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Abstract

We present a construction of a refinable compactly supported vector of functions which
is bi-orthogonal to the vector of B-splines of a given degree with multiple knots at the
integers with prescribed multiplicity. The construction is based on Hermite interpolatory
subdivision schemes, and on the relation between B-splines and divided differences. The
bi-orthogonal vector of functions is shown to be refinable, with a mask related to that of
the Hermite scheme. For simplicity of presentation the special (scalar) case, corresponding

to B-splines with simple knots, is treated separately.

1. Introduction.

B-splines are important for applications [1], and those with integer knots provide ex-
plicit examples of a compactly supported refinable univariate function. Wavelets based on
splines have received considerable treatment in the literature (see e.g. [4]). In this paper
we show how to construct refinable compactly supported functions, that are bi-orthogonal
to B-splines with simple or with multiple knots, using the refinable (scaling) functions
generated by interpolatory subdivision schemes. Compactly supported bi-orthogonal func-
tionals to B-splines built on an arbitrary sequence of knots (with possible multiplicities)
are constructed in [2].

The case of B-splines with simple equidistant knots (the scalar case), is simpler and
is treated here separately for the simplicity of the presentation. For this case the bi-
orthogonal refinable function is generated by a “Lagrange type” interpolatory subdivision

scheme [11], which uses function values at each control point. A different approach to the
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construction of bi-orthogonal refinable functions to B-splines with simple knots from the
interpolatory schemes of Deslaurier and Dubuc [8] is mentioned in [14].

B-splines with multiple equidistant knots of the same multiplicity constitute a refinable
vector of functions. Refinable vectors of spline functions are considered in [13]. For the
case of B-splines with multiple knots we generate the bi-orthogonal vector of functions
by “Hermite type” interpolatory subdivision schemes, which use values of a function and
its derivatives at each control point to generate the same type of data in the next level
[12]. For B-splines with knots of multiplicity g , the corresponding Hermite interpolatory
subdivision scheme is of order p , namely a subdivision scheme which uses and computes
the value of the function and the values of its first g — 1 derivatives at each control point.
For information about subdivision schemes the reader is referred to [3] and [10].

The construction of the bi-orthogonal functions, is based on the relation between
B-splines and divided differences. Information on B-spines, divided differences, and the
relation between them can be found in [1].

First, we prove the bi-orthogonality property and then the refinability property. In
both proofs we treat separately the case of B-splines with simple knots

The special case of splines which are not necessarily continuous, namely when p is
maximal (exceeds the degree of the B-spline by 1), is treated in [9]. The Hermite interpo-
latory schemes, in this case, are closely related to the “moments interpolating schemes”.

Bi-orthogonal refinable functions of compact support are important in the construction

of bi-orthogonal wavelets of compact support [5].

2. B-splines with simple knots.
Define
So(n)=1,forn>0, So(n)=0, forn<0.

Then the sequence Sy has the property that
[’I’L,’I’L —|— ]_]So = 50,n .

Here we use the notation [to, ..., tx]f for the divided difference of order k of f at the points

to,...,tr , where f is a function defined on these points. Note that So(n) is a polynomial
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of degree 0 in n for positive values of n. Define a sequence of sequences recursively by
[n,n+1]55 = (7 + 1)Sj-1(n) ,

such that S;(n) for n < 0 is identically zero. ;From the above definition it follows that

n

Si(n) = (G +1) ) Si-1(e) - (1)

=1

With this definition, the sequences S; have the following properties
myn+1,---n+7+1]5; =bon . (2)

Also Sj(n) is a polynomial in n of degree j for positive values of n, and S;(n) is identically
equal to zero for nonpositive values of n. (See next section for a less explicit construction
of the sequences 5;).

Let there be given an interpolatory subdivision scheme with a finite mask, which
generates C'™ limit functions. Denote by ¢ the basis limit function of the scheme, namely
the limit function generated from the initial data A(n) = dn 0.

The main result of this section is

Theorem 1. Let ¢ be as above. Then for all integers r, 1 < r < m, the r-th derivative

of the function

";b'r(m) — Z S’r—l(n)qs(m - ’I’L) ’ (3)

is bi-orthonormal to the B-spline of order r, (of degree r—1) with integer knots and support
[0,7], By, namely
/ Bt —n)p"(t —£)dt = bpny, nl e Z . (4)

Moreover 1/J£T) is a function of compact support, with support contained in the support of

é.

Proof: The function ¢ has the following two properties [11]

é(n) =0no,neZ, (5)
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For f a polynomial of degree not exceeding m
Y. f(n)g(z —n) = f(e) -
neEZ

Also, the support of ¢ is compact and equals the convex hull of the support of the mask
of the subdivision scheme [3]. Let us assume, without loss of generality, that the support

of ¢ is of the form [0,v]. Thus by (5) and (3),
Pr(n) = Sr—1(n), ne Z . (6)

From (6) and the above properties of ¢ and from the properties of the sequences S;, we
conclude that ¥,(t) , is identically equal to zero for ¢ negative and is a polynomial of degree

r—1 for t > v. Thus 1/J£T) has a compact support contained in [0,»]. Moreover by (2) and
(6)
[my--yn 41|, =8np -

The above equality can be written in terms of B, [1], as

/ B.(t — n)p{7 (t)dt = bnyp .

This proves (4).

In the next section we prove a similar result for B-splines with multiple knots.

3. B-splines with multiple knots.

The case of multiple knots is treated very similarly to the case of simple knots.

Let g > 1 denote the multiplicity of the knots, which are all the integers. (The
case p = 1 was treated separately in the previous section because of the simplicity of its

presentation). Define sequences of vectors in IR*
S*n), 1<<p, neZ

for j > pi— 1 by
£ —
§¥"(n)=0cR*, n<0. (7)
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For positive values of n each vector § ;‘ ot (n), consists of components of the following form,

pg‘?‘;,l(n) y 8= Oa' Y - 2 1 )

where p; , ¢ is a polynomial of degree j determined by the conditions,
! 7e
A;L_:ls;t (m) = 50,m5£,s ) 1 S S S u, mec Z . (8)

In (8) A;-"sf(m) denotes the divided difference of order j of f at the following points: the
integer m repeated s times, the consecutive next g integers repeated p times and the integer
m+q+ 1 repeated (7 +1—s—qu)+ times, where g is the quotient in the integer division of
j+1—s by p. Here k stands for &k if £ > 0 and for zero otherwise. These multiple-point
divided differences involve values of the function and its derivatives up to order t — 1 at a
multiple point of multiplicity ¢. Due to the condition 7 > g — 1, the divided differences in
(8) involve at least two different points, or components of at least two consecutive vectors
of S]’-"e. When applying A;-‘_’:l to S;-"e in (8) we regard the components of the vectors
S]’-"e(n) for n > 0, as the values of p; , , and its derivatives up to order 4 — 1 at the point
n.

To determine the polynomial p; , ¢, in the case j > p — 1, we consider the conditions
in (8) which involve components of S;"e(n) with n positive and also nonpositive. These
conditions constitute a linear system of order j 4+ 1 for the unknowns which are all the
components of the vectors

S]’-"e(m) , m=1,---,q;,

and the first (r; , —1)4 components of the vector S]’-"Z(qj,# + 1), where g , is the quotient
and 7; , is the residual in the division of j +2 by p. These j + 1 unknowns determine p; , ¢
uniquely, and are obtainable since the system we consider is triangular (each additional
equation involves an additional unknown). The rest of the conditions in (8) for positive m
are satisfied since these conditions do not involve components of the vectors § ;‘ ’e(m) for
m < 0, and since the divided differences of order 5 4+ 1 of a polynomial of degree j vanish.
The rest of the conditions in (8) for m negative hold trivially by (7).

With this construction we obtain for each £, 1 < £ < u a sequence of sequences

S;-"e , 7+1>p,with the properties
ALY SEH(m) = Gmpobep, mEZ ,1<s<p. (9)
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The above construction of the sequences S;-"e , is also applicable in the context of the
previous section (g = 1), and in the case of unequally spaced knots.

Let there be given a Hermite interpolatory subdivision scheme of order p , with a
finite mask, which generates C™ limit functions, with m > g — 1. The existence of Hermite
schemes of any order p generating C™ limit functions for any m > g — 1 has not been
proven yet in general. It is already known for the case p = 1 and m > 0 [7], while for
various values of g and m > p — 1 it was checked numerically in [9]. We think it is true
in general, and assume it here. Denote by ¢; the function generated from the initial data

Ai(n) = 50’ne(i) by the given Hermite scheme, where

is the standard basis of IR* . Denote by ® the vector of functions with components
$i, 1<i<yp,

and denote by [0, v] the support of & . Then we have

Theorem 2. Let ® , be as above. For p < r < m , define the functions
Yer(z) = Y ®(z—n)- Sk (n), (10)
nEZ
where in the above definition the dot denotes the usual inner- product in IR* . Then the
r-th derivative of v, , is of compact support, contained in [0,v], and the vector of functions
V.. with components

) Ezla"'a:ua

Lr

is bi-orthogonal to the vector of p B-splines of order r (degree r — 1), which constitute
together with their integer shifts a basis of the space of splines of order r, with knots at

the integers of multiplicity p . The bi-orthogonality can be formulated as
/B::j(m — )y (e —m)de =S mbiy, 1<jL<p, mneZ. (11)

In (11) Bf’j , J=1,...,u ,is the B-spline of order r, corresponding to the following r + 1
“active” knots: the knot 0 repeated j times, the knots 1,2,- - - q repeated p times and
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the knot q + 1 repeated (r + 1 — j — qu)+ times, where q is the quotient in the division of
r+1—7 by p.

Proof: By the interpolatory nature of the Hermite scheme, and by the structure of the
initial conditions generating the limit functions ¢; , 1 <12 < p , the vector of functions &

satisfies

<I>(s_1)(n) _ 5n,0€(s) , ne€Z , 1<s<yu. (12)

Thus, by (9) and (10)

AETpy (M) = im0 - (13)

Equation (13) is equivalent to the claim (11), in view of the definition of A% and of Bf’j
[1].
Since the Hermite scheme generates C™ limit functions it reproduces polynomials of

degree up to m [11], namely for any f a polynomial of degree not exceeding m,

Y f(n)-2(z—n) = f(z) , (14)

neZ

where f(n) € IR* is a vector with components

f(s)(n), s=0,...,u0—1.

Thus by the structure of the sequences S;-"s , by (10) and by (12), ¢4 (n) is identically
equal to zero for nonpositive n , and is a polynomial of degree not exceeding » — 1 for

r)

n > v . This proves that ¢§ . has compact support contained in [0,v] .

4. Refinability of the bi-orthogonal functions.

First the refinability of the bi-orthogonal functions to B-splines with simple knots is
proved. Also in this case the proof is simpler, and therefore given separately, although the
proof for the multiple knot case, which is more involved, applies also for the simple knot

case.



Theorem 3. Under the conditions of Theorem 1, the function 1/J£T), with 1, , defined in
(3), for 1 < r < m, is refinable.

Proof: The interpolatory subdivision scheme, I, with ¢ its basis limit function, generates
C™ limit functions, and therefore there exists a subdivision scheme I, for the divided
differences of order r , 1 < r < m , of the control points of I. The scheme I, generates
from the divided differences of any set of control points of I, a limit function which is the
r-th derivative of the limit function generated by I from the given control points [11].

In view of (6) the function %, in (3) can be regarded as generated by I from the
initial data S,_; . By (2) the divided differences of order » of this initial data, vanish at
all the integers, except at zero, where the divided difference of order r is equal to 1. Thus
the initial data for I, is A and therefore 1/J£T) is the basis limit function of I, . A basis
limit function of a subdivision scheme is refinable, with the mask of the scheme as the
coeflicients of the refinement equation [3]. This establishes the claim of the theorem.

The case of multiple knots is treated similarly.

Theorem 4. Under the assumptions of Theorem 2, the vector of functions ¥, is refinable

for p<r<m.

Proof: Let H denote the Hermite interpolatory subdivision scheme which generates the
limit vector of functions ® satisfying (12). The function ¢, , , £ = 1,...,p , defined in
(10), can be regarded as generated by H from the initial data Sffl (n), n€Z,in view
of (12).

Since H generates C'™ limit functions, there exist subdivision schemes, H,, for the
divided differences of order r , p <r < m , of the vectors of data (in IR") generated by
H. These divided differences regard the control points as having multiplicity p. The limit
of the subdivision scheme for the divided differences of order r is the r-th derivative of the
corresponding limit function generated by H [12].

Thus, H, , p <r <m, generates the limit function 1/;22 from the initial data which
for each n € Z is a vector with components consisting of the divided differences of order

r of the initial data from which H generates the function 1, ,, namely
APESEE (), s=1,...,u. (15)

8



Note that for each r , r > p, there are p different divided differences of order r, according
to the multiplicity of the first point, which can be 1,...,u . The subdivision scheme for the
divided differences of order » , 7 > p , is a matrix subdivision scheme (the coefficients of
the mask are matrices [6]) which maps vectors of control points in IR* to such vectors in the
next level, and which generates in the limit a vector of functions. In this vector of functions
all the functions are identical, in case the initial data consists of divided differences of order

r of some initial data for H.

Let the mask of H, be denoted by
A" iem, AD+o, iel,, (16)

where I, is a finite set of integers, and Agr) are p X p matrices. Then the scheme H,.
operates on vectors of data at level & , f]]c € R* , je€ Z , to generate the data at level

k + 1, in the following way
=3 A, fk (17)
JEZ
From the above discussion we conclude that the vector of functions ¥,, consists of
components which are generated by H, from the initial data (15) for £ = 1,...,u . This
vector of functions satisfies, in view of (9), the following refinement equation [6],

T,(2) = Y (AT, (1) . (18)

i€l

where the matrices Agr) are the ones in (16) and (17). Thus, the vector of functions ¥, is

refinable.
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