the input point set.

In adaptive thinning algorithms, the criterion for the removal of points
depends on both the locations of the given points and the sampled function
values at the points. This is in contrast to non-adaptive thinning, where the
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criterion for removal depends only on the geometry of the given planar point
set [9].

Linear splines over Delaunay triangulations are used in order to com-
pute multiresolution approximations to the sampled function. Each subset
of points defines a unique Delaunay triangulation (up to co-circularity) and a
corresponding linear spline function. The resulting sequence of linear splines
constitutes the multiresolution approximations of the sampled function.

For every point in the current subset, we maintain an anticipated error
which provides a local estimate for the true error incurred by its removal. The
error is the deviation of the spline function at the 2D data points from the
given function values, measured in some specific norm. The point with min-
imal anticipated error is considered to be the least significant in the current
situation, and is removed. In order to obtain good multiresolution approxima-
tions to the sampled function, the choice of removal criterion requires care.
We customize our removal strategies according to the application.

The idea of thinning scattered data is closely related to mesh simplifica-
tion methods. Indeed, thinning combined with linear splines over Delaunay
triangulations, is only one of several mesh simplification methods. Heckbert
and Garland [11] give an extensive survey of simplification methods both for
terrain models (triangulated scattered data in the plane) and free form models
(manifold surfaces represented by 3D triangle meshes). Specific mesh simpli-
fication algorithms, include techniques like edge-collapse, half-edge collapse,
and vertex collapse. For a more recent survey paper on these methods, see the
tutorial [10].

Adaptive thinning algorithms are useful for both model simplification and
data compression, and have been applied to hierarchical terrain modelling
and to image compression. This paper starts with a generic introduction to
adaptive thinning algorithms, before going on to various application-specific
measures of anticipated errors, and ends with numerical examples of the al-
gorithms applied to terrain modelling and image compression.

In the image compression application, adaptive thinning constructs a hier-
archy of most significant pixel positions in a digital image. We use a thinning
scheme, whose anticipated error is measured in the £5 norm, combined with a
post-processing step which optimizes the luminances at the most significant
pixels. The positions of the pixels in the set of most significant pixels, along
with their optimized luminance values, are then converted into a bitstream,
using a customized coding scheme for scattered data, developed in our pre-
vious paper [4]. At the decoder, the transmitted data is used for the image
reconstruction, by evaluating the linear spline over the Delaunay triangulation
of the transmitted pixels, interpolating the optimized luminance values at the
vertices.

The result is a novel image compression scheme, AT?%, which, in our nu-
merical examples, often gives better or comparable compression rates to the
well-established wavelet-based compression method SPIHT (Set Partitioning
Into Hierarchical Trees).
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2 Generic Formulation of Thinning

This section provides a generic introduction to the basic features and concepts
of adaptive thinning algorithms. Let X = {x1,...,2x} C R? denote a finite
scattered point set in R?, and let fx = (f(z1),..., f(zn))T € RY denote a
corresponding data vector containing point samples taken from an unknown
function f : R?> — R at the points of X.

Thinning is a recursive point removal scheme for bivariate scattered data,
whose generic formulation is given by the following algorithm, where n is the
number of removals.

Algorithm 1 (Thinning).

(1) Let Xy = X;

(2) FOR k=1,....n
(2a) Locate a removable point x € Xy;
(2b) Let Xn_ = XN_k+1 \.23,'

Note that thinning constructs, for given data (X, fx), a nested sequence
XnpnC---CXy1C X=X (1)

of subsets of X, where the size | X} | of any subset Xy in (1)isk, N—n < k < N.
Two consecutive subsets in (1) differ only by one point.

In order to select a specific thinning strategy, it remains to give a defi-
nition for a removable point in step (2a) above. Before we propose several
different preferred removal strategies, let us first discuss our motivation for the
construction of the data hierarchy in (1). Our intention is to use the data hi-
erarchy (1) in order to create a multiresolution approximation of the sampled
function f from the given data fx.

The multiresolution approximation of f combines the data hierarchy (1)
with linear splines. Recall that a linear spline is a continuous function, which
is piecewise linear over a partitioning of its domain 2 C R2. In the setting
of this paper, we let the domain {2 coincide with the convex hull [X] of the
input point set X. This makes sense, if the convex hull [Y] of any subset
Y C X, constructed by thinning, coincides with the convex hull of X. We
ensure this by not removing extremal points from X. A convenient choice for
the partitioning of (2 is the Delaunay triangulation D(Y) of Y. Although we
assume that the reader is familiar with Delaunay triangulation methods, let us
recall some of their basic properties, which are relevant to the construction of
adaptive thinning algorithms. For a comprehensive discussion of triangulation
methods, in particular Delaunay triangulations, we refer to the textbook [14]
and the paper [16].

Firstly, we remark that a Delaunay triangulation D(Y) of a finite planar
point set Y is one, such that for any triangle in D(Y) its corresponding cir-
cumcircle does not contain any point from Y in its interior. This property
is termed the Delaunay property. Moreover, there is a unique triangulation
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of Y with the Delaunay property, provided that no four points in Y are co-
circular [14]. We assume this condition on the given set X in order to avoid
lengthy but immaterial discussions concerning the non-uniqueness of D(Y),
for Y C X.

Secondly, note that the removal of one point y from Y requires an update
of D(Y) in order to obtain the Delaunay triangulation D(Y \ y). Due to
the Delaunay property, this update of D(Y) is local. Indeed, the required
retriangulation, incurred by the removal of the vertex y in D(Y), can be
performed by the retriangulation of its cell C(y). Recall that the cell C(y) of
y is the union of all triangles in D(Y") which contain y as a vertex. Figure 1
shows, for a vertex y in a Delaunay triangulation, the retriangulation of its
cell C(y).

(a) (b)

Fig. 1. Removal of the vertex y, and retriangulation of its cell. The five triangles
of the cell in (a) are replaced by the three triangles in (b).

For any Y C X let
Sy = {s:s€C([Y]) and s|T linear for all T € D(Y)},

be the spline space containing all continuous functions over [Y] whose restric-
tion to any triangle in D(Y") is linear. Any element in Sy is referred to as a
linear spline over D(Y"). For given function values fy, there is a unique linear
spline L(Y; f) € Sy which interpolates f at the points of Y,

LY;N)y) = fly),  forallyeY.

3 Adaptive Anticipated Error Measures

The aim of adaptive thinning is to construct a data hierarchy of the form (1)
from the given data (X, fx), such that for any subset Y = X} C X in (1) the
interpolatory linear spline L(Y; f) € Sy, is close at X to the given function
values fx € RV,
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In order to establish this, we require that, for some norm || - | on RY, the
approximation error

n(Y;X) = [IL(Y; )] — fx|l (2)

is small. Note that n(Y; X) in (2) depends also on the input values fx, but
for notational simplicity we omit this.
For the discrete £o-norm, the approximation error n(Y; X) becomes

Moo (Y3 X) = max |L(Y; f)(2) — f(2)], 3)

whereas for the discrete f3-norm, we obtain

1Y X) = \/ STLEY; () — F)2 (4)

reX

Ideally, for any k, N —n < k < N, we would like to locate a subset Y C X
which minimizes the error in (2) among all subsets of X of equal size |Y| = k.
We remark, however, that the problem of finding an algorithm which outputs
for any possible input (X, fx,k), N —n < k < |X]|, such an optimal subset
Y™ of size |[Y*| = k satisfying

n(Y"; X) = min n(Y; X) ()

1Y =k

is closely related to the NP-hard k-center problem. For a comprehensive dis-
cussion on the k-center problem we refer to the textbook [12, Section 9.4.1]
and the survey [17]. To overcome this difficulty, thinning algorithms are based
on a greedy removal strategy. The application of greedy algorithms to the
k-center problem is developed in [13].

Greedy algorithms are in general known as efficient and effective methods
of dynamic programming for solving optimization problems approzimately.
Greedy algorithms typically go through a sequence of steps, where for each
step a choice is made that looks best at the moment. For a general introduction
to greedy algorithms we recommend the textbook [2, Chapter 16].

For the thinning Algorithm 1, the most natural removal criterion in
step (2a) for approximately solving (5) by a greedy algorithm is

Definition 1. (Removal Criterion AT)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

nY\yX) = gggn(Y\y;X)-

We refer to the adaptive thinning algorithm, resulting from this removal
criterion in Algorithm 1, as AT.

Let us make a few remarks on the idea of this particular definition of a
removable point. When using the above removal criterion AT, we assign to
each current point y € Y an anticipated error
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e(y) =nY \y; X),

which is incurred by the removal of y. Moreover, we interpret the value e(y)
as the significance of the point y in the current subset Y. In this sense, a point
y* whose removal gives the least anticipated error e(y*) is considered as least
significant in the current situation, and so it is removed from Y.

For the implementation of the thinning algorithm, we use a priority queue
of the points, according to their significances. This priority queue has a least
significant point at its head, and is updated after each removal of its head.
For more details concerning the efficient maintenance of the priority queue of
the scattered points, we refer to our paper [7].

In the remainder of this section, we propose different removal criteria,
which are adapted to terrain modelling and to image compression. Let us
briefly explain the differences between these two applications. In terrain mod-
elling, it is of primary importance to keep the mazimal deviation 7. (Y; X)
between the linear spline interpolant L(f;Y") and the given point samples fx
as small as possible. This is in contrast to applications in image compression,
where the quality measure relies on the mean square error

M (Y;X) =n3(Y;X)/N. (6)

We develop two classes of customized adaptive thinning criteria. Those
for terrain modelling work with the error measure 7. in (3), whereas the an-
ticipated error measures for image compression rely on the discrete fs-error
n2 in (4). Accordingly, we denote by AT, the adaptive thinning algorithm
AT which works with the {,,-norm, whereas AT5 is the algorithm AT for
the choice of the fo-norm. The removal criterion for AT, cannot be com-
puted locally, but alternative local removal criteria are suggested in the next
subsection.

3.1 Anticipated Errors for Terrain Modelling

In this subsection, we propose three locally computable, alternative removal
criteria, AT1, AT2 and AT3, which reduce the computational costs of the
resulting thinning algorithm, in comparison with AT ... The removal criteria
AT1 and AT2 require the retriangulation of Y \ y for the computation of
the anticipated error of any y in Y. Due to the Delaunay property, only the
retriangulation of the cell C(y) is required. The removal criterion AT3 does
not require the retriangulation of the cell C(y) for the computation of the
anticipated error of y in Y.

The first alternative, AT1, measures the anticipated error of a point y
only in its cell C(y),

e1(y) = Ne(Y \ y; X N C(y)).
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Definition 2. (Removal Criterion AT1)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

e1(y™) = miney(y).
1(y7) = mines (y)

We remark that the adaptive thinning algorithm AT, is not equivalent
to AT1. This is confirmed by the following counter-example.

Example 1. (AT _ # AT1)
Consider the eight data points, X = {z1,...,zs} and the values fx given as
follows.

i| 1] 2| 3 4| 5 6| 7| 8
i (1,0)) (2,0)] (3,0 (4,0) (5,0) (6,0)] (7,0){ (1,1)
fxy) 5 -1 0 -3 —-1.1 2.5
In this case, the extremal points of X are x1,x7 and zg, so that only the five
points x;, i = 2,...,6, can be removed. It is easy to see that both AT, and

AT1 remove the point z3 = (3,0) first, and then they remove x5 = (5,0). In
the third step, however, the algorithm AT1 removes z¢ = (6,0), whereas the
algorithm AT, removes x4 = (4,0).

Now let us turn to the adaptive thinning algorithm AT2, being a simplifi-
cation of the previous AT1. In order to further reduce the required computa-
tional costs, the removal criterion AT2 depends only on the sample values fy
of the points in the current subset Y C X. This is in contrast to both AT,
and AT1, which depend on points in X which were removed in previous steps.

The anticipated error of AT2 is, for any y € Y, given by

e2(y) = N (Y \ 43 Y).

Note that this expression can be rewritten as

ea(y) = [L(Y \y; f)(y) — f(W)l.

Definition 3. (Removal Criterion AT2)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

e2(y") = mines(y).

We have also explored an adaptive thinning algorithm, AT3, which is
faster than AT2. The algorithm AT3 does not only ignore the points already
removed but also computes an anticipated error for each point without needing
to temporarily retriangulate its cell.

The basic idea behind AT3 is to define this anticipated error es(y) as
the maximum of the directional anticipated errors at y in a certain sample of
directions. For each neighbouring vertex z of y in D(Y") we consider the unique
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point p lying at the intersection of the boundary of C(y) and the straight line
passing through z and y (other than z itself). Such a point exists, since C(y)
is a star-shaped polygon.

The point p is either a vertex of the cell’s boundary 0C(y) or a point on
one of its sides. In either case, p lies on at least one edge of dC(y). Let us
denote such an edge by [z9, 23]; see Figure 2. Then the triangle T, = [z, 22, 23],
with vertices in Y\ y, contains y. We call T, a directional triangle of y. We
then let

() = IL(T: )W) — fW)

be the (unique) directional anticipated error of y in the direction z — y, where
L(T,; f) is the linear function which interpolates f at the vertices of T,. Now,
we let

_ z
e3(y) = max e (y)

for the anticipated error of the adaptive thinning algorithm AT3, where V,,
is the set of all neighbouring vertices of y in D(Y").

y4

—
p
Z

3

Fig. 2. Directional triangle of y.

Definition 4. (Removal Criterion AT3)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

X .
es(y”) = min es(y).

A detailed analysis of the complexity of the adaptive thinning algo-
rithms AT, AT1, AT2, and AT3 can be found in [7]. It is shown in [7]
that the asymptotic computational costs of any of these three algorithms is
O(Nlog(N)), but with different constants. For further illustration, we refer
to the numerical examples in Section 4, where these algorithms are applied to
one selected test case from terrain modelling.
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3.2 Anticipated Errors for Image Compression

In this subsection, we propose one customized removal criterion for image
compression. In this application, the quality of image compression schemes is
usually measured in Peak Signal to Noise Ratio (PSNR) (7), see the discussion
in Section 5. It is sufficient for the moment to say that PSNR is an equivalent
measure to the reciprocal of the mean square error 73(Y; X) in (6).

The aim of adaptive thinning, when applied to image compression, is to
keep the mean square error as small as possible. This is accomplished by using
adaptive thinning algorithms, which generate subsets ¥ C X in (1), whose
square error n3(Y; X) is, among subsets of equal size, small. Therefore, we
work with the discrete £5-norm 7, in (4).

Let us now discuss the adaptive thinning algorithm ATj,, whose antici-
pated error is given by

ely) =m(Y\y;X),  foryeY.
By the additivity of n2 and by the observations X = (X \ C(y))U(X NC(y)),
and 75 (Y \ y; X \ C(y)) = n3(Y; X \ C(y)), for any y € Y, we get

Y\ X) =Y\ X\CW)+nmY \y; XNC(y))
= (YV;X\C) +m(Y \y; X NC(y))
(

=nV;X)+mY \y; XNCy) —n3(Y; X NCy)).

Hence, for any Y C X, the minimization of n3(Y \ y; X) is equivalent to
minimizing the difference

es(y) =m(Y \y; X NC(y) —n3(Y;XNC(y),  forye?,
where C(y) is the cell of y in D(Y).

Definition 5. (Removal Criterion AT;)
ForY C X, a point y* € Y is said to be removable from Y, iff it satisfies

es(y*) = mine .
s(y") min s(y)

We remark that we can establish the complexity O(N log(N)) for the
adaptive thinning algorithm ATsg, by following along the lines of the analysis
in [7]. This, however, is beyond the scope of this survey.

4 Adaptive Thinning in Terrain Modelling

We have implemented the thinning algorithms AT1, AT2, and AT3, to-
gether with one non-adaptive thinning algorithm, called NAT [7]. The al-
gorithm NAT, proposed in [9], ignores the given samples fx, and favours
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evenly distributed subsets of points Y C X. We refrained from implementing
the algorithm AT, since it requires significantly more computations [7], and
due to our experience in the univariate setting [6], we do not expect AT to
be significantly better than AT1.

In this section, we compare the performance of the four algorithms AT1,
AT2, AT3, and NAT in terms of both approximation quality and computa-
tional cost on one specific example from terrain modelling. The corresponding
data set, Hurrungane, contains 23092 data points. Each data point is of the
form (z, f(x)), where f(z) denotes the terrain’s height value sampled at the
location = € R2. This data set is displayed in Figure 3 (a) (2D view) and in
Figure 3 (b) (3D view).

(a) (b)

Fig. 3. Hurrungane: (a) 2D view and (b) 3D view.

For all four thinning algorithms, we have recorded both the required sec-
onds of CPU time (without considering the computational costs required
for building the initial data structures, such as the Delaunay triangulation)
and the sequence of approximation errors 7. (Y;X) after the removal of
n = 1000, 2000, . . ., 22000 points from X.

Not surprisingly, we found that NAT is the fastest method but also the
worst one in terms of its approximation error. For example, for n = 22000
the algorithm AT1 takes 247.53 seconds of CPU time, whereas NAT takes
only 11.37 seconds. On the other hand, we obtain in this particular example
Moo (Y3 X)) = 278.61 for NAT, but only 7. (Y; X) = 30.09 when using AT1.
The two corresponding triangulations D(Y') output by NAT and AT1 are
displayed in Figure 4 (a) and (b) (2D view), and in Figure 5 (a) and (b) (3D
view).

In Figure 6 (a) and in Figure 7 (a) the approximation error 7. (Y; X) as
a function of the number of removed points is plotted for the four different
thinning algorithms. In Figure 6 (b) and in Figure 7 (b) the corresponding
seconds of CPU time are displayed.
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Fig. 5. Thinned Hurrungane with 1092 points, 3D view. (a) NAT and (b) AT1.

The graphs show that, with respect to approximation error, the three adap-
tive thinning algorithms AT1, AT2, and AT3 are much better than NAT.
Among the three adaptive thinning algorithms, AT1 is the best, followed by
AT3, and AT?2 is the worst. Note that by definition AT3 can only be inferior
to AT2 after one removal. In the numerical example, AT3 has continued to
be inferior for about 50 removal steps, after which its approximation error is
smaller than that of AT2.

As to the computational costs for the adaptive thinning algorithms, AT3
is the fastest, and AT1 the slowest, see Figure 6 (b) and Figure 7 (b). Our
conclusion is that AT1 is our recommended thinning algorithm. But if com-
putational time is a critical issue, AT3 is a good alternative.
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5 Adaptive Thinning in Image Compression

This section reviews our recent research on the application of adaptive thin-
ning to image compression. The information reduction and efficient coding of
digital images are essential for fast transmission across an information channel,
such as the internet. For a comprehensive introduction to image compression
and coding, we recommend the textbook [19].

Many of the well-established techniques in image compression, including
JPEG2000 [19], are based on wavelets and related techniques, see [3] for a
recent survey on wavelet-based image coding. When working with wavelets,
digital images are represented by using rectangular grids of wavelet coeffi-
cients. This is in contrast to adaptive thinning, which works with scattered
data.



Adaptive Thinning 13

Adaptive thinning constructs a hierarchy of sets of most significant pixels,
where for each set the image is approximated by the linear spline over the
Delaunay triangulation of the pixels in the set. The idea to approximate an
image by first identifying significant pixels is not new (see e.g. [8]). In this
section we go further and so obtain a competitive compression scheme, based
on adaptive thinning.

Any compression scheme is mainly concerned with the following sequence
of tasks.

(1) data reduction;

(2) encoding of the reduced data at the sender;

(3) transmission of the encoded data from the sender to the receiver;
(4) decoding of the transmitted data at the receiver;

(5) data reconstruction.

Adaptive thinning is mainly used in the above step (1), the data reduction.
In the following discussion, we first explain how adaptive thinning works in
image data reduction, before we show how the reconstruction step (5) is
accomplished. For a discussion of scattered data coding, required in steps (2)
and (4), we refer to our paper [4].

5.1 Adaptive Thinning and Image Reduction and Reconstruction

A digital image is a rectangular grid of pizels. Each pixel bears a color value
or greyscale luminance. For the sake of simplicity, we restrict the following
discussion to greyscale images. The image can be viewed as a matrix F =
(f(i,7)); ;> whose entries f(i,j) are the luminance values at the pixels. The
pixel positions (i,7) € X are pairs of non-negative integers i and j, whose
range is often of the form [0..27 — 1] x [0..29 — 1], for some positive integers
p,q, where we let [0..n] = [0,n] N Z for any non-negative integer n € Z. In
this case, the size of the pixel set X is 2P x 2¢. Likewise, the entries f(i,7)
in F' are non-negative integers whose range is typically [0..2" — 1], for some
positive integer r. In the examples of the test images below, we work with 256
greyscale luminances in [0..255], so that in this case r = 8.

A well-known quality measure for the evaluation of image compression
schemes is the Peak Signal to Noise Ratio (PSNR),

2" x 27
PSNR = 10 * log;, (ﬁ%(Y;X)) ) (7)
which is an equivalent measure to the reciprocal of the mean square error
73(Y; X) in (6). The PSNR is expressed in dB (decibels). Good image com-
pressions typically have PSNR values of 30 dB or more [19] for the recon-
structed image. The popularity of PSNR as a measure of image distortion
derives partly from the ease with which it may be calculated, and partly
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from the tractability of linear optimization problems involving squared error
metrics. More appropriate measures of visual distortion are discussed in [19].

Adaptive thinning, when applied to digital images, recursively deletes pix-
els using the thinning Algorithm 1, in combination with the adaptive removal
criterion AT5 of Section 3. In other words, the pixel positions form the initial
point set X on which the adaptive thinning algorithm is applied. At any step
of the algorithm, a removable pizel (point) is removed from the image. The
output of adaptive thinning is a set ¥ C X of pixels combined with their
corresponding luminances Fy .

However, due to the regular distribution of pixel positions, the Delaunay
triangulations of X, and of its subsets Y C X, might be non-unique. To avoid
this ambiguity, we apply a small perturbation to the pixels X and apply the
thinning algorithm to the perturbed pixels.

As a postprocess to the thinning, we further minimize the mean square
error by least squares approximation [1]. More precisely, we compute from the
output set Y and the values F' the unique best ¢o-approzimation L*(Y; F) €
Sy satisfying

Yo I E)G ) — )P = min Y [s(i5) — fEG)P (8)
SESy
(4,5)€X (4,5)€X

Such a unique solution exists since Y C X. The compressed information to
be transferred consists of the output set Y and the corresponding optimized
luminances {f*(i,5) = L*(Y; F)(4,5) : (3,5) € Y}.

Following along the lines of our papers [4, 5], we apply a uniform quan-
tization to these optimized luminances. This yields the quantized symbols
{Q(f*(i,4)) : (i,4) € Y}, corresponding to the quantized luminance values
{f(i,5) : (i,5) € Y}, where f(i,j) ~ f*(i,j) for (i,j) € Y. The elements
of the set {(4,7,Q(f*(¢,7))) : (i,4) € Y} are coded by using the customized
scattered data coding scheme of [4].

At the receiver, the reconstruction of the image F (step (5)) is then
accomplished as follows. The wunique Delaunay triangulation D(Y") of the
pixel positions Y is computed at the decoder, using the same perturbation
rules applied previously at the encoder. This defines, in combination with
the decoded luminance values Fy = {f(i,j) : (i,j) € Y}, the unique
linear spline L(Y; Fy) € Sy satisfying L(Y; Fy)(i,j) = f(i,7) for every
(i,7) € Y. Finally, the reconstruction of the image is given by the image
matrix F' = (L(Y; Fy)(i,7))@j)ex-

We denote the novel image compression scheme, presented in this subsec-
tion, by AT3.

5.2 Comparison between AT} and SPIHT

In this subsection we compare the performance of our compression scheme
AT? with that of the wavelet-based compression scheme Set Partitioning Into
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Hierarchical Trees (SPIHT) [15] on two test images. We work with greyscale
values of the luminances f(7,7) in [0..255], i.e., » = 8. In the test examples
below, we use the range [0..31] for the quantized symbols Q(f*(i,7)), with
(i,7) € Y. In each test case, the compression rate, measured in bits per pizel
(bpp), is fixed. The quality of the resulting reconstructions is then evaluated
by the comparison of the differences in PSNR, and in visual quality.

We remark that the good compression rate of SPTHT is, at low bit rates,
comparable with that of the powerful method EBCOT [18], which is the basis
algorithm of the standard JPEG2000 [19].

A Geometric Test Image

We first consider one artificial test image, Reflex, of small size 128 x 128 (p =
q = 7). This geometric test image is displayed in Figure 8 (a). The purpose
of this test case is to demonstrate the good performance of our compression
scheme AT3 on texture-free images with sharp edges.

N
/{@(
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ONEA
S

A S

(b)
(d)

Fig. 8. Reflex. (a) Original image of size 128 x 128. Compression at 0.251 bpp and
reconstruction by (b) SPIHT with PSNR 30.42 db, (d) AT3 with PSNR 41.73 db.
(c¢) The Delaunay triangulation of the 384 most significant pixels output by ATs:.
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In this test case, we fix the compression rate to 0.251 bpp. The resulting
reconstructions corresponding to AT%5 and to SPIHT are displayed in Fig-
ure 8 (b),(d). Our compression scheme AT yields the PSNR value 41.73 dB,
whereas SPTHT provides the inferior PSNR value 30.42 dB. Hence, with re-
spect to this quality measure, our compression method AT3 is much better.
Moreover, the reconstruction by AT% provides also a superior visual quality
to that of the reconstructed image by SPTHT, see Figures 8 (b),(d). Indeed,
our compression scheme AT manages to localize the sharp edges of the test
image Reflex. Moreover, it avoids undesired oscillations around the edges,
unlike SPIHT. This is due to the well-adapted distribution of the 384 most
significant pixels, output by the adaptive thinning algorithm ATs2, whose De-
launay triangulation is displayed in Figure 8 (c).

We have recorded the results of this example, along with those of the
following test case, in Table 1.

A Popular Test Case of a Real Image

We considered also applying our compression scheme AT3 to one popular test
case of a real image, called Fruits, which is also used as a standard test case
in the textbook [19]. The original image Fruits, of size 512 x 512, is displayed
in Figure 9.

w?”
@5"@?“5
L v
—

Fig. 9. Fruits. Original image of size 512 x 512.
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(b)

Fig. 10. Fruits. Compression at 0.185 bpp and reconstruction by (a) SPIHT with
PSNR 32.33 db and (b) AT3 with PSNR 31.85 db.
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It is remarkable that our compression scheme AT% is, at low bitrates,
quite competitive with SPIHT. This is confirmed by the following comparison
between SPIHT and AT at the bitrate 0.185 bpp. The different PSNR values
are shown in the second row of Table 1. Note that the PSNR obtained by AT%
is only slightly smaller than that obtained by SPIHT.

Now let us turn to the visual quality of the reconstructions. The recon-
struction by SPIHT is shown in Figure 10 (a), whereas Figure 10 (b) shows
the reconstruction by AT3.

The set Y of most significant pixel positions obtained by AT, along with
its Delaunay triangulation D(Y), are displayed in Figure 11. Note that by
the distribution of the most significant pixels, the main features of the image,
such as sharp edges and silhouettes, are captured very well. Moreover, our
compression scheme AT35 manages to denoise the test image Fruits quite
successfully, in contrast to SPTHT.

A
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1%

Fig. 11. Fruits. (a) 4044 most significant pixels output by ATz and (b) their
Delaunay triangulation.

On balance, in terms of the wvisual quality of the two reconstructions of
Fruits, we feel that our compression scheme AT is at least as good as
SPIHT.

Peak Signal to Noise Ratio (PSNR)

Test Case bpp SPIHT AT3
Reflex 0.251 30.42 41.73
Fruits 0.185 32.33 31.85

Table 1. Comparison between the compression schemes SPIHT and ATS5.
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